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Abstract-Network modeling of biological systems is a 

powerful tool for analysis of high-throughput datasets by 

computational systems biologists. Integration of networks 

to form a heterogeneous model requires that each network 

be as noise-free as possible while still containing relevant 

biological information. In earlier work, we have shown that 

the graph theoretic properties of gene correlation networks 

can be used to highlight and maintain important structures 

such as high degree nodes, clusters, and critical links 

between sparse network branches while reducing noise. In 

this paper, we propose the design of advanced network 

filters using structurally related graph theoretic properties. 

While spanning trees and chordal subgraphs provide filters 

with special advantages, we hypothesize that a hybrid 

subgraph sampling method will allow for the design of a 

more effective filter preserving key properties in biological 

networks. That the proposed approach allows us to 

optimize a number of parameters associated with the 

filtering process which in turn improves upon the 

identification of essential genes in mouse aging networks.  

 

Keywords-biological networks, network filters, 

chordal graphs, spanning tree, lethal genes, hubs, clusters 

 

I. INTRODUCTION  

A network model that surveys the cellular 

landscape can contain tens of thousands of probes for 

multiple states; thus, complexity in can quickly 

stretch computational limits. Models inherently 

include noise which must be filtered for accurate 

analysis where causative structures (nodes/edge 

groups with biological function) are more easily 

identified. Previous studies [1, 7, 11, 12] on 

biological network structure show that structures 

such as high-degree nodes (hubs), clusters, motifs, 

and spanning trees all can reveal biological function. 

Our previous work [2-4] has found that removing 

noise by identifying redundant structures in the 

network can further help to reduce noise and improve 

the biological impact of the model. Figure 1 

highlights some of these findings. In our earlier work 

[2] we demonstrated that finding chordal 

subnetworks [5]) allows for reduction in network 

size, maintenance of biological signal, and discovery 

of previously masked signal. Figure 1.B highlights 

previous work that a spanning tree (a subnetwork 

touching all nodes in the network but contains no 

cycles) maintains hub nodes in the network while 

removing ~50% of edges; in fact, the biological 

signal of finding essential genes in these networks is 

enhanced using the spanning tree filter.  

A.  Proposed Method 

 We have examined the lethality of central nodes 

(hubs, high betweenness nodes, etc) as a measure of 

the biological impact of hubs, and further we have 

used Gene Ontology Enrichment of clusters in the 

network to measure the biological impact of network 

structure. These studies have identified that spanning 

trees optimize the identification of lethal (also known 

as essential) genes in the network, while chordal-

filtered networks readily identify clusters that contain 

critical relationships; however, chordal networks are 

not particularly adept at identifying lethal nodes [2, 

4] and spanning trees are not able to identify clusters 

of any kind [3].  Thus, the proposed algorithm 

identifies a spanning tree within the network, then 

connects clusters of nodes with high density in the 

network using a chordal re-addition scheme. We 

suspect that by combining the “best of both worlds” 

we will be able to optimize on the good 

characteristics of both the spanning tree and chordal 

graph filters by identifying lethal hub nodes and 

conserving critical clusters from the network. This 

work describes our experimental study to verify our 

hypothesis. 

II. METHODS 

We describe our method in the following format: 

A. Network Creation, or the description of how data 

were obtained and the creation and filtering of 

networks, B. Network Analysis and Enrichment, 

which describes how we define a hub node, and how 

we assess the biological impact of those hub nodes 

via integration of biological data and enrichment 

score, and C. Method Description, in which we 

describe the algorithm used to identify our enhanced 

networks that incorporate our previous spanning tree 

and chordal graph work. 
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A. Network Creation  

The networks used in this research were 

correlation networks derived from microarray dataset 

GSE5078 taken from NCBI’s Gene Expression 

Omnibus (GEO) website [9, 19]. GSE5078 was 

designed to examine mechanisms behind the 

processes of aging in the murine brain. The YNG and 

MID networks represent expression data created from 

mice at 2 months and 18 months, respectively. 

Networks were created in parallel by pairwise 

computation of Pearson Correlation (ρ) [13, 14, and 

15] of gene expression values for all genes versus 

each other on the University of Nebraska at Omaha’s 

Black forest computing cluster. The network was 

built such that nodes represent genes and edges 

represent the weighted correlation of two gene’s 

expression. Edges with correlations with p-value 

<0.005 were not considered statistically significant 

and were discarded. Networks were then filtered to a 

correlation threshold of 0.90 ≤ ρ ≤ 1.00 to capture 

only very highly correlated expression values. Both 

networks created were found to adhere to a power-

law degree distribution and exhibit qualities of a 

modular network.  

