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ON THE SENSITIVITY TO NOISE OF A BOOLEAN FUNCTION

MIHAELA T. MATACHE∗ AND VALENTIN MATACHE

Department of Mathematics

University of Nebraska at Omaha

Omaha, NE 68182-0243, USA

∗dmatache@mail.unomaha.edu, vmatache@mail.unomaha.edu

Abstract. In this paper we generate upper and lower bounds for the sensitiv-

ity to noise of a Boolean function using relaxed assumptions on input choices

and noise. The robustness of a Boolean network to noisy inputs is related

to the average sensitivity of that function. The average sensitivity measures

how sensitive to changes in the inputs the output of the function is. The

average sensitivity of Boolean functions can indicate whether a specific ran-

dom Boolean network constructed from those functions is ordered, chaotic, or

in critical phase. We give an exact formula relating the sensitivity to noise

and the average sensitivity of a Boolean function. The analytic approach is

supplemented by numerical results that illustrate the overall behavior of the

sensitivities as various Boolean functions are considered. It is observed that,

for certain parameter combinations, the upper estimates in this paper are

sharper than other estimates in the literature and that the lower estimates

are very close to the actual values of the sensitivity to noise of the selected

Boolean functions.

Keywords: sensitivity to noise of a Boolean function, average sensitivity of a Boolean

function, lower and upper estimates, generalized elementary cellular automata rules.
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2 MIHAELA T. MATACHE∗ AND VALENTIN MATACHE

1. Introduction

Boolean network models have been used for modelling networks in which the

node or cell activity can be described by two states, 1 and 0, ON and OFF, “active

and nonactive”, “up-regulated and down-regulated”, and in which each node is

updated based on logical relationships with other nodes. The random Boolean

networks have been originally developed by Stuart Kauffman as models for genetic

regulatory networks [1]. They are referred to as N/K models or Kauffman networks.

Boolean networks can model a variety of real or artificial networks including among

others: genetic regulatory networks (e.g. Shmulevich et. al. [2], [3]), strongly

disordered systems that are common in physics (e.g. Kauffman [1], or Kaufman

et.al. [4]), biology (e.g. Klemm and Bornholdt [5], or Raeymaekers [6]), neural

networks (e.g. Aldana and Cluzel [7], or Huepe and Aldana [8]), and artificial life

(e.g. Wolfram [9]).

As mentioned by Goodrich and Matache in [10], it is known that real networks

(biological/genetic, physical, neural, chemical, social etc.) are always subject to

disturbances, have the ability to reach functional diversity, and aim to maintain the

same state under environmental noise (e.g. food source or energy changes). There

are intrinsic or environmental disturbances as well as possible mutations within the

network (e.g. genetic mutations). Inducing disturbance in the system by changing

the value of certain nodes in the network (according to a deterministic or stochastic

rule) is a good model for an environmental or intrinsic type of perturbation. For

example, in [10] it is shown that in a Boolean network governed by a specific type

of Boolean functions, the introduction of noise can stabilize the system for a wide

range of parameters. In Bilke and Sjunnesson [11] a node of the stable core of a
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Kauffman network is chosen at random and inverted after the system has reached

a limit cycle. The sensitivity of the attractors is investigated. The authors find

that the stable core of the network lacks the well-known insensitivity observed in

full Kauffman networks. In [12], Beck and Matache apply a particular stochastic

noise procedure typical for neural networks, to a Boolean network governed by a

certain generalized elementary cellular automata rule. It is shown that there is no

critical value of the noise parameter that differentiates between ordered and random

behavior of the system.

The study of the robustness of a Boolean network to various types of pertur-

bations is an important aspect of the evolution of systems under Boolean models.

These systems have to respond and adapt to interior and exterior disturbances. The

interest is in suppressing chaos and bringing the system into an ordered regime. So

it is important to understand what the impact of noise is when applied to the in-

put of a Boolean function: does the output change or not? Thus, is the Boolean

function sensitive to noise or not? In this paper we answer such questions in a

probabilistic setting for certain types of Boolean functions and noise choices.

The average sensitivity of a Boolean function measures how sensitive to changes

in the inputs the output of the function is. The average sensitivity has been studied

by Friedgut in [13] the conclusion being that Boolean functions with low average

sensitivity depend on few coordinates, or Shmulevich and Kauffman in [2] in the

context of random Boolean networks. Those authors show that this numerical

characteristic can reflect the dynamical behavior of the random Boolean networks

constructed from some specific choices of Boolean functions, such as canalizing

functions. The average sensitivity can indicate whether a specific random Boolean
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network is ordered, chaotic, or in critical phase. Intuitively, the concept of sensitiv-

ity should be related to the robustness against errors in the inputs. As mentioned

by Schober in [14], it is of interest to estimate the probability that a random flip

of the value of each input generates a different output of a Boolean function. More

precisely, it is of interest to understand what the sensitivity to noise of a Boolean

function is and to relate it to the average sensitivity of that function. In [14] this is

done in a particular case of input choice and noise application. The author of [14]

shows that, the sensitivity to noise is bounded above by the average sensitivity of

the function multiplied by a small noise-related parameter. Therefore, if the aver-

age sensitivity is small, the noise is not amplified. The noise sensitivity of Boolean

functions and its applications to percolation have been studied by Benjamini et.al.

in [15]. In the current paper we extend the results of [14] in the context of more

relaxed assumptions on the input choices and noise, and determine both upper

and lower bounds for the sensitivity to noise. Under certain assumptions, we give

an exact formula relating the sensitivity to noise and the average sensitivity of a

Boolean function. The analytic approach provided here is supplemented by numer-

ical results that illustrate the overall behavior of the sensitivities as various Boolean

functions are considered.

