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Dynamical Behavior and Influence of Stochastic Noise
on Certain Generalized Boolean Networks

Gary L. Beck1, Mihaela T. Matache2∗

1 Department of Pediatrics University of Nebraska Medical Center, Omaha, NE 68198-2184
2Department of Mathematics, University of Nebraska at Omaha, Omaha, NE 68182-0243

Phone: 402-554-3295, Fax: 402-554-2975, ∗dmatache@mail.unomaha.edu

Abstract: This study considers a simple Boolean network with N nodes, each node’s state at time t

being determined by a certain number of parent nodes. The network is analyzed when the connectivity k

is fixed or variable. Making use of a Boolean rule that is a generalization of Rule 22 of elementary cellular
automata, a generalized formula for providing the probability of finding a node in state 1 at a time t is
determined. We show typical behaviors of the iterations, and we study the dynamics of the network through
Lyapunov exponents, bifurcation diagrams, and fixed point analysis. We conclude that the network may
exhibit stability or chaos depending on the underlying parameters. In general high connectivity is associated
with a convergence to zero of the probability of finding a node in state 1 at time t. We also study analytically
and numerically the dynamics of the network under a stochastic noise procedure. We show that under a
smaller probability of disturbing the nodes through the noise procedure the system tends to exhibit more
nodes in the same state. For many parameter combinations there is no critical value of the noise parameter
below which the network remains organized and above which it behaves randomly.

PACS codes: 05.45.-a, 02.70.-c, 89.75.-k, 84.35.+i
Keywords: random Boolean network, generalized elementary cellular automata rule 22, system dy-

namics, chaos, stochastic noise, dynamical phase transition.

1. Introduction

A Boolean network can function as a model for a large class of real or artificial networks from the
brain to ecology as shown for example by Wuensche’s work [1], genetic regulatory networks with
papers by Shmulevich, Dougherty et. al. ( [2], [3], [4]), chemical processes with works such as the
paper by Heidel et. al. [5], biology with papers such as the ones by Klemm and Bornholdt ( [6], [7]),
and Raeymaekers [8], neural networks in Aldana and Cluzel’s paper [9], Huepe and Aldana [10],
physical networks in papers by Marr and Hütt ( [11], [12]), and artificial life in Wolfram’s works such
as [13]. Boolean network models have been used for modelling networks in which the node or cell
activity can be described by two states, 1 and 0, ON and OFF, ”active and nonactive”, ”responsive
and non-responsive”, ”up-regulated and down-regulated”, and in which each node is updated based
on logical relationships with other nodes. In fact, Stuart Kauffman originally developed random
Boolean networks as a model for genetic regulatory networks [14]. They have been referred to as
N −K models or Kauffman networks.

There are 256 elementary cellular automata (ECA) rules outlined by Wolfram [13]. We will
be concerned with one rule in particular, namely Rule 22, which is a Class III rule in Wolfram’s
characterization. Class I rules lead to an absorbing state; Class II rules lead to periodicity; Class III
rules lead to chaos; and Class IV rules lead to more complex behavior with fairly simple localized
structures interacting in complicated ways. Thus Classes III and IV are of greater interest. As
observed by Matache and Heidel [17], rule 22 is both ”legal”, reflection symmetric with (0, 0, 0) → 0,
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and ”totalistic”, where the rule depends only on the relative number of ON and OFF states and
not their order ( [15]). There are 32 legal rules, and 16 totalistic rules. The formulae used in this
paper hold for Boolean networks governed by totalistic rules. Only 8 of the legal and totalistic
rules, including Rule 22, are in both classes. These eight thereby distinguished rules are # 0,
22, 104, 126, 128, 150, 232, 254. They separate into Wolfram’s four classes as: Class I: 0, 128,
254; Class II: 104, 232; Class III: 22, 126, 150; Class IV: none. Besides the automata in Class I
and Class II which have relatively simple behavior ( [13]), this leaves only three: # 22, 126, and
150. But # 150 is additive (linear in algebraic form) which simplifies its analysis by transferring
unusual effects from the structure of the automata to the initial conditions only. As well as Rule
22 and Rule 126 both being in Wolfram’s Class III, they are also both in the same κ = 2 in a
new classification regarding separating planes for the basic 8 point hypercube (along with # 104)
( [16]). As observed in [17], both Rule 126 and Rule 22 have a natural and simple interpretation
in terms of the growth of cell colonies. For Rule 126, complete crowding of live, ON, cells causes
death, OFF, in the next generation. Complete isolation of a potential cell prevents birth in the
next generation. A similar interpretation holds for Rule 22; however, it is not quite as absolute: a
cell is turned ON at the next time step if and only if exactly one node in the cell’s neighborhood
is ON and the others are OFF. It is of interest to explore the dynamics of networks of arbitrary
sizes and neighborhoods evolving under these two rules subject to various scenarios. This implies
the need for generalizations of these rules to varying neighborhood sizes.

We point out that a comprehensive work has been done on exploring random Boolean networks
governed by a generalized ECA Rule 126 in papers such as the ones by one of the authors of this
paper and collaborators for synchronous or asynchronous networks, with fixed or variable number
of parent nodes or inputs, with or without noise ( [17], [18], [19], [20], [21], [22]). However, an
extension of Rule 22 has not been considered so far in similar contexts. In this study we propose a
new generalized ECA Rule 22 and identify the dynamics of a network governed by variants of this
generalization. The dynamic analysis parallels previous methods published in the papers mentioned
above. The dynamics of the network indicate order, through multiple attractors and bifurcations,
or chaos, depending on the underlying parameters. As opposed to the dynamics of Rule 126, there
are no reversed bifurcations, and large connectivity drives the proportion of active nodes to zero.
We show that under certain assumptions the proposed generalization can be considered a threshold
function in a neural network, or a biologically meaningful function that generates a bias between
the number of activators and inhibitors in a biological network that can be modelled as a Boolean
net.