B. Network Analysis and Enrichment 

In correlation networks, there has been no formal 

definition of a hub node in terms of degree, but it has 

been agreed that hubs represent those few nodes that 

are very highly connected in a power-law degree 

distributed network. Previous studies of centrality in 

correlation networks [14] have found that examining 

many thresholds for hub definition identifies an 

optimal threshold; as such, we use thresholds of top 

1, 5, 10 15, 20, and 25% of degree-ranked nodes in 

the network were used to identify the optimal 

threshold. For each node in the network, we 

determined if an in vivo knockout mutation had been 

performed on that gene. If that mutation had been 

performed, we determined if the mutation was 

lethal/essential. Then we perform an enrichment 

analysis to determine the log-odds ratio enrichment 

of lethal genes in hub nodes versus the rest of the 

network, referred to as the background set: 

                 
 
  

 
  
  

Where b = count of lethal genes in hub set, n = 

total count of genes in the hub set, B = count of lethal 

genes in background set, and N = total count of genes 

in the background set. P-value was determined by 

performing hyper-geometric distribution on the 

enrichment scores.  

C. Spanning Tree Chordal Method 

Our method for identifying a spanning tree with 

chordal properties is described below in 3.1 and 3.2. 

The proposed algorithm, Spanning Tree Chordal 

(STC), adds edges to a constructed spanning tree to 

obtain a chordal subgraph of the network. The final 

filtered network depends on the order and frequency 

of edge selection and whether edge weights (strength 

Figure 1 (left): A. Chordal subgraphs are more likely to represent causative relationships. If geneA regulates geneB and geneA regulates geneC, 

then correlation of geneB and C is also likely to be high. B. Spanning trees of biological network maintain high degree nodes [6], and reduce 
edge count by up to 50% while maintaining essential hubs. Figure 2 (right): Our method for identifying a spanning tree with chordal 

properties, as described in section 3.1. (A) Original network. (B) Maximum spanning tree. (C). Spanning tree augmented with the sibling line. 

(D) Spanning tree augmented with sibling all.  



of the relationship between genes) are included in the 

network. 

C.1) Algorithm and parameters: All of the 

algorithms for network creation begin by computing 

a spanning tree of the network.  We experimented 

with two types of spanning trees: a breadth-first-

search tree (BFS), which is computable in linear 

time. The second is a maximum spanning tree 

(MST), which is more expensive to compute but 

constructs the spanning tree to maximize the sum of 

the edge weights and thus is more likely to maintain 

edges between highly correlated genes. We 

developed two algorithms for augmenting the 

spanning tree: the first (SL for "sibling line") roots 

the spanning tree at a node, then looks at children of 

each node and adds a subset of the edges between 

those children.  The edges are chosen so that no 

subgraph induced by the children of a node contains a 

cycle; this condition is sufficient to ensure that the 

overall network maintains chordality. The second 

method (SA for "sibling all") adds every edge 

between siblings of a node to maintain the highly 

connected nature of hubs and capture dense 

subgraphs. However, perfect chordality may no 

longer be maintained. 

Our algorithm is described further visually in 

Figure 2: Let the network (C) be the network after 

thresholding.  The dashed edges in (D) indicate the 

maximum spanning tree (MST); i.e. the set of edges 

that connects every vertex without creating a cycle 

and maximizes the sum of the edge weights in the 

tree. This is denoted MST-NO. The highlighted edges 

in (E) are edges added through the SL algorithm.  

The MST has been rooted at vertex 1, which means 

vertices 2, 4, and 5 are now siblings.  The algorithm 

checks for an edges between 2 and 4, then 4 and 5 

(but does not check for an edge between 2 and 5 as it 

might create a chordless cycle).  Since only edge 4 to 

5 is present in the initial network, only that edge is 

added.  Similarly, vertices 3 and 6 are children of 

vertex 4, and the edge between them is added.  This 

is the MST-SL network. Finally, the network in (F) is 

the MST-SA network.  Now, when looking at the 

vertices 2, 4, and 5, every edge that exists between 

those three vertices is added.  In particular, both the 

edge from 4 to 5 and the edge from 2 to 5 are present. 

C.2) Edge weights: Three types of edge weights 

were used in our analysis. The Normal edge type (N) 

was defined as used where each edge was set to the 

weight of the correlation in the original network. 