In Section 2 we define the main concepts of sensitivity of a Boolean function and

noise and provide upper bounds for the sensitivity to noise of a Boolean function.

In Section 3 we focus on special Boolean functions and provide lower and upper

bounds for the sensitivity to noise under specific function and parameter choices.

In particular we study the elementary cellular automata (ECA) rules 0-256 and

generalizations of some of them. We provide numerical results that compare our
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upper bound to the one in [14] and describe the general behavior of the sensitivity

to noise. In Section 4 we relate the sensitivity to noise to the average sensitivity

of a Boolean function. Section 5 is dedicated to conclusions and the description of

further research directions.

2. Sensitivity and Noise

Let Ω = {0, 1} and consider a probability measure µ on the σ-algebra of all parts

of Ωn.

Definition 1. For all j = 1, 2, . . . , n and all x ∈ Ωn, recall that the concept of

sensitivity of a Boolean function f : Ωn → Ω at x is defined as the quantity

(1) s(f, x) := |{y ∈ Ωn : d(x, y) = 1 and f(x) 6= f(y)}|

where |S| denotes the cardinality of the set S, and d(x, y) =
∑n

j=1 |xj − yj | is the

Hamming distance between the vectors x and y. The average sensitivity of f is

(2) avs(f) :=
∫

Ωn

s(f, x)dµ(x).

Thus, the sensitivity of f at x provides the number of vectors in Ωn that differ

in exactly one coordinate from x (i.e. the Hamming neighbors of x) and generate

a flip of the output of the function f . One can regard s(f, x) as output values of a

random variable valued in {1, 2, . . . , n} with associated probabilities µ(x), x ∈ Ωn.

So the average sensitivity is simply the mean value of this random variable.

Definition 2. By noise applied to the vector x ∈ Ωn we understand a random

variable N(x) = (N1(x), N2(x), . . . , Nn(x)) valued in Ωn that transforms the input

vector x into another vector y according to some given rule.
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Assume we work with a given noise–process, (according to Definition 2, noise

is actually an Ωn–indexed, Ωn–valued stochastic process). The associated noise–

operator is defined as follows.

Definition 3. Given the noise N , the noise operator TN is the linear operator

(TNf)(x) :=
∑

y∈Ωn

f(y)P (N(x) = y) x ∈ Ωn, f : Ωn → R.

The extent to which a Boolean function f is affected by noise is encoded in the

quantity ρf (N) defined as follows:

ρf (N) :=
∫

Ωn

P (f(N(x)) 6= f(x)) dµ(x) f : Ωn → Ω.

Definition 4. We call ρf (N) the sensitivity of the Boolean function f to

the noise N .

The noise–insensitive Boolean functions are the Boolean functions f with the

property ρf (N) = 0. There are always at least 2 such functions, namely the

constant Boolean functions 0 and 1.

We denote χf := (−1)f . The Hilbert space where our considerations take

place is L2(Ωn,R), (that is the space of real–valued functions on Ωn endowed

with the norm ‖f‖2 =
√∫

Ωn |f(x)|2 dµ(x) ) induced by the inner product 〈f, g〉 =

∫
Ωn f(x)g(x)dµ(x). The following result in [14] is valid in general, (that is for

all noise–operators, not just the particular one considered in [14]). This can be

established with exactly the same proof as the one provided in the cited paper.

Proposition 1 ([14, Lemma 2]). The following formula holds

(3) ρf (N) =
1
2

(1− 〈TNχf , χf 〉) f : Ωn → Ω.
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Based on that we prove:

Proposition 2. Let λTN denote the least eigenvalue of the real part <TN = (T ∗N +

TN )/2 of TN . The following estimate holds

(4) ρf (N) ≤ 1
2
(1− λTN

) f : Ωn → Ω.

Proof. Consider <TN = (TN + T ∗N )/2 acting on L2(Ωn,C). Then, the numerical

range W (<TN ) = {〈<TNf, f〉 : ‖f‖2 = 1} equals the line interval [λTN
, ΛTN

], where

ΛTN is the largest eigenvalue of <TN . This equality combines with formula (3) and

the evident fact that ‖χf‖2 = 1 into establishing (4), since TN leaves invariant the

subspace L2(Ωn,R) of L2(Ωn,C).

For more on numerical ranges of operators, one can check the basic reference

[16]. It should be added that the argument above also produces the estimate

1
2
(1− ΛTN

) =
1
2
(1− ‖χf‖22ΛTN

) ≤ ρf (N)

which is not interesting. Indeed, 1
2 (1 − ΛTN ) ≤ 0 (since <TN1 = 1), and clearly

0 ≤ ρf (N). The lower bound 0 of ρf (N) is attained each time when f is noise–

insensitive.

Our next upper bound for ρf is not f–independent like the upper bound in (4).

Proposition 3. For any Boolean function f : Ωn → Ω the following holds

(5) ρf (N) ≤ ‖f‖22(1− 2λTN ) + 〈TNf, 1〉

where 1 denotes both the scalar 1 and the Boolean function constantly equal to 1.
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Proof. Estimate (5) is an immediate consequence of the following considerations.