Properties of Boolean networks have been considered in a variety of studies. For example, the
dynamical organization in the presence of noise of certain Boolean neural networks with random
connections has been studied by Huepe and Aldana [10], who show that there is a critical value of
a noise parameter that generates a dynamical phase transition in the network. In that case if the
noise parameter surpasses the critical value, the nodes are basically activated or inactivated in a
random manner, so the proportion of active nodes is driven to 0.5. On the other hand, Goodrich
and Matache [20] use similar types of stochastic noise with constraints on the number of perturbed
nodes for a synchronous network evolving by the generalized ECA Rule 126. In that case the
noise can have a stabilizing effect on the network and the proportion of active nodes can be driven
to 1. In this paper we consider the approach of [10] to investigate the reaction of the network to
perturbations for the proposed generalized ECA Rule 22. We show that there may be no dynamical
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phase transition, and the proportion of active nodes may decrease linearly to 0.5 with the increase
of the noise parameter.

Thus, this paper presents a new in-depth study of a single generalized cellular automaton rule on
Boolean networks with fixed or varying connectivity. We make use of a mean field approximation
for Boolean networks governed by the class of totalistic ECA rules investigated by Andrecut [23],
to describe the probability of finding a node in state 1 at time t in Section 2, and investigate the
dynamics of a Boolean network under a new specific generalized ECA Rule 22 with a random parent
assignment. We show the good match of the formula to the Boolean system by comparing simulated
dynamics with the analytical description in Section 3. For certain parameter combinations we
analyze the dynamics of the system by exploring bifurcation diagrams and Lyapunov exponents in
Section 4, and fixed points in Section 5. Then in Section 6 the reaction of the network to stochastic
noise is investigated. We define an order parameter and obtain both analytic and numerical results
to estimate it. We show that there is no critical value of the noise parameter that differentiates
between ordered and random behavior of the system. Section 7 is dedicated to conclusions and
further directions of research.

2. The Boolean Network

Consider a network with N nodes. Each node cn, n = 1, 2, . . . , N can take on only two values 0
or 1. The connectivity of the nodes is fixed throughout the evolution of the system, but the nodes
are allowed to have different numbers of parent nodes. The parents of a node are chosen randomly
from the remaining N − 1 nodes and do not change thereafter. Thus if a node has k parents,
then a set of k parents is chosen from the remaining N − 1 nodes with probability 1/

(
N−1

k

)
. At

each time step t, a fraction α(t) ∈ [0, 1] of nodes is updated. The case α(t) = 1 corresponds to a
synchronous network. This will be our main focus in this study. For simplicity we assume that all
the nodes in each class of nodes with a fixed number of parents kj update according to the same
rule at a given time step t, and the rule does not change with time. A similar approach is used
for a generalized ECA Rule 126 in [17], [21]. Note that varying Boolean rules lead to a quenched
network whose dynamics can approximate the dynamics of a corresponding annealed network in
the thermodynamic limit N →∞.

A totalistic cellular automata rule depends only on the number of parents in state 1. Given
a node cn with kj parents, a totalistic rule for that node can be expressed as a pair of Boolean
functions (rkj

0 , r
kj

1 ) : {0, 1, 2, . . . , kj}2 → {0, 1} such that cn(t + 1) = r
kj

0 (s) if cn(t) = 0, and
cn(t + 1) = r

kj

1 (s) if cn(t) = 1, where s is the sum of the values of the parents of node cn at time t.
A general formula for the probability p(t+1) of a node being in state 1 at time t+1, given p(t) was
obtained in [23]. The author uses a mean field approach to show that the dynamical evolution of the
network can be described by a family of polynomial maps. The results hold in the thermodynamic
limit N → ∞, the only case where chaos is possible, since otherwise the networks are eventually
periodic. This formula is applicable to the class of legalistic rules and in a more general setting to
the class of probabilistic Boolean networks in which a node can be updated according to more than
one Boolean rule to account for natural variations and disturbances in the system. Probabilistic
Boolean networks have been studied by Shmulevich et. al. [2], and future work will consider an
extension of the analysis in this paper to that kind of networks.
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The formula for p(t + 1) can be expressed as follows:

(1) p(t + 1) =
J∑

j=1

Cjgkj (t)

where gkj (t) = [1−α(t)]p(t)+α(t)
∑kj

s=0 γ(p(t), rkj

0 (s), rkj

1 (s))Ps,kj (p(t)) and γ(p(t), rkj

0 (s), rkj

1 (s)) =

(1 − p(t))rkj

0 (s) + p(t)rkj

1 (s), with Ps,kj (p(t)) =
(
kj
s

)
p(t)s(1 − p(t))kj−s. Here kj , j = 1, 2, . . . J are

the possible values for the number of parents, Cj , j = 1, 2, . . . , J are the fractions of nodes with
kj parents (so

∑J
j=1 Cj = 1), α(t) is the fraction of nodes to be updated at time t, and s is the

number of parents of node cn that are in state 1.
The ECA Rule 22 maps a node cn(t) to state 1 at time t + 1 if and only if exactly one of its

parents has value 1, that is if exactly one-third of its parents are in state 1. A node is its own
parent in the ECA. We propose to extend this rule to a network of size N with an arbitrary number
of inputs per node by using the following general rule:

(2) cn(t + 1) =

{
1 if d1 ≤ d ≤ d2

0 if otherwise

where d is the fraction of 1s in the neighborhood of node cn. Thus d = s
k+1 if node cn(t) = 0,

or s+1
k+1 if node cn(t) = 1, where s is the number of parents in state 1 at time t, and k is the

connectivity of node cn. Here 0 ≤ d1 ≤ d2 ≤ 1 are fixed parameters. The rule basically states
that node cn is turned ON if and only if the fraction of parents in state 1 is within the bounds d1

and d2; otherwise the node is turned OFF. We also assume that the node is turned OFF under
complete isolation or complete crowding. If the network has 3 nodes and d1 = d2 = 1