Random edges (R) denote randomly chosen edge 

weights between -1.00 and 1.00. The Equal edge type 

(E) denotes when each edge was set to an equal value 

(in this case, that value was 1.00). The normal edge 

type is expected to be the best performer as it 

includes the weight of expression correlation, a 

biological bias, where the E and R edge weights are 

meant to act more as controls for what we can expect 

from a network not biased by prior information.  For 

the equal weights option the MST and BFS have the 

Figure 3: (A) Lethality vs. Enrichment for all filtered networks comparing BFS to MST . (B) Lethality vs. Enrichment for filtered networks 

above the optimal value of 56% lethality and 1.00 enrichment  comparing BFS to MST . 

 

 



same objective—filtering a spanning tree of the 

network. The difference lies in the algorithm. The 

BFS traverses through connected components while 

the MST maintains a forest of trees that are 

ultimately connected, as per Kruskal’s algorithm. The 

difference in the approaches results in different trees 

even with the equal weights on the edges. 

Using the three algorithm parameters and the 

three types of edge weights resulted in a total of six 

networks to analyze per YNG and MID dataset, or 36 

(2 networks * 3 filters * 3 weights) networks total in 

addition to the 6 ORIG networks. The ORIG set 

includes the YNG network without any filtering of 

edges, as well as our original filters using the chordal 

subgraph and maximum spanning trees. In the next 

section, we test the following hypothesis:  

H0: Given a graph that represents gene expression 

correlation, the proposed algorithm STC produces a 

filtered network that conserves all hub nodes 

representing lethal genes in the network. Moreover, 

STC uncovers new lethal hub nodes previously 

hidden in the network, and outperforms both 

spanning tree filters and chordal subgraph filters in 

terms of identification of new lethal hubs. 

 

III. EXPERIMENTAL RESULTS 

We performed analysis of all 42 networks in 

terms of structural and biological properties. 

A. Lethality Results 

We plot lethality versus enrichment in one 

analysis and use this to determine the success or 

failure of a filter. Any network whose top X% degree 

target set scores over 54.12% lethality of the original 

network and 1.00 enrichment is a positive result. We 

find that for all results, the hub thresholds of 10, 15, 

20, and 25% perform best among all contenders. 

To compare BFS vs. MST, we group data 

according to BFS or MST to determine the optimal 

parameter (Figure 3) and find that the majority of our 

“positive results” are found in the BFS parameter at 

any threshold. Comparing NO vs. SL. vs. SA at the 

optimal threshold values of 10-25% yields a slightly 

better performance of NO and SA over SL. For NO 

and SA parameters at optimal threshold values using 

BFS selection, we find that NO performs best at 

parameters 10 and 20% and SA performs best at 

parameters 10 and 25, further shown in Figure 4, 

where ORIG networks are compared to filtered with  

a visible gap in lethality and enrichment. Evaluation 

of all networks resulted in 222 experiments, with six 

of those being evaluations of the original networks. 

Out of the remaining 216 experiments, 73 of those 

performed well enough to be qualified in the 

“positive result” region, with 23 of the 73 falling 

within the optimal degree threshold and node choice 

method. We summarize these 23 optimal 

experimental results in Figure 5, and find that the 

distribution of these results are almost equally 

distributed between the None and Sibling All chordal 

selection methods. Of these two “optimal” 

parameter/threshold choices, there appeared to be no 

advantage over others in terms of edge weight choice. 

IV. DISCUSSION 

We have proposed a new graph theoretic 

methodology to enhance the biological signal from a 

noisy network model using chordal and spanning tree 

filter application. This method enhances networks by 

removing noise from correlation networks and 

making essential hub nodes more readily identifiable. 

We tested the impact of degree threshold, node 

selection method, and chordal network identification 

within the modular portions of the network. Per the 

results, we have found that BFS method outperforms 

the MST node selection, and thresholds of 10- 25% 

are optimal for stable definition of hub nodes in the 

filtered networks. Finally, we find that while all 

filtering methods perform as well as or better than the 

original networks, the NO and SibAll filters are the 

best for identifying lethal hub nodes. This suggests 

that structural filters, specifically filters based on 

combined graph theoretic techniques, can 

significantly reduce network size while maintaining 

and even enhancing biological signal. Returning to 

our original hypothesis, we have shown that our 

method is able to identify lethal hub nodes as well as, 

or better than, previously studied. This work 

constitutes an important step towards the construction 
Figure 4: Comparison of  optimal filters vs. ORIG networks. 



of advanced filters for the purpose of analyzing large-

scale biological networks.  
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Figure 5: Lethality distribution for the optimal performance experiments compared to ORIG networks (ORIG, MSTC-E|C|R, CHOR, and ST). 

The red dotted line indicates the baseline expected lethality for the enhanced networks, which each experiment exceeds by at least 0.04.  
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