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Abstract

In this paper we propose a recursive equilibrium algorithm for the numerical simulation

of nonoptimal dynamic economies. This algorithm builds upon a convergent operator over

an expanded set of state variables. The fixed point of this operator defines the set of all

Markovian equilibria. We study approximation properties of the operator. We also apply

our recursive equilibrium algorithm to various models with heterogeneous agents, incomplete

financial markets, endogenous and exogenous borrowing constraints, taxes, and money.
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1. Introduction

In this paper we propose a reliable recursive equilibrium algorithm for the numerical simulation

of nonoptimal dynamic economies, and study its convergence and accuracy properties. Numerical

simulation of these economies is usually a formidable task because of various technical issues that

preclude direct application of standard dynamic programming techniques. We apply our numerical

algorithm to various models with heterogeneous agents and real and financial frictions. The quanti-

tative analysis of these models becomes critical to advance our understanding in several basic areas

of macroeconomics and finance.

Standard solution methods search for a continuous equilibrium function over a natural state

space of exogenous and endogenous state variables. Since the seminal work of Kydland and Prescott

(1980), it is well known that equilibria of nonoptimal economies may not admit a recursive represen-

tation over this natural state space. These authors consider a game of optimal taxation, and rewrite

their model in a recursive form by appending a Lagrange multiplier to the original state space so

as to characterize the exact solution. Their simple model comprises a representative household,

and the set of continuation Lagrange multipliers is unique. This uniqueness property is a rather

limiting condition for many other economies.

Our recursive equilibrium algorithm applies to a broad range of dynamic competitive-markets

economies. We consider an abstract framework, and provide a characterization of Markovian equi-

librium representations towards the numerical simulation of these economies. While some charac-

terizations of Markovian equilibria for nonoptimal economies are available, these characterizations

are model-dependent. Moreover, the numerical implementation of the proposed algorithms together

with their approximation properties have never been analyzed in the literature.

Numerical simulation of nonoptimal economies by standard solution methods may result in

substantial approximation errors. We simulate below a simple overlapping generations (OLG) model

by an established algorithm under a continuous equilibrium function. The computed solution may

present large approximation errors, and fail to mimic the true dynamics. In spite of these large
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approximation errors, the algorithm can be quite deceptive as it produces small Euler equation

residuals, or may do well under some other independent accuracy checks. Peralta-Alva and Santos

(2010) discuss some of the pitfalls in the computation of equilibrium solutions for an economy with

distortionary taxation.

Positive results on existence of a continuous equilibrium over a natural state space rely upon

certain monotonicity properties of the equilibrium dynamics (e.g., see Bizer and Judd 1989, Coleman

1991, and Datta, Mirman and Reffett 2002). For the canonical one-sector growth model with taxes

and externalities, monotone dynamics follow from fairly mild restrictions on the primitives. But

monotone dynamics are much harder to obtain in multi-sector models with heterogeneous agents

and real and financial frictions.

Several papers are concerned with the characterization of recursive equilibria for nonoptimal

economies. As already pointed out, these characterizations are model-dependent, and do not con-

sider numerical implementation and approximation properties of these algorithms. Abreu, Pierce,

and Stacchetti (1990) introduce continuation utility values to find a recursive representation of

sequential equilibria for dynamic games. This characterization of equilibrium seems quite natural

in repeated games, but it may become computationally demanding in some other models. Duffie et

al. (1994) search for general representations of stationary equilibria over an expanded state space

that includes all endogenous variables such as asset prices and individual consumptions. Again,

expanding the state space over all state variables may slow down the computation process. Build-

ing upon these methods, Kubler and Schmedders (2003) show existence of a Markovian equilibrium

for a class of financial economies with collateral requirements. Their computations are based on

a projection-type algorithm iterating in the space of continuous functions. This computational

procedure cannot guarantee convergence to the true solution. Marcet and Marimon (2010) study a

general class of contracting problems with incentive constraints. Following Kydland and Prescott

(1980), they enlarge the state space with a vector of weights for the utility of each agent, and com-

pute a transition for such weights from the shadow values of the agents’ participation constraints.

They assume that equilibrium solutions can be characterized by convex social planning problems.