3 we obtain the
ECA Rule 22. Hung et al. [24] have used a simpler generalization of ECA Rule 22 in the context
of synchronization of stochastically coupled random Boolean networks: a node is turned ON if
and only if a single parent is ON. The new generalization provided in (2), allows us to analyze
a wider variety of totalistic rules and provides an insight into Boolean systems governed by rules
meaningful for neural networks or biology. For instance, observe that if d2 = 1 then the output is 1
(or it fires) if and only if the sum of all the inputs is at least the threshold 0 < d1 < 1. Thus in this
case we deal with a Boolean linear threshold function with equal weights that is typical for neural
networks. This kind of networks were the subject of “threshold logic” in the 1960’s [25], and have
been studied further for example by Anthony [26]. On the other hand, one could consider that a
small value of d1 implies that fewer active inputs have the property of activating the node under
consideration. Thus there is a bias towards the activators of the node. If d1 is large then there is a
bias towards the inhibitors of the node. It is known that biologically meaningful Boolean functions
have input elements that are activators or inhibitors, which can act alone or in conjunction with
other activators and/or inhibitors, as specified by Raeymaekers [8]. That author has shown that in
an ECA governed by biologically meaningful functions with 3 or 4 inputs, increasing significantly
the bias towards the inhibitors or the activators has the effect of decreasing the length of the cycles
and of the run-ins (the initial part of trajectories before cycles are reached). It is of interest to
understand what are the dynamics in the case of a more general network, since real biological
networks do not necessarily have only a few inputs, and could be non-directed, that is the number
of inputs and outputs of a node need not be the same. Thus a varying number of parent nodes and
a random parent assignment would provide a more general understanding of the phenomenon.
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Now let us provide the approximation formula for the probability of a node being in state 1 for
rule (2). The notation [x] is used to indicate the integer part of x. Observe that under rule (2)
we have r

kj

0 (s) = 1 for dj
1 ≤ s/(kj + 1) ≤ dj

2, and 0 otherwise. Given that s ∈ {1, . . . , kj}, we get
r
kj

0 (s) = 1 for s ∈ {1, . . . , kj} ∩ [dj
1(kj + 1), dj

2(kj + 1)] and 0 otherwise. Similarly one can see that
r
kj

1 (s) = 1 for s ∈ {0, 1, . . . , kj − 1} ∩ [dj
1(kj + 1)− 1, dj

2(kj + 1)− 1] and 0 otherwise. Thus we have
the following result on the approximation formula for the probability of finding a node in state 1.

Proposition: Under the assumption of a Boolean network evolving according to rule (2) and
with the characteristics specified in formula (1), the probability p(t + 1) of a node being in state 1
at time t + 1 given p(t) can be written as p(t + 1) = [1− α(t)]p(t) + α(t)

∑J
j=1 Cjgkj (t) where

(3) gkj (t) =
∑

s∈A
kj
0

(
kj

s

)
p(t)s(1− p(t))kj−s+1 +

∑

s∈A
kj
1

(
kj

s

)
p(t)s+1(1− p(t))kj−s.

Here A
kj

0 = {1, . . . , kj}∩ [dj
1(kj +1), dj

2(kj +1)] and A
kj

1 = {0, 1, . . . , kj−1}∩ [dj
1(kj +1)−1, dj

2(kj +
1)− 1]. The values 0 ≤ dj

1 ≤ dj
2 ≤ 1, j = 1, 2, . . . , J are the fixed fractions in rule (2) and they can

vary for nodes with different number of parents. However, all the nodes with a given number of
parents evolve according to the same rule.

Next we iterate formula (3) and compare the results with the frequencies of ones obtained from
evolving an actual Boolean network governed by the rule described in this section, to identify how
well the approximation formula matches the Boolean network evolution.

3. Iterations of the Network

Using Matlab, we generate iterations of both formula (3) and the Boolean network for many
initial conditions under the same parameter choices and graph them on the same plot. We include
figures with parameter combinations that yield typical results chosen from numerous simulations.
For each parameter combination we perform 256 iterations of both formula (3) and the frequencies
of ones obtained from the evolution of the Boolean network and we plot the results on the same
graph for comparison and to identify behavioral trends. We consider the cases of fixed connectivity
k and two distinct connectivity values k1 and k2 in the network. In each simulation we fix the
parameters d1 and d2 as well as the fractions C1 and C2 when applicable. Figure 1 is representative
of trends in the dynamical behavior of a network with fixed connectivity. The parameters d1 and
d2 are chosen to indicate the various possible trends; other parameter combinations yield similar
results. After one iteration there is an excellent match for all three cases. After 256 iterations, the
match is good although not necessarily as good as in the case of the first iteration. We observe
that for k = 2 the probability of finding a node in state 1 and the frequency of ones for the Boolean
network reach a horizontal plateau at p ' 0.45. For k = 4, a more dynamic behavior is observed:
there appears to be a region of p(t) with two co-existing end states which are the consequence
of two fixed points as we will see in the bifurcation diagrams. In general, a similar behavior is
related to the existence of higher order fixed points. Finally, when k = 16 we observe convergence
to 0. Note that the first iteration yields multiple fixed points, but only the origin is attracting,
the other fixed points being repellers. These trends are observed in general for various parameter
combinations. It is noted that a large connectivity is associated with convergence to zero.
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Figure 1. Matching behavior of the frequency of ones for the Boolean network (dots) and
the probability of finding a node in state 1 given by formula (3) (continuous curve) for fixed
connectivity of k randomly assigned parents. Here the network has N = 128 nodes. We
choose many initial values of p(t) ∈ [0, 1] and iterate the formula and evolve the Boolean
network a number of times computing the new values of p(t) at each time step. We show
a selection of three parameter combinations as specified in the titles of the subplots, and
plot p(t + 1) and p(t + 256) for comparison. We observe the almost perfect match after one
iteration and a similar behavior after 256 iterations in all cases. We also note the differences
in the long run behavior for the various scenarios considered. This figure is typical for the
case of fixed connectivity. In the first case there appears to be an attracting fixed point,
in the second case a period two orbit, while a large connectivity is associated with one
attracting fixed point at the origin with basin the entire interval [0, 1].

For the case of variable connectivity k, we focus on only two possible values for the number of
parents, k1 and k2. For three or more values, the simulations become extremely time consuming
due to a significant increase of parameter combinations to be considered. Therefore we focus only
on two values of k. We use various values for M1, the number of nodes with k1 parents. Figure 2 is
representative. Here we fix N = 128, k1 = 10, k2 = 32, while the values of M1 are specified in each
pair of graphs. Also, M2 = N −M1. The first two lines demonstrate stability and a good match
after 256 iterations. The first case indicates the existence of an attracting fixed point, while in the
second case there is a convergence to zero with the exception of p(t) ' 0.65 − 0.95 suggesting the
existence of two distinct attracting fixed points. The third case is suggestive of period two orbits
and finally, the last case shows convergence to 0 after 256 iterations, with the origin being the only
attracting fixed point. These trends are observed in general for various parameter combinations,
and the larger the network the better the matches.

4. Bifurcation Diagrams and Lyapunov Exponents

In this section we present bifurcation diagrams and corresponding Lyapunov exponent (LyE)
computations to provide a further understanding of the dynamics of the system. To generate the
bifurcation diagrams, we first fix all the parameters except the connectivity k which is allowed to
vary. For each value of k formula (3) is iterated a number of times to pass the transient phase and
then the resulting values of p(t) are plotted on the vertical line passing through k for many initial
conditions. In addition one needs to analyze the sensitivity of the orbits to initial values. This is
done mainly through the computation of the LyE which provide an approximation for the average
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Figure 2. Analog of Figure 1 for variable connectivity k and randomly assigned parents.
Here N = 128, k1 = 10, k2 = 32, and the other parameters are as specified in the titles (all
the parameters indicated in the two titles of each line correspond to both graphs on each
line). Again we observe the almost perfect match after one iteration and a similar behavior
after 256 iterations in all cases. We also note the differences in the long run behavior for the
various scenarios. This figure is typical for the case of two possible connectivity values. The
first two cases indicate the existence of attracting fixed points: a single one in the first case,
and two distinct ones in the second case. The third case suggests the existence of stable
period two orbits, while the last case shows that the origin is the only attracting fixed point.

multiplicative rate of divergence or convergence of orbits starting at nearby points. The LyE is

defined to be L(x0; f) = limn→∞
[∏n−1

j=0 |f ′(xj)|
]1/n

, where f(x) is the map describing the evolution
of the system from one time step to another, and {x0, x1, . . . , xn . . . } represents the trajectory of
x0 under the map f . When the LyE of an orbit is negative, the implication is that a stable orbit is
attained. Conversely, when the LyE is positive, the implication is that chaos is present, provided
the orbit is not asymptotically periodic [27]. On the other hand there could exist orbits that are
asymptotically periodic and with positive LyE. It should be noted that LyE are undefined for some
orbits, particularly an orbit containing a point xi with f ′(xi) = 0.

Observe that in the case of the formula (1), to compute the LyE we use the function

(4) f(p) = (1− α)p + α
J∑

j=1

Cj

kj∑

s=0

[(1− p)rkj

0 (s) + pr
kj

1 (s)]
(

kj

s

)
ps(1− p)kj−s.

In the simulations we fix the number of nodes to N = 128, and we iterate the system 1000 time
steps before plotting the bifurcation diagrams versus integer k values. In Figure 3 we present two
samples for a network with fixed connectivity k. When d1 = 0.1 and d2 = 0.4 we can see that
as the value of k increases both the LyE and the bifurcation diagram suggest chaos. A similar
situation is noted for d1 = 0.2 and d2 = 0.8 and k = 8; for the other values of k the system
exhibits both positive and negative values of the LyE, whereas the bifurcation diagram suggests
multiple attractors. For k < 8 the LyE could be positive or negative since we can identify multiple
attractors, so the orbits are eventually periodic.

We note that similar graphs are obtained for other parameter combinations, for fixed or variable
connectivity, and are not included to make the paper concise. In general we observe that smaller
values of connectivity are associated with periodic attractors with negative or positive LyE (mostly
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Figure 3. LyE and bifurcation diagrams for selected parameters with N = 128. When
d1 = 0.1 and d2 = 0.4 we can see that as the value of k increases (k > 4), both the LyE and
the bifurcation diagram suggest chaos. For d1 = 0.2 and d2 = 0.8 and k = 8 the same is
observed, while for the other values of k the bifurcation diagrams are not very spread out,
and the exponents take on positive or negative values. (Note: the LyE for k = 1 in case of
d1 = 0.2 and d2 = 0.8 is much smaller than −1. However we have chosen the given window
of values for more clarity of the plots.)

close to zero), with a passage to chaos and positive LyE as the connectivity increases. Large
connectivity values induce convergence to the origin which is the only attracting fixed point, and
thus the LyE are not defined.

5. Focus on Fixed Points

It is useful to understand how the fixed points of the map behave. To do this we need to solve
the equation f(p) = p where f(p) is given in formula (4). Observe that this equation can be written
as p =

∑J
j=1 Cj

∑kj

s=0[(1− p)rkj

0 (s) + pr
kj

1 (s)]
(
kj
s

)
ps(1− p)kj−s. Now p = 0 is automatically a fixed

point since r
kj

0 (0) = 0. We will start this section by analyzing this case in more detail. Later we
will focus on the special case of the generalized Rule 22.

Observe that f ′(0) = (1−α)+α
∑J

j=1 Cj{[−r
kj

0 (0)+r
kj

1 (0)]−kjr
kj

0 (0)+kjr
kj

0 (1)}=
∑J

j=1 Cj [r
kj

1 (0)+

kjr
kj

0 (1)] since r
kj

0 (0) = 0 and α = 1. For simplicity we will discuss in detail the stability of the
origin in the case when the values r

kj

0 and r
kj

1 are either 0 or 1 for all kj > 1.
Case 1: r

kj

1 (0) = r
kj

0 (1) = 0 for all kj . Observe that |f ′(0)| = 0 so the origin is stable. If the
values of kj are large enough and the values of the corresponding dj

1 in the generalization of Rule
22 are also large enough, then this case is satisfied automatically. This is in agreement with the
previous observations that in many cases the probability p(t) converges to 0.

Case 2: r
kj

1 (0) = 0 and r
kj

0 (1) = 1 for all kj . Then |f ′(0)| =
∑J

j=1 Cjkj . Observe that∑J
j=1 Cjkj = C1(k1 − kJ) + C2(k2 − kJ) + · · · + CJ−1(kJ−1 − kJ) + kJ . We can always order the

connectivity values such that k1 > k2 > · · · > kJ . Thus all the terms kj−kJ are nonnegative in the
expression above and thus the entire expression is at least kJ > 1. Therefore the origin is unstable
for any value of J .

Case 3: r
kj

1 (0) = 1 and r
kj

0 (1) = 0 for all kj . Then f ′(0) =
∑J

j=1 Cj = 1 so we cannot make
decisions about the stability of 0.
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Case 4: r
kj

1 (0) = r
kj

0 (1) = 1 for all kj . Then f ′(0) =
∑J

j=1 Cj(1 + kj) = 1 +
∑J

j=1 Cjkj > 1
which means that the origin is unstable.

In conclusion, for the special case when the Boolean rules are chosen such that the values r
kj

1 (0)
and r

kj

0 (1) are the same for all connectivity values kj , the origin could be stable or unstable per
the cases above, and there are situations in which we cannot make a decision based on the value
of f ′(0).

Let us focus on the generalized Rule 22 now for the case of a synchronous network with fixed
connectivity, so J = 1. We can rewrite formula (3) as p(t + 1) =

∑
s∈Ak

0

(
k
s

)
p(t)s(1− p(t))k−s+1 +∑

s∈Ak
1

(
k
s

)
p(t)s+1(1−p(t))k−s where Ak

0 = {1, . . . , k}∩ [d1(k +1), d2(k +1)] and Ak
1 = {0, 1, . . . , k−

1} ∩ [d1(k + 1)− 1, d2(k + 1)− 1]. Thus, we will study the fixed points of the following function

(5) f(p) =
∑

s∈Ak
0

(
k

s

)
ps(1− p)k−s+1 +

∑

s∈Ak
1

(
k

s

)
ps+1(1− p)k−s

Note that we have used the same notation f(p) although this is a new function. The discussion
that follows refers to the function (5). We start by solving the equation f(p) = p numerically for
various combinations of the parameters k, d1, d2. However we will present in detail the two cases
studied in the previous section, namely d1 = 0.1, d2 = 0.4 and d1 = 0.2, d2 = 0.8. Using Matlab we
compute the fixed points for these two scenarios for k ≤ 20 and we plot them in Figure 4. We also
compute the values of f ′(p) for the fixed points obtained and we plot them on the right hand side
of Figure 4 as specified in the subplots. We observe that the origin is not the only fixed point. The
values of f ′(p) are plotted as follows: f ′(0) is marked by a star, the values f ′(p) for fixed points
with values less than 0.3 are marked with an x, while the remaining fixed points are marked with
a +. We also plot the lines f ′(p) = −1 and f ′(p) = 1. Observe that the origin is stable for most
values of k. Only for k = 1 or 2 there may be a stable fixed point other than the origin. However,
in light of the previous bifurcation diagrams, we know that the basin of attraction of the origin
cannot be the entire interval [0, 1].

Let us discuss the case d1 = 0.2, d2 = 0.8 in detail. If k = 1 we obtain f(p) = 2p(1 − p) which
is a logistic equation with p = 0 unstable fixed point and p = 1/2 stable fixed point, with basin
(0, 1). If k = 2, f(p) = 3p(1− p) for which the origin is unstable but p = 2/3 is a stable fixed point
with basin (0, 1). Note that f ′(2/3) = −1 which corresponds to a point where a period-doubling
bifurcation occurs. If k = 3 the function becomes a polynomial of degree 4 with only two roots in
[0, 1], namely 0 and 0.7221. Both are unstable, but the equation f2(p) = p yields a stable period-2
orbit {0.4410, 0.8645} which corresponds to the bifurcation diagram in Figure 3. Iterations of the
function f(p) indicate no other higher order periodic orbits, so the period-2 orbit has basin (0, 1).
However, if k = 4 observe that p = 0 is a stable fixed point. We obtain also two other fixed points,
p = 0.1312 and p = 0.7487 which are both unstable. The basin of the origin is [0, 0.1312). We
obtain also a period-2 stable orbit, {0.5929, 0.8341}. Higher order iterates do not show any higher
order periodic orbits. This is similar to the bifurcation diagram for k = 4 and corresponds to the
observations made for Figure 1 (second set of graphs). In Figure 5 we graph the function (5) and
iterations f2(p), f4(p) and f8(p) for k = 4, 5, 8. For k = 4 we observe that the higher order iterates
do not generate further intersections with the main diagonal. For k = 5 we observe that the origin
is a stable fixed point, but the period-2 orbit {0.4384, 0.76} is unstable. However, period-4 orbits
occur as well. This corresponds to the observations in the bifurcation diagram. We include also
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Figure 4. Fixed points of the function (5), f(p) =
∑

s∈Ak
0

(
k
s

)
ps(1 − p)k−s+1 +∑

s∈Ak
1

(
k
s

)
ps+1(1 − p)k−s in the first column for the specified values of d1 and d2 and the

corresponding values of f ′(p) in the second column. Here the origin is marked by a star,
the fixed points with values less than 0.3 are marked with an x, while the remaining fixed
points are marked with a +. We observe the existence of multiple fixed points for all the
values of k. The origin is stable in most cases, although its basin of attraction may not be
the entire interval [0, 1].
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Figure 5. Plots of f(p), f2(p), f4(p) and f8(p) for the function (5), f(p) =∑
s∈Ak

0

(
k
s

)
ps(1 − p)k−s+1 +

∑
s∈Ak

1

(
k
s

)
ps+1(1 − p)k−s. We consider the cases k = 4, 5, and

8 by lines, for d1 = 0.2, d2 = 0.8. We observe more complexity for k = 5 and the existence
of numerous higher order periodic orbits for k = 8.

the case k = 8 to emphasize the existence of numerous higher order periodic orbits. At the same
time, for k > 8 we observe that the iterations converge to zero.

Similar observations are made for other parameter combinations. As a matter of fact one could
see that the condition for the stability of the fixed point 0 can be obtained by figuring out if one
1 in a network of 0s will lead to more than one 1 in the network in the next time step. So if a
node is in state 0 and only one of its k parents in state 1, the origin is unstable if 1

k+1 ∈ [d1, d2].
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For instance if d1 = 0.2, d2 = 0.8, then the origin is unstable for k = 1, 2, 3 and stable for k ≥ 4
since in that case 1

k+1 < 0.2. Similarly, if d1 = 0.1, d2 = 0.4, the origin is stable for k = 1 since
1

k+1 = 0.5 > d2, unstable for k = 2, 3, . . . , 9, and stable again for k > 9. These observations match
the results discussed above.

6. Dynamics under Stochastic Noise

Now let us analyze the dynamical behavior of the system under stochastic noise. We dis-
cuss in detail the case of fixed connectivity k. To this aim we define a random procedure for
changing the state of each node at each time step. The rule introduces a noise intensity param-
eter η. Note that the Boolean rule (2) is given by the following function g(cn1 , cn2 , . . . , cnk+1

) =

χ[d1(k+1),d2(k+1)]

(∑k+1
j=1 cnj

)
, where χ represents the characteristic function of the interval [d1(k +

1), d2(k+1)], meaning that the function is null everywhere except when
∑k+1

j=1 cnj ∈ [d1(k+1), d2(k+
1)], and in that case the function is equal to 1. The nodes {cn1 , cn2 , . . . , cnk+1

} represent the k par-
ents of node cn together with the node itself. At each time step t we introduce the following
stochastic noise procedure:

(6) cn(t + 1) =

{
g(cn1 , cn2 , . . . , cnk+1

) with probability 1− η

1− g(cn1 , cn2 , . . . , cnk+1
) with probability η

where η ∈ [0, 1/2]. If η = 0 the dynamics are purely deterministic and given by the analysis in
previous sections, while for η = 1/2 they are purely random. This type of noise has been previously
considered by Huepe and Aldana-González [10] in the case of a neural network model with noise.
The authors consider a neural network evolving according to a Boolean function given by the
sign of a weighted linear combination of the inputs. They show that the system exhibits a phase
transition at a critical noise intensity parameter ηc which is computed analytically and numerically.
In what follows we propose an approach similar to [10] and we show that a phase transition may
not occur in the context of the Boolean rules used in this paper. Basically noise means driving
the proportion of 1s in the network to 0.5. If the attracting fixed point without noise has a much
larger (or smaller) proportion of 1s, a phase transition may occur. For example, in the previous
sections we saw that a larger k yields an attracting fixed point at the origin, so the nodes become 0
eventually, which means that the proportion of 0s converges to 100%. However, if noise is applied,
as the noise parameter η increases the proportion of 0s and 1’s will approach 0.5 and intuitively
there could be a clear dynamical phase transition. On the other hand, if the network is attracted
towards a higher order cycle or behaves chaotically, then the other parameters of the system would
become essential in determining the reaction of the system to the noise.

As in [10] we define the order parameter

(7) Ψ = lim
T→∞

1
T − T0

∫ T

T0

|s(t)| dt where s(t) = lim
N→∞

1
N

N∑

n=1

(2cn(t)− 1).

Here T0 is arbitrarily chosen. Observe that for a system in which most elements are in the same
state we have |s(t)| ≈ 1, whereas for a system in which the elements randomly take values 0 or
1 we have that |s(t)| ≈ 0. Our goal is to provide a mathematical relation between η and Ψ and
compare it with numerical results obtained for the real system.
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First we consider the quantity φ(t) ≡ Pt({cn = 1}) = limN→∞(1/N)
∑N

n=1 cn(t), where the last
equality represents the thermodynamic limit of the fraction of nodes in state 1 at time t, which thus
becomes the probability of finding any node in state 1 at time t. Then φ(t) = (s(t) + 1)/2. Now
let ξ(t) =

∑k+1
j=1 cnj (t), which can be considered a sum of independent random variables. Using

the notation Pξ(t)(x) for the probability distribution function associated to ξ and Pc(t)(x) for the
probability distribution function associated to cnj we get Pξ(t)(x) = Pc(t) ∗ Pc(t) ∗ · · · ∗ Pc(t)(x),
where ∗ denotes the convolution of the k + 1 identical functions. Then the probability that g = 1
at time t is I(t) ≡ Pt({g = 1}) =

∑
x Pξ(t)(x), where x ∈ [d1(k + 1), d2(k + 1)] ∩N. Then clearly

φ(t + 1) = I(t)(1− η) + (1− I(t))η. It follows that s(t + 1) = (2η − 1)(1− 2I(t)).
Note that Pc(t)(1) = φ(t) and Pc(t)(0) = 1 − φ(t) and thus we deal with a Bernoulli random

variable with parameter φ(t). Then ξ(t) becomes a binomial distribution with parameters k + 1
and φ(t). This implies that I(t) =

∑
x

(
k+1

x

)
φ(t)x(1−φ(t))k+1−x = (1/2k+1)

∑
x

(
k+1

x

)
(1+s(t))x(1−

s(t))k+1−x, where x ∈ [d1(k+1), d2(k+1)]∩N. We are interested in the fixed points of the function
given by s(t+1) = (2η−1)(1−2I(t)) with I(t) expressed in terms of s(t) as above, since the quantity
s(t) will approach the fixed points as t →∞. Thus we need to solve

(8) s = (2η − 1)

[
1− 1

2k

∑
x

(
k + 1

x

)
(1 + s)x(1− s)k+1−x

]

for various values of η. We do this numerically, and we obtain Ψ = |s| from the analytic expression
(8) as a function of η. We plot the results and compare them with the numerical computations of
the integral (7) obtained directly from a system with N = 512 nodes that has been evolved a few
hundred time steps under the noise rule (6) for various values of the noise parameter η. Observe
that if η → 1/2 then the right hand side of (8) approaches zero, so s → 0. Thus, we expect to see
a convergence to zero of the values of Ψ as η increases from 0 to 1/2.

In Figure 6 we show typical results for only a couple of values of d1 as specified in the plots and
d2 = 1. As mentioned previously in this case we deal with a Boolean linear threshold function that
is typical for neural networks. Recall also that small values of d1 imply that fewer active inputs
have the property of activating the node under consideration. Thus there is a bias towards the
activators of the nodes. If d1 is large then there is a bias towards the inhibitors of the nodes. In
Figure 6 we compute numerically the values of Ψ from formula (8) for different noise levels η and
plot the resulting values with dots. For the same values of the noise parameter we also compute the
values of Ψ obtained from formula (7) and plot them with stars. We observe the very good match,
and that as η → 1/2 we have that Ψ → 0. The larger the network the better the match. On the
other hand we note that for d1 = 0.45 there is a clear phase transition that occurs around η = 0.3,
while for d1 = 0.75 no such transition occurs. This is observed in general for various values of k:
medium values of d1 may generate a phase transition while other values of d1 correspond to a rather
linear decrease to zero. We will show analytically that this is indeed the case for certain parameter
combinations, but that in many cases there is no phase transition. We can see that for small values
of η, meaning a smaller probability of disturbing the nodes through the noise procedure, the system
tends to exhibit more nodes in the same state since Ψ is close to 1. However, for large values of
the noise parameter η the nodes tend to take on randomly the values 1 and 0.

We also plot the first and the fourth iteration of the function (8) in Figure 7. This is done for
d1 = 0.25, 0.45, 0.55, 0.75 and for η = 0.1, 0.2, 0.3, 0.4. We graph the first iteration with interrupted
line and the fourth iteration is with continuous line. Observe that as η increases the intersection
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with the first diagonal gets closer to zero. On the other hand, for small η the intersection is close to
1 or −1. Also note that there is a symmetry in the function behavior as d1 crosses 0.5. This is due
to the reversed roles of the values 0 and 1 in the network as there is a bias towards the inhibitors.
For example, the behavior for d1 = 0.45 is similar to that for d1 = 0.55 reversed by symmetry. At
the same time, for medium values of d1 we see that there can be more than one fixed point. But
in general, higher order iterations do not become more complex, and no higher order fixed points
are generated.

Now, let us analyze the case of even k. We have that
∑k/2

x=0

(
k+1

x

)
=

∑k+1
x=k/2+1

(
k+1

x

)
= 2k.

Therefore s = 0 is a solution of equation (8), so the origin is a fixed point. If d1 > 0 this happens
for values of d1 and d2 such that [d1(k + 1), d2(k + 1)] ∩N = {k/2 + 1, . . . , k + 1}. It is immediate
to see that if d2 = 1 and k

2(k+1) < d1 ≤ k+2
2(k+1) this is automatically satisfied. However this interval

centered at 1/2 becomes narrower as k increases. In this case for small enough values of η there
are other fixed points as well, while for large values of η the origin is the only fixed point. Thus
there is a critical value ηc such that for η > ηc we have Ψ = 0. For instance, it is not hard
to see by a straightforward computation of the fixed points from equation (8) that if k = 2 and
1/3 < d1 ≤ 2/3, then for values η > ηc = 1/6 the origin is the only fixed point. Similarly, if k = 4
and 2/5 < d1 ≤ 3/5, we have ηc = 7/30. The value of ηc increases with k, thus the phase transition
occurs for larger η as the connectivity increases.
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Figure 6. Plots of values of the order parameter Ψ versus the level of the noise parameter
η for two typical values of d1 as specified in the titles and k = 6. The stars represent
the results of the analytic computation obtained from formula (8), namely Ψ = |s|, where
s = (2η−1)

[
1− 1

2k

∑
x

(
k+1

x

)
(1 + s)x(1− s)k+1−x

]
. The dots represent the values obtained

numerically from the definition (7) of Ψ, namely Ψ = limT→∞ 1
T−T0

∫ T

T0
|s(t)| dt, where

s(t) = limN→∞ 1
N

∑N
n=1(2cn(t)− 1), obtained from iterations of the real system under the

noise procedure. We observe that Ψ decreases with increased η and that for smaller η the
values are close to 1, meaning that most nodes are in the same state. As η → 1/2 the values
of Ψ indicate a phase transition at η = 0.3 for d1 = 0.45, while for d1 = 0.75 the values of
Ψ decrease linearly to zero.
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In order to find a formula for ηc, we look again at equation (8) and write it as s = (2η −
1)/2k

[
2k −∑k+1

x=k/2+1

(
k+1

x

)
(1 + s)x(1− s)k+1−x

]
. Observe that the term 2k−∑k+1

x=k/2+1

(
k+1

x

)
(1+

s)x(1− s)k+1−x contains only odd powers of s, and that s is a factor of the expression. Neglecting
the terms of order s4 and higher we obtain 2k−∑k+1

x=k/2+1

(
k+1

x

)
(1+s)x(1−s)k+1−x = s(a0 +a2s

2),
where a0 < 0 and a2 > 0 are real coefficients. Thus, ignoring the solution s = 0, we can solve for η

to get

(11) η − ηc =
2k−1a2

−a2
0

s2 where ηc =
1
2

+
2k−1

a0
.

One can check that (11) yields the critical values ηc mentioned above for k = 2 and k = 4. Since
a2 > 0 formula (11) yields real solutions for η < ηc, so a phase transition occurs at η = ηc. Thus
the values of the order parameter ψ near the transition can be obtained as follows in this case:

ψ =




−a0

√
ηc−η√

2k−1a2

for η < ηc

0 for η > ηc

On the other hand, if the parameter d1 does not satisfy k
2(k+1) < d1 ≤ k+2

2(k+1) when d2 = 1, then

the sum
∑

x

(
k+1

x

) 6= 2k, x ∈ [d1(k + 1), d2(k + 1)] ∩N, and thus s = 0 is not a fixed point. In this

case there is no dynamical phase transition. Moreover, a large k makes the interval
(

k
2(k+1) ,

k+2
2(k+1)

]

very narrow, so most of the values of d1 will not yield a dynamical phase transition. The same is
true for odd values of k, matching the numerous simulation results. More generally, observe that
s = 0 is a solution of (8) if and only if the parameters d1, d2, and k are such that

∑
x

(
k+1

x

)
= 2k,

x ∈ [d1(k + 1), d2(k + 1)]∩N. Any such sum would have to span the middle terms of the binomial
expansion of 2k+1, since otherwise the sum will be smaller than 2k. Thus, for k even this means
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Figure 7. The graphs of g(s) (interrupted line) and g4(s) (continuous line) versus s for
the function g(s) = (2η − 1)

[
1− 1

2k

∑
x

(
k+1

x

)
(1 + s)x(1− s)k+1−x

]
given by equation (8),

plotted on [−1, 1] × [−1, 1] together with the first diagonal. Here k = 6, d2 = 1 and the
values of d1 and η are specified in the subplots. Small values of η generate multiple fixed
points closer to ±1, while large η generate fixed points close to the origin. Higher order
iterates do not induce more complexity.



15

at least
(
k+1
k/2

)
+

(
k+1

k/2+1

)
= 2

(
k+1
k/2

)
. By a simple computation one can show that 2

(
k+1
k/2

)
> 2k. For

k odd the sum spans at least
(

k+1
(k−1)/2

)
+

(
k+1

(k−1)/2+1

)
=

(
k+2

(k−1)/2+1

)
> 2k by a similar computation.

Thus, the origin is a fixed point of (8) only when k is even, d2 = 1, and d1 ∈
(

k
2(k+1) ,

k+2
2(k+1)

]
, or

when d1 = 0, and d2 ∈
[

k
2(k+1) ,

k+2
2(k+1)

)
. Otherwise there cannot be a dynamical phase transition

such that ψ = 0 for values of the noise parameter η greater than a critical value. However, the
values of ψ approach zero as η approaches 1/2.

We note here that a similar behavior is observed for varying number of parents. Define sj(t) =
1

Mj

∑
cn∈k̂j

(2cn(t)− 1) and φj(t) = 1
Mj

∑
cn∈k̂j

cn(t), where Mj is the number of nodes with kj par-

ents, j = 1, 2, . . . , J and k̂j is the collection of nodes with kj parents. Observe that
∑J

j=1 Mj = N

and ∪J
j=1k̂j = {c1, c2, . . . , cN}. Consider gj(cn1 , cn2 , . . . , cnkj+1

) = χ
[dj

1(kj+1),dj
2(kj+1)]

(∑kj+1
l=1 cnl

)

and cn(t+1) = gj(cn1 , cn2 , . . . , cnkj+1
) with probability 1−ηj , and cn(t+1) = 1−gj(cn1 , cn2 , . . . , cnkj+1

)

with probability ηj for nodes cn in class k̂j . We obtain Ij(t) =
∑

x

(
kj+1

x

)
φj(t)x(1 − φj(t))kj+1−x,

where x ∈ [dj
1(k + 1), dj

2(k + 1)] ∩ N, and φj(t + 1) = Ij(t)(1 − ηj) + (1 − Ij(t))ηj . Then
φ(t) =

∑J
j=1

Mj

N φj(t) and one needs to find the fixed points of the individual sj ’s to obtain

Ψ =
∑J

j=1
Mj

N |sj |.
To identify the behavior for the case of varying number of parents, the authors have performed

simulations with two possible values of k, and the plots suggest again a decreasing trend of Ψ
as the corresponding noise parameters η1 and η2 are increased. However, the values of Ψ do not
necessarily converge to zero, due to the combined effect of the two different rules and parameter
sets. For smaller η values Ψ tends to be closer to 1, while for large η values Ψ tends to be closer to
0. For combinations involving even connectivity values, we can again observe a dynamical phase
transition at certain critical values of the η parameters. For most combinations though, there are
no critical values of the noise parameters that indicate a dynamical phase transition.

7. Conclusions

In conclusion, this paper presents an in-depth study of a single generalized cellular automaton rule
on Boolean networks with fixed or varying connectivity. We consider a Boolean network governed
by a generalization of ECA Rule 22 that can be regarded as a Boolean linear threshold function
typical for neural networks, or as a biologically meaningful Boolean function with activating or
inhibiting inputs. By varying the parameters of the Boolean rule one can consider biases towards
the activators or the inhibitors of a given node. We analyze the network dynamics by comparing
simulated dynamics with the analytical description. In general we observe that large connectivity
generates stability at the origin, so the nodes are inactivated eventually, while smaller connectivity
can induce either order, with bifurcations and multiple attractors, or chaos. Moreover, the reaction
of the system to stochastic noise is investigated. We show that for some parameter combinations
there are critical values of the noise parameters indicating a dynamical phase transition. More
precisely, when the noise parameter surpasses certain critical values the nodes are activated or
inactivated in a random manner. For smaller values of the noise parameter, more nodes tend to be
in the same state, that is either active or inactive. However, in the context of the network considered
in this paper there are parameter combinations for which such a transition may not occur, so there
is a certain bias towards either the active or the inactive nodes for all noise parameter values.
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A natural continuation of this research would be analyzing asynchronous updates useful in the
analysis of systems composed of multiple interacting components. Similar work has been performed
for example in ( [7], [21], [28]) for other types of Boolean networks. Allowing multiple Boolean
rules would be of interest as well. Probabilistic Boolean networks in which a node can be updated
according to more than one Boolean rule to account for natural variations and disturbances in the
system have been studied for example in [2]. Such an approach would provide a much more realistic
model for biological cellular networks whose update schemes are dependent upon various protein
interactions ( [5], [6]). One could consider a similar noise procedure in the context of probabilistic
Boolean networks, and generalize to a wider variety of Boolean rules. Involving techniques such as
Fourier transforms, one could study the existence of critical noise values corresponding to dynamical
phase transitions.

On the other hand it would be of interest to see a comparison of these results with other methods
for state-space descriptions focusing on sizes of the attractors and their basins of attraction like
the basin entropy ( [29], [30]), as a measure of the complexity of information that such a network
or ensembles of such networks are capable of storing.

Another interesting topic would be introducing other types of noise in the system to determine
the stability of the system to perturbations ( [20], [31]). For instance the work in [20] has shown
that noise induction into a system governed by the ECA Rule 126 has a stabilizing effect on the
dynamics of the system. On the other hand it would be of interest to tackle the topic of information
propagation in such Boolean networks subject to noise. This kind of work has been recently
developed in the context of perturbation avalanches in Boolean networks by Rämö et.al. [32].

The topic of synchronization of Boolean networks is also of interest especially in areas such as
neural networks ( [23], [24], [33], [34] ). An analysis of deterministic or stochastic synchronization
of networks governed by the generalized ECA Rule 22 of this paper could yield interesting results.

Taking into account the topology of the network as opposed to randomly selecting the parent
nodes is another avenue of study. As observed in ( [11], [12]), the variation of topology of the
network from a random to regular or scale-free network has a clear impact on pattern formation.
Embedding the topology in the network model could lead to interesting results regarding the effect
of topology on the dynamics of the system.
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[4] Lähdesmäki H., Hautaniemi S., Shmulevich I., Yli-Harja O., Relationships Between Probabilistic Boolean Net-

works and Dynamic Bayesian Networks as Models of Gene Regulatory Networks, Signal Processing, Vol. 86, No.

4, pp. 814-834, 2006.

[5] Heidel J., Maloney J., Farrow C., Rogers J.A., Finding Cycles in Syncrhonous Boolean Networks with Applica-

tions to Biochemical Systems, Intl. J. Bifurcation Chaos Appl. Sci. Eng. 13 (2003) 535-552.

[6] Klemm K., Bornholdt S., Topology of Biological Networks and Reliability of Information Processing, PNAS, 102

(2005), p. 18414-18419.

[7] Klemm K., Bornholdt S., Stable and unstable attractors in Boolean networks, Phys. Rev. E 72, 055101 (2005).



17

[8] Raeymaekers L., Dynamics of Boolean networks controlled by biologically meaningful functions, Journal of The-

oretical Biology, 218, p. 331-341, 2002.

[9] Aldana M., Cluzel P., A Natural Class of Robust Networks, PNAS 100 (2003), p. 8710-8714.
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