For any Boolean function f , it is obviously true that χf = 1 − 2f . Therefore, by

(3), one has

ρf (N) =
1
2
〈(I − TN )(1− 2f), 1− 2f〉 = −〈(I − TN )(f), 1− 2f〉

because (I −TN )(1) = 0. Of course, I denotes the identity operator I(f) = f . One

obtains

ρf (N) = −〈f, 1〉+ 2‖f‖22 + 〈TNf, 1〉 − 2〈TNf, f〉 = ‖f‖22 + 〈TNf, 1〉 − 2〈TNf, f〉

because f is a Boolean function. For f 6= 0, the quantity 〈TNf, f〉/‖f‖22 belongs to

W (<TN ) = [λTN ,ΛTN ], which leads to (5).

A consequence of one of the equalities in the proof above is:

Proposition 4. A Boolean function f is noise–insensitive if it is an invariant

function of the noise operator, that is, if TNf = f . If µ(x) 6= 0 for all x ∈ Ωn, then

a Boolean function f is noise–insensitive if and only if it is an invariant function

of the noise operator.

Proof. Indeed, in the previous proof we established formula

(6) ρf (N) = ‖f‖22 + 〈TNf, 1〉 − 2〈TNf, f〉.

If TNf = f , one obtains

ρf (N) = 〈TNf, 1〉 − ‖f‖22 = 0.
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For the only if part of the statement in the text of the proposition, observe first

that 0 ≤ (TNf)(x) ≤ 1 for all x ∈ Ωn. If f , a Boolean function, is noise–insensitive

then (6) must hold that is

∑

x∈Ωn

(f(x)(1− (TNf)(x)) + (TNf)(x)(1− f(x)))µ(x) = 0

hence

f(x)(1− (TNf)(x)) = (TNf)(x)(1− f(x)) = 0 x ∈ Ωn

since µ(x) 6= 0 for all x ∈ Ωn.

Thus, for all x ∈ Ωn, if f(x) = 0 then (TNf)(x) = 0 and if f(x) = 1 then

(TNf)(x) = 1. It follows that TNf = f .

It is easy to construct noises for which a preassigned Boolean function f is noise–

insensitive. Indeed, given such an f , consider for each x ∈ Ωn a map N(x) : Ωn →

Ωn with the property N(x)(Ωn) ⊆ f−1(f(x)). Given this property of the noise N ,

one has that

{f(N(x)) 6= f(x)} = ∅ x ∈ Ωn,

for which reason

ρf (N) :=
∫

Ωn

P (f(N(x)) 6= f(x)) dµ(x) = 0,

that is, f is noise–insensitive.

Estimates for ρf (N) are interesting only if f is noise–sensitive. All the noise

examples considered in the next sections, have only 2 noise–insensitive Boolean

functions: the constant ones.
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3. The Case of Product Measures and Examples

Consider a product–probability measure µ on the σ-algebra of all parts of Ωn.

More exactly, consider the measure µ = µ1 × µ2 × · · · × µn where

(7) µj(x) =





pj if xj = 1

1− pj if xj = 0

x = (x1, . . . , xn) ∈ Ωn

and 0 < pj < 1 are fixed for j = 1, 2, . . . , n.

Thus each input xj can be viewed as a Bernoulli random variable with parameter

pj and

(8) µ(x) =
n∏

j=1

µj(x) =
∏

{j:xj=1}
pj

∏

{j:xj=0}
(1− pj).

Now let

(9) ϕj(x) := (−1)xj

(
1− pj

pj

) 2xj−1
2

x = (x1, . . . , xn) ∈ Ωn, j = 1, . . . , n.

Consider B := {φu :=
∏n

j=1 ϕ
uj

j : u = (u1, u2, . . . , un) ∈ Ωn}. Then the following

holds.

Remark 1. B is a complete orthonormal basis of L2(Ωn,R).

Indeed, consider u, v ∈ Ωn. One gets:

〈φu, φv〉 =
∫

Ωn

n∏

j=1

ϕ
uj+vj

j (x) dµ(x) = δu,v,

since

∫

Ωn

ϕj(x) dµ(x) = 0 and
∫

Ωn

ϕ2
j (x) dµ(x) = 1 j = 1, . . . , n.

The linear dimension of L2(Ωn,R) being |Ωn|, this establishes our claim.
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The complete orthonormal basis B appears in the particular case p1 = · · · = pn

in [17].

Let us consider now a noise example that is a generalization of the noise used in

[14]. We will assume that we work with the product measure described above in

this section.

Example 1. For all j = 1, 2, . . . , n, let P (Nj(x) = xj) = δj and P (Nj(x) = yj) =

1− δj where yj is a Bernoulli random variable with parameter pj. In other words,

we assume that each coordinate of the input vector x is unchanged with probability

δj ∈ [0, 1], and with probability 1 − δj it is given by a Bernoulli random variable.

Denoting the noise by N we get

(10) P (N(x) = y) =
∏

{j:xj=0,yj=0}
[δj + (1− δj)(1− pj)] ·

∏

{j:xj=0,yj=1}
[(1− δj)pj ]·

∏

{j:xj=1,yj=0}
[(1− δj)(1− pj)] ·

∏

{j:xj=1,yj=1}
[δj + (1− δj)pj ]

for y ∈ Ωn.

Observe that for large δj values, or large or small pj values, the sensitivity of the

Boolean function f to the noise N is small, so that the values of ρf (N) are close to

zero.

Consider now the complete orthonormal basis B = {φu : u ∈ Ωn}.

Proposition 5. Given the noise operator of Example 1, the vectors φu of the or-

thonormal basis B are eigenvectors of TN with corresponding eigenvalues
∏n

i=1 δui
i .

That is

(11) TNφu =

(
n∏

i=1

δui
i

)
φu.
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Proof: Using the definitions of TN and φu we basically need to show

∑

y∈Ωn

n∏

i=1


(−1)yi

(
1− pi

pi

) 2yi−1
2




ui

P (N(x) = y) =

=

(
n∏

i=1

δui
i

)
·

n∏

i=1


(−1)xi

(
1− pi

pi

) 2xi−1
2




ui

.

We introduce the following notations: Kxuy
abc = {j ∈ {1, 2, . . . , n} : xj = a, uj =

b, yj = c} and Kxu
ab = {j ∈ {1, 2, . . . , n} : xj = a, uj = b}, where a, b, c ∈ Ω. Using

these notations we can rewrite TNφu as

TNφu(x) =
∑

y∈Ωn





 ∏

i∈Kxuy
010 ∪Kxuy

110

√
pi

1− pi


 ·


 ∏

i∈Kxuy
011 ∪Kxuy

111

(
−

√
1− pi

pi

)


·

 ∏

i∈Kxuy
000 ∪Kxuy

010

[δi + (1− δi)(1− pi)]


 ·


 ∏

i∈Kxuy
001 ∪Kxuy

011

[(1− δi)pi]




·

 ∏

i∈Kxuy
100 ∪Kxuy

110

[(1− δi)(1− pi)]


 ·


 ∏

i∈Kxuy
101 ∪Kxuy

111

[δi + (1− δi)pi]





 .

However

Kxuy
000 ∪Kxuy

001 = Kxu
00 , Kxuy

010 ∪Kxuy
011 = Kxu

01 ,Kxuy
100 ∪Kxuy

101 = Kxu
10 ,Kxuy

110 ∪Kxuy
111 = Kxu

11 .

Combining the terms based on these associations between the sets K and sepa-

rating the sum over y ∈ Ωn accordingly we obtain that (TNφu)(x) is equal to


|Kxu

11 |∑

l=0

∑

{i1<i2<···<il}⊆Kxu
11




l∏

j=1

√
pij

1− pij

[(1− δij )(1− pij )] ·

·
∏

j 6=it,t=1,2,...,l

(
−

√
1− pj

pj

)
[δj + (1− δj)pj ]







·


|Kxu

01 |∑

l=0

∑

{i1<i2<···<il}⊆Kxu
01




l∏

j=1

√
pij

1− pij

[δij + (1− δij )(1− pij )] ·

·
∏

j 6=it,t=1,2,...,l

(
−

√
1− pj

pj

)
[(1− δj)pj ]
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·


|Kxu

00 |∑

l=0

∑

{i1<i2<···<il}⊆Kxu
00




l∏

j=1

[δij
+ (1− δij

)(1− pij
)] ·

∏

j 6=it,t=1,2,...,l

[(1− δj)pj ]







·


|Kxu

10 |∑

l=0

∑

{i1<i2<···<il}⊆Kxu
10




l∏

j=1

[(1− δij
)(1− pij

)] ·
∏

j 6=it,t=1,2,...,l

[δj + (1− δj)pj ]





 .

Note that the last two sums are equal to 1 and thus we finally get

(TNφu)(x) =
∏

i∈Kxu
11

(√
pi

1− pi
[(1− δi)(1− pi)]−

√
1− pi

pi
[δi + (1− δi)pi]

)

·
∏

i∈Kxu
01

(√
pi

1− pi
[δi + (1− δi)(1− pi)]−

√
1− pi

pi
[(1− δi)pi]

)

=
∏

i∈Kxu
11

(
−

√
1− pi

pi

)
δi ·

∏

i∈Kxu
01

(√
pi

1− pi

)
δi

=
∏

i∈Kxu
01

δi ·
∏

i∈Kxu
11

δi ·
n∏

i=1


(−1)xi

(
1− pi

pi

) 2xi−1
2




ui

=

(
n∏

i=1

δui
i

)
·

n∏

i=1


(−1)xi

(
1− pi

pi

) 2xi−1
2




ui

.

Remark 2. As specified in [14], the typical noise example usually assumes that

each individual input xj is flipped with some probability ε (not necessarily the same

for all j = 1, 2, . . . n). This would make our analysis a lot harder since the result

in the previous proposition would not hold. However, in the special case pj = 1/2

and δj = 1− 2ε, ∀j = 1, 2, . . . , n, the two noise models coincide as shown in [14].

Now, since the eigenvalues of TN are
∏n

i=1 δui
i , u ∈ Ωn, it follows that the least

eigenvalue is λTN
=

∏n
i=1 δi. Then (4) becomes

(12) ρf (N) ≤ 1
2

(
1−

n∏

i=1

δi

)
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while (5) becomes

(13) ρf (N) ≤ ‖f‖22
(

1− 2
n∏

i=1

δi

)
+ 〈TNf, 1〉.

Estimate (12) is sharper than (13) if and only if Q = µ({f = 1}) > 1/4. Indeed,

observe that 〈TNf, 1〉 = 〈f, TN1〉 = 〈f, 1〉 = Q and clearly ‖f‖22 = Q. So the upper

estimate (13) can be written

ρf (N) ≤ 2Q(1−
n∏

i=1

δi)

and obviously one has

1
2
(1−

n∏

i=1

δi) < 2Q(1−
n∏

i=1

δi)

if and only if Q > 1/4 (of course we exclude the trivial case δi = 1, ∀ i = 1, 2, . . . , n).

Clearly, estimate (13) is an equality if f is the null function, but is this the

only Boolean function with that property? The answer is affirmative. We sketch

briefly the proof. Estimate (5) is an equality for some nonzero f if and only if

λTN
= 〈TNf, f〉/‖f‖22. Since (13) is the particular form of (5), in the case of the

particular noise operator described above and, since that operator is diagonal with

positive diagonal entries, it coincides with its real part. Hence λTN
is

∏n
i=1 δi and it

is straightforward to see that, (given the diagonal matrix of TN and the minimality

of λTN
), the equality λTN

= 〈TNf, f〉/‖f‖22 can hold if and only if f is a scalar

multiple of the basic vector φ(1,...,1), that is of the vector belonging to B which

is an eigenvector of TN associated to eigenvalue λTN . The only scalar multiple of

φ(1,...,1) which is a Boolean function is 0 since φ(1,...,1) assumes both positive and

negative values.
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Given that the operator TN has a diagonal matrix in the complete orthonormal

basis B, one can obtain the following useful lower–bound estimate for ρf (N).

Proposition 6. Let TN be as above. Then, for all f : Ωn → Ω,

(14) 2Q(1−Q) min{(1−
n∏

j=1

δ
uj

j ) : u 6= 0} ≤ ρf (N)

where, as above, Q = µ({f = 1}).

Proof. The operator I−TN has diagonal matrix with entries {1−∏n
j=1 δ

uj

j }. Thus

only the diagonal entry 1−∏n
j=1 δ0

j is null. That entry corresponds to the function

φ0 = 1. Let us denote by {χ̂f (u)} the Fourier coefficients of χf with respect to

basis B and calculate χ̂f (0). One gets

χ̂f (0) = 〈χf , 1〉 = 〈(−1)f , 1〉 =
∑

f(x)=0

µ(x)−
∑

f(x)=1

µ(x).

Since ‖χf‖2 =
∑

u∈Ωn (χ̂f (u))2 = 1, formula (3) can be written as follows:

ρf (N) =
1
2
〈(I − TN )χf , χf 〉.

Thus, given the diagonal form of the matrix of TN , one has

ρf (N) =
1
2

∑

u 6=0

(1−
n∏

j=1

δ
uj

j )|χ̂f (u)|2 ≥ min{(1−∏n
j=1 δ

uj

j ) : u 6= 0}
2

∑

u6=0

|χ̂f (u)|2

=
min{(1−∏n

j=1 δ
uj

j ) : u 6= 0}
2

(1− |χ̂f (0)|2)

which establishes

min{(1−∏n
j=1 δ

uj

j ) : u 6= 0}
2


1−


 ∑

f(x)=1

µ(x)−
∑

f(x)=0

µ(x)




2

 ,

that is (14) after an elementary computation.
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Remark 3. Lower bound (14) is tight. That is, we can find a particular set of

parameters and Boolean functions for which the value of ρf (N) is equal to that

lower bound. Indeed, consider the following special case: pj = 1/2, δj = δ for all

j = 1, 2, . . . , n, and the “dictatorship” function f(x) = x1. Then it is easy to

see that µ(x) = 1/2n for all x ∈ Ωn and Q = 1/2. Therefore the lower bound

(14) becomes 1−δ
2 while ρf (N) = 1

2n

∑
x∈Ωn P (N1(x) 6= x1) = 1−δ

2 (using the total

probability formula).

Similarly one can obtain yet another upper estimate for ρf , namely

(15) ρf (N) ≤

max{(1−∏n
j=1 δ

uj

j ) : u 6= 0}
2


1−


 ∑

f(x)=1

µ(x)−
∑

f(x)=0

µ(x)




2

 .

Thus, combining the upper estimates (12), (13), (15) we obtain the upper estimate

(16)

min
{

1
2

(
1−

n∏

i=1

δi

)
, 2Q

(
1−

n∏

i=1

δi

)
, 2Q(1−Q)max{(1−

n∏

j=1

δ
uj

j ) : u 6= 0}
}

and we will be using this estimate in the next examples. We focus on some par-

ticular Boolean rules with specified parameter combinations and consider the noise

operator defined in the previous example. We investigate numerically the accuracy

of the estimates for the cases considered.

Let us change the orthonormal basis and work with B̃ = {eu : u ∈ Ωn} where

for all u ∈ Ωn, eu(x) = 1√
µ(u)

δux, x ∈ Ωn. Checking that B̃ is a complete orthonor-

mal basis of L2(Ωn,R) is straightforward. Observe that, the matrix of the linear

operator TN with respect to B̃ is simply given by

[TN ] = [axy]x,y∈Ωn where axy = P (N(x) = y)

√
µ(x)
µ(y)
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which is a 2n × 2n matrix. We assume that the vectors in Ωn are ordered, say

according to their base 10 representation.

Example 2. Consider the Boolean rule f : Ωn → Ω given by

f(x1, x2, . . . , xn) =





0 if
∑n

i=1 xi = 0 or
∑n

i=1 xi = n

1 otherwise.

This is the extensively studied generalized ECA rule 126 considered for example

in [10] in the context of noise driven Boolean networks. The ECA rules have been

explained and studied in great detail by Wolfram in [9].

In [14] the following upper bound is found in the particular case pj = p, δj = δ

for all j = 1, 2, . . . , n.

ρf ≤ ε · avs(f) where ε = 2p(1− p)(1− δ).

Using rule 126 of Example 2 we get the equivalent expression ρf ≤ 2np(1− p)(1−

δ)(pn−1+(1−p)n−1) according to the definition of avs(f). We would like to compare

this estimate with our bound (16). To do this, we graph the upper estimates against

p and δ in Figure 1 (bottom right) with n = 3 for simplicity, that is the actual

ECA rule 126. We generate a mesh for each of the estimates for a grid of values

of p ∈ [0, 1/2] and δ ∈ [0, 1]. We also graph the corresponding values of ρf to

determine the accuracy of the bounds. The two surfaces of the estimates intersect

along a curve. We observe that the upper estimate (16) (denoted E1) is sharper

than the estimate established in [14] (denoted E2) for larger p and smaller δ. At

the same time in Figure 2 we graph the lower bound (14) versus ρf . We can see

that the lower estimate is quite accurate.



18 MIHAELA T. MATACHE∗ AND VALENTIN MATACHE

Note the general behavior of ρf in Figures 1 and 2. The value of ρf is close to

zero for large δ ∈ [0, 1] and small p ∈ [0, 0.5] as expected. Also, it decreases with

increased δ, that is with an increased probability of not changing the input value

when applying the noise operator. The values of ρf decrease also with decreased p

since with probability 1− δ, the noise operator applies a Bernoulli random variable

with probability p, under which the nodes become 0 with probability 1− p.
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Figure 1. (Color online) Plot of ρf and its upper estimate (16)

labeled E1, and the estimate in [14], labeled E2, versus a grid of

pj = p ∈ [0, 0.5] and δj = δ ∈ [0, 1] values. This is done for rules

22, 37, 96, and 126 as typical examples for the ECA rules with

n = 3. Note that E1 is sharper than E2 for larger p and smaller δ.
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Figure 2. (Color online) Plot of ρf and its lower estimate (14)

labeled LB, versus a grid of pj = p ∈ [0, 0.5] and δj = δ ∈ [0, 1]

values. This is done for rules 22, 37, 96, and 126 as typical examples

for the ECA rules with n = 3. Note that the lower estimate is

quite accurate.

Example 3. Consider now the Boolean rule f : Ωn → Ω given by

f(x1, x2, . . . , xn) =





1 if d1 ≤
∑n

i=1 xi

n ≤ d2

0 if otherwise.

Here 0 ≤ d1 ≤ d2 ≤ 1 are fixed parameters. In the context of Boolean networks

the rule means that the node under consideration is turned ON if and only if the

fraction of 1s is within the given bounds d1 and d2. Otherwise the node is turned
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OFF. We assume that the node is turned OFF under complete isolation or complete

crowding.

This is the generalized ECA rule 22 studied in [12] in the context of synchronous

Boolean networks evolving under this rule, whose dynamics are studied also under

a stochastic noise procedure. As specified in that paper, this generalization allows

insight into Boolean systems governed by rules meaningful for neural networks or

biology. For example, if d2 = 1, then the output is 1 (or it fires) if and only if the

sum of all the inputs is at least the threshold 0 < d1 < 1. Thus we deal with a

Boolean linear threshold function that is typical for neural networks. On the other

hand, a small value of d1 implies that fewer active inputs have the property of ac-

tivating the node under consideration. Hence there is a bias towards the activators

of the node. If d1 is large, then there is a bias towards the inhibitors of the node.

In [6], the author indicates that biologically meaningful Boolean functions have in-

put elements that are activators or inhibitors, which can act alone or in conjunction

with other activators and/or inhibitors. In a cellular automaton governed by bio-

logically meaningful functions with 3 or 4 inputs, increasing significantly the bias

towards the inhibitors or the activators has the effect of decreasing the length of

the cycles and of the run-ins, which represent the initial part of trajectories before

cycles are reached [6]. We will draw some conclusions on the impact of the bias

towards inhibitors or activators on the sensitivity of a Boolean function to noise.

As in Example 2, we graph the estimates and ρf against p and δ in Figures 1

and 2 (top left) for n = 3 and d1 = d2 = 1/3, representing exactly the ECA rule

22. We observe again that the estimate generated in this paper (E1) is significantly
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sharper than (E2), the estimate established in [14], for larger p and smaller δ. The

actual values of ρf tend to E1 for large p and small δ values.

There are 256 ECA rules (n = 3) as described in [9]. One only needs to consider

128 of them, namely rules 0 to 127, since the remaining ones are obtained by

symmetry (switching 0 and 1). To have a complete view on the estimates for all

ECA rules, we have generated graphs of E1, E2, LB, and ρf against p and δ for

all 128 rules. The results are similar to the ones in Figures 1 and 2 where we show

ECA rules 37 and 96 which are typical as well. The general conclusion is that the

upper estimate (16) is somewhat less accurate than the one in [14] for small p and

large δ, but can be significantly sharper for larger p and smaller δ values. The lower

estimate is accurate for all values of the parameters.

The advantage of (16) is that it can be used also in case of varying p and δ

values, for which the estimate in [14] is not valid. So, to understand even better

the accuracy of E1 for varying p and δ values, we concentrate now on graphing

ρf and its estimates for various values of δ. For each δ we plot the results of 8

different runs with selected pj , j = 1, 2, . . . , n to obtain a wide range of values of

‖p‖ =
√∑n

j=1 p2
j ∈ [0,

√
n]. We create three dimensional plots of E1 versus δ and

‖p‖ for ECA rules 22, 37, 96 and 126 in Figure 3. In this figure n = 3 and δj = δ for

j = 1, 2, . . . n, but the graphs are similar for larger n with generalized ECA rules or

varying δj values (not shown). Observe that the estimates are sharper for rule 22

and that the shape of the plots exhibits a certain symmetry with respect to ‖p‖:

the values of ρf and its estimates tend to be closer to zero for small and large ‖p‖,

that is when the pj values tend to be all small or all large which induces mostly

zeros or ones in the input (here p ∈ [0, 1] as opposed to p ∈ [0, 0.5] in previous
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figures to point out the symmetry). The values of ρf are larger for medium values

of ‖p‖.
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Figure 3. (Color online) Plot of ρf and its estimates (14) and

(16) versus δ and ‖p‖ for rules 22, 37, 96, and 126. Here n = 3

and the values pj are allowed to vary. Note that rule 22 yields

somewhat sharper estimates, and that small or large ‖p‖ gener-

ate smaller values for ρf and its estimates, while medium values

generate mostly a higher sensitivity to noise.

We note that similar situations are obtained for the generalized rules 22 and 126

with n > 3 and various choices of d1 and d2 in rule 22. For example, if d2 = 1 and

d1 is allowed to vary, we observe that the estimates are more accurate for smaller

d1, that is under a bias towards the activators. As observed before, the values of the
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estimates decrease with the increase of d1, that is with an increased bias towards the

inhibitors of the node. However, the general shape of the graphs in all cases is very

similar to Figures 1 and 2 with some variation in terms of accuracy of the estimates

or ranges of values of the estimates and ρf . In all cases, the lower estimate (14) is

quite sharp. It is also easy to compute. Note also that although the upper estimate

(15) may be less accurate than (16) (the one used in the numerical investigations

above), it is actually much easier to compute. So, for large n, one may want to

accept a reduced accuracy of the upper estimate to ease the computational burden.

In Figure 4 we graph the upper estimate (15) together with the lower estimate (14)

for n = 10 as an example. We consider the generalized ECA rule 22 with several

parameter combinations, as specified in the titles of the subplots. In particular,

we fix again d2 and allow d1 to vary to account for a bias towards activators of

inhibitors. Note that d1 = 0 actually represents exactly the generalized ECA rule

126. The two surfaces have a common boundary for δ = 0 and are at zero for p = 0

as expected. The lower bound is zero for δ = 1. Thus, the lower and upper surfaces

generate an “envelope” for the values of ρf . We can see that, for smaller d1 values

which indicate a bias towards the activators, the estimates take on larger values,

while the surfaces tend to flatten out and to approach zero as d1 increases forcing

the bias towards the inhibitors.

4. Average sensitivity

In this section we tie ρf to the average sensitivity avs(f) as defined in (2). We

do this in the particular case of the noise operator of Example 1 for which we have

shown that Tδφu = (
∏n

i=1 δui
i )φu, u ∈ Ωn. We also relate our results to the estimate

in [14].
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Figure 4. (Color online) Plot of the lower estimate (14) and the

upper estimate (15) versus a grid of pj = p ∈ [0, 0.5] and δj = δ ∈

[0, 1] values. This is done for various parameter combinations for

the generalized ECA rule 22 specified in the titles. The two meshes

provide an “envelope” for the actual values of ρf .

Let f : Ωn → R. For all j = 1, . . . , n and all x ∈ Ωn denote by x⊕ j the vector

obtained from x by flipping the entry xj . The following definition is basically due

to [18].

Definition 5. The influence of the variable j on the function f : Ωn → Ω

is defined as follows:

Ij(f) := µ(∃x ∈ Ωn s.t. f(x) 6= f(x⊕ j)).
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Clearly Ij(f) =
∫
Ωn |f(x)− f(x⊕ j)| dµ(x) and therefore avs(f) =

∑n
j=1 Ij(f).

We introduce the following operator, which is essentially due to [17]:

(17) ∆jf(x) =





(1− pj)(f(x)− f(x⊕ j))) if xj = 1

pj(f(x)− f(x⊕ j)) if xj = 0

f : Ωn → R.

Proposition 7. The operator ∆j satisfies the following:

(18) ∆jφu(x) =





φu(x) if uj = 1

0 if uj = 0.

In other words, ∆j is the orthogonal projection onto the subspace Lj of L2(Ωn, µ)

spanned by the functions in {φu : u ∈ Ωn, uj = 1}.

Proof: Observe that

∆jφu(x) =





(1− pj)(φu(x)− φu(x⊕ j)) if xj = 1

pj(φu(x)− φu(x⊕ j)) if xj = 0

and that

φu(x)− φu(x⊕ j) =

[
n∏

i=1

ϕi(x)(1−δij)ui

]
· [ϕj(x)uj − ϕj(x⊕ j)uj ] .

Then it is clear that uj = 0 implies that the quantity above is zero, so ∆jφu(x) = 0.

On the other hand, if uj = 1 we can see that

φu(x)−φu(x⊕j) =

[
n∏

i=1

ϕi(x)(1−δij)ui

]
·

(−1)xj

(
1− pj

pj

) 2xj−1
2

− (−1)1−xj

(
1− pj

pj

) 1−2xj
2




=





[∏n
i=1 ϕi(x)(1−δij)ui

] ·
(
− 1√

pj(1−pj)

)
if xj = 1

[∏n
i=1 ϕi(x)(1−δij)ui

] ·
(

1√
pj(1−pj)

)
if xj = 0
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which implies that ∆jφu(x) = φu(x) for uj = 1.

A consequence of this result and of the linearity of ∆j is the fact that ∆jf(x) =

∑
u∈Ωn f̂(u)φu(x)uj , where f̂(u) are the corresponding Fourier coefficients of f with

respect to basis B.

Now one can see that

Ij(f) =
1

4pj(1− pj)
· ||∆jχf ||22 =

1
4pj(1− pj)

·
∑

u∈Ωn

χ̂f (u)2uj .

Indeed,

||∆jχf ||22 =
∑

x∈Ωn

∆jχf (x)2µ(x)

=
∑

x∈Ωn

[
(1− pj)2(χf (x)− χf (x⊕ j))2pj + p2

j (χf (x)− χf (x⊕ j))2(1− pj)
]
µ(x)

=
∑

x∈Ωn

[
4pj(1− pj)2|f(x)− f(x⊕ j)|+ 4p2

j (1− pj)|f(x)− f(x⊕ j)|] µ(x)

= 4pj(1− pj)
∑

x∈Ωn

|f(x)− f(x⊕ j)|µ(x) = 4pj(1− pj)Ij(f)

where we take into account that P (xj = 1) = pj and P (xj = 0) = 1 − pj . Thus,

since avs(f) =
∑n

j=1 Ij(f) we get

(19) avs(f) =
∑

u∈Ωn




n∑

j=1

uj

4pj(1− pj)


 χ̂f (u)2.

Using formula (3) and the Fourier expansion of χf in the orthonormal basis B

we get

ρf =
1
2

(
1−

∑

u∈Ωn

(
n∏

i=1

δui
i

)
χ̂f (u)2

)
.

But since ui = 0 or 1 we have that δui
i = 1− (1− δi)ui which implies

ρf =
1
2

(
1−

∑

u∈Ωn

n∏

i=1

(1− (1− δi)ui) χ̂f (u)2
)

=

=
1
2

∑

u∈Ωn




n∑

i=1

(1− δi)ui −
∑

1≤i<j≤n

(1− δi)ui(1− δj)uj + · · · − (−1)n
n∏

i=1

(1− δi)ui


 χ̂f (u)2
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where we have used the fact that
∑

u∈Ωn χ̂f (u)2 = 1. Now using the notation

εi = 2pi(1 − pi)(1 − δi) for i = 1, 2, . . . , n, solving for 1 − δi, and replacing in the

formula of ρf we obtain

ρf =
∑

u∈Ωn

(
n∑

i=1

εiui

4pi(1− pi)
−

−1
2

∑

1≤i<j≤n

εiui

2pi(1− pi)
· εjuj

2pj(1− pj)
+ · · · − (−1)n 1

2

n∏

i=1

εiui

2pi(1− pi)


 χ̂f (u)2.

Observe that in the special case when εi = ε and therefore δi = 1− ε
2pi(1−pi)

, i =

1, 2, . . . , n we get

(20) ρf = ε · avs(f)−

−
∑

u∈Ωn


ε2

2

∑

1≤i<j≤n

ui

2pi(1− pi)
· uj

2pj(1− pj)
+ · · ·+ (−1)n εn

2

n∏

i=1

ui

2pi(1− pi)


 χ̂f (u)2.

Thus ρf and avs(f) are related by formula (20). Furthermore, if pi = p, ∀i =

1, 2, . . . , n as in [14], then

(21) ρf = ε · avs(f)−

−1
2

∑

u∈Ωn




n∑

l=2




( −ε

2p(1− p)

)l

·
∑

1≤i1<i2<···<il≤n

ui1ui2 . . . uil





 χ̂f (u)2.

In [14], the author obtains in this case the upper estimate ρf ≤ ε · avs(f) which

follows as a consequence of (21).

The proof in this section follows closely the lines in [14].
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5. Conclusions

In this paper we provide upper and lower bounds for the sensitivity to noise

of a Boolean function under certain assumptions on the input generation, noise

induction, and choice of Boolean functions. The lower bound is very close to the

actual values of the sensitivity to noise, while the upper bound is sharper for certain

parameter combinations, and less accurate for others. Under the assumptions used

in [14] the upper bound in that paper is shown to be significantly less accurate

in case of a larger probability of inducing noise by generating input values based

on the flip of a coin. That bound is also deduced from an exact formula relating

the sensitivity to noise to the average sensitivity of a Boolean function. Analytic

results are supplemented by numerical investigations that illustrate typical overall

behavior of the sensitivity to noise of a Boolean function. In general, the bounds

take on larger values under a bias towards the activators of a node, while a bias

towards the inhibitors has the effect of decreasing the sensitivity to noise.

It would be interesting to extend the current work to multiple iterations of the

Boolean functions and to Boolean networks in general. In this context, a natural

direction would be to use also other noise operators or underlying Boolean functions,

such as threshold functions typical for neural networks (e.g. those used in [8] and

[12]). In this case the output of one iteration of the network becomes the input

for the next iteration. The nodes of the network could be updated or disturbed

say by turning a node on if the concentration of active nodes in its neighborhood

reaches a given threshold. This could be done in connection to average sensitivities

of higher order. More precisely, the sensitivity of order j at a given input vector x

is the number of vectors with j flipped values that generate a change in the output
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of a given Boolean function (the average sensitivity in this paper corresponds to

j = 1). Some preliminary work using the higher order sensitivity has been done

in [19]. One could use the estimates to generate ranges of parameter values that

yield ordered, chaotic or critical dynamical behavior, thus extending the results

obtained in [2]. In the context of Boolean networks the number of inputs of each

node could vary, the network could be considered synchronous or asynchronous,

and the Boolean functions could be chosen deterministically or stochastically from

specialized Boolean functions, such as canalizing, or other biologically meaningful

functions. Moreover, one could be interested in dealing with multiple Boolean rules,

each of them being chosen with a given probability, thus extending the work in this

paper to the so called probabilistic Boolean networks studied for example in [3].

That would provide a more realistic approach to, say, biological cellular networks

whose update schemes are dependent upon various protein interactions.
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