By construction this method cannot capture multiple equilibria, but seems to be more operative
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for the computation of various dynamic incentive problems written in a Pareto-welfare form.

Our work is closest to Kubler and Schmedders (2003), but we consider a broader family of

economies that may include endogenous and exogenous borrowing constraints. In the numerical

implementation, we discretize our algorithm to preserve its convergence properties. Thus, unlike

Kubler and Schmedders (2003), we iterate over candidate equilibrium sets – rather than functions

– to guarantee convergence to the original equilibrium set. We can thus compute the set of all

competitive equilibria. As discussed below, this reliable discretization procedure can successfully

be applied to various types of models, and it seems particularly useful for OLG models and some

other infinite-horizon models with various types of real and financial frictions.

Section 2 considers two simple examples intended to highlight some major computational issues

and the workings of our algorithm. Section 3 introduces our framework of analysis. We provide a

general characterization of Markov equilibria for nonoptimal economies. The set of Markov equi-

libria is computed as the fixed-point of a monotone operator embedding all short-run equilibrium

conditions. This operator has good convergence and stability properties, and hence it provides the

foundations for the formulation of our reliable recursive equilibrium algorithm. Section 4 studies

the numerical implementation of our algorithm and its approximation properties. We apply these

numerical procedures to two types of models. Sections 5 is devoted to the numerical simulation of

a simple OLG model, and Section 6 considers a model of international trading with various market

frictions. We conclude in Section 7.

2. Two Illustrative Examples

2.1. An Overlapping Generations Economy

Time is discrete, t = 0, 1, 2, · · · . At each date t a new consumer appears in the economy. Each

consumer receives an endowment e1 of a perishable good when young, and e2 when old. There is

a single asset called money that can be held for trading. This asset pays zero dividends, and it

belongs to the initial old generation starting the economy. The money supply M remains constant
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over time.

Let Pt be the price of money in terms of the aggregate good at date t. Then, a typical consumer

born in period t solves the following optimization problem:

maxu(ctt) + v(ctt+1)

s.t.

ctt + Mt

Pt
= e1

ctt+1 = e2 + Mt

Pt+1
.

Note that cts denotes consumption at date s of the agent born at time t, for s = t, t+ 1, and Mt

is the amount of money demanded at time t.

A sequential competitive equilibrium for this economy is a sequence of prices {Pt} and sequences

of optimal choices {ctt, ctt+1,Mt} for the given prices, such that both commodity and money markets

clear at all times:

ctt + ct−1
t = e1 + e2(1)

Mt = M,(2)

for all t ≥ 0. For interior solutions, under the concavity of the objective function, the budget-

constrained optimal choice {ctt, ctt+1,Mt} is fully characterized by the first-order conditions:

u′(ctt) = λt(3)

v′(ctt+1) = λt+1(4)

λt

Pt
= λt+1

Pt+1
,(5)

where λt is a Lagrange multiplier at time t.

To analyze the dynamics of the model, we can indistinctly consider any of the following three

(state) variables: Consumption, ctt, the price level, Pt, or the amount of real money balances,
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bt ≡ M/Pt. That is, all these three variables provide the same information. Then, rearranging

all the above equations, equilibrium sequences {ctt, ctt+1,Mt, Pt} can be fully characterized by the

equation:

(6) btu
′(e1 − bt) = bt+1v

′(e2 + bt+1).

A standard approach for computing equilibrium solutions would be to search for a continuous

function g : X → X with bt+1 = g(bt) for all t ≥ 0 and

(7) btu
′(e1 − bt) = g(bt)v

′(e2 + g(bt)).

We would like to stress that existence of a continuous equilibrium function bt+1 = g(bt) requires

further assumptions on the model primitives. More specifically, a continuous equilibrium function

bt+1 = g(bt) occurs under monotone equilibrium dynamics: An upward sloping offer curve arising

under the assumption of gross substitutes in consumption. But if the offer curve is backward

bending, then bt+1 = g(bt) is just a correspondence, which may not have a continuous selection.

For instance, as is well known (Grandmont 1985) the offer curve is backward bending for the

following parameterization:

u (c) = c0.45, v (c) = −0.8

7
c−7, M0 = 1, e1 = 2, e2 = 26/7 − 21/7.

See Figure 1. Here, the upper and lower arms are two continuous equilibrium selections. As

illustrated in Section 5, there are other cases in which no continuous equilibrium selection does

exist.
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Figure 1: Offer curve.

For this parameterization, we applied a version of the projection method over (7) to compute

a continuous policy bt+1 = g(bt). Depending on the initial guess, the numerical approximation

converges either to the upper or the lower arm of the offer curve, or to some other hybrid solution.

This strong dependence on initial conditions is a rather undesirable feature of this computational

method. In particular, if we only consider the lower arm of the actual equilibrium correspondence

then all competitive equilibria converge to autarchy (zero monetary holdings). But if we iterate

over the upper arm of the offer curve, we find that money holdings converge monotonically to

the stationary solution M̄
p = 0.4181. Hence, even in the deterministic version, we need a global

approximation of the equilibrium correspondence to analyze the various predictions of the model.

As a matter of fact, none of these two selections would capture a two-period equilibrium cycle in

which real money holdings oscillate between 0.8529 and 0.0953 (see Figure 2). It is also known that

the model has a three-period cycle.

Figure 2: Equilibrium cycles.

As shown in Section 5, for certain parameterizations an OLG economy may not admit an

equilibrium function over the natural space of state variables. To compute the equilibrium set,

we could consider some auxiliary variables. One possible choice is to select continuation utilities

over the multiple equilibrium paths. Continuation utilities, however, will force us to discard the

first-order condition (6). Thus, from a computational point of view it seems optimal to build an

efficient numerical algorithm based upon (6).
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Let us then define mt+1 as mt+1 = bt+1

bt
v′(e2 + bt+1). Now, equation (6) reduces to u′(e1− bt) =

mt+1. This simple equation seems much easier to compute. Accordingly, we propose to compute

the set of all equilibrium paths over an expanded state space (bt,mt). In this expanded state

space we will define an equilibrium correspondence that generates all equilibrium paths. With this

background in place, let us further illustrate our computational method in the following example.

2.2. Optimal Growth

Consider the infinite-horizon optimization problem

max{ct,kt+1}
∑∞
t=0 β

tu(ct)

s.t.

ct + kt+1 = F (kt, 1) + (1− δ)kt

given k0, 0 < β < 1, 0 < δ ≤ 1.

Under standard conditions for u and F, the solution to the above problem can be fully characterized

by the (infinite) set of Euler equations:

(8) u′(F (kt, 1) + (1− δ)kt − kt+1) = βu′(F (kt+1, 1) + (1− δ)kt+1 − kt+2)(Fk(kt+1, 1) + 1− δ).

A common approach is to search for a continuous function kt+1 = g(kt) over this time-homogeneous

non-linear system:

u′(F (kt, 1) + (1− δ)kt − g(kt)) =(9)

βu′(F (g(kt), 1) + (1− δ)g(kt)− g(g(kt)))(Fk(g(kt), 1) + 1− δ)

for all t ≥ 0.

Under some specifications for the production function F , a continuous solution g may not exist
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(cf. Boldrin and Rustichini 1994). For instance, in models with externalities, function F may be

written as F (k, 1) = f(k̂, k, 1), with k̂ = k at every equilibrium solution. As a matter of fact,

in non-convex programming the Euler equation may pick sub-optimal solutions. In those cases,

the set of optimal solutions may be characterized by continuation utilities or some other auxiliary

variables.

For simplicity, let us assume that the system of Euler equations (9) determines all equilibrium

solutions. Then, we cannot hope to find a recursive representation of equilibrium by conditioning on

variable k only. Indeed, for every k0 there is a continuum of vectors (k1, k2) that satisfy the above

Euler equation (9). A recursive characterization of equilibrium, however, can readily be obtained

by letting the state space comprise equilibrium pairs (c, k). That is, for each (k0, c0) the resource

constraint determines k1; further, c1 can be solved from the Euler equation. Therefore, for each

equilibrium pair (c, k) the Euler equation (9) generates a unique continuation value (k+, c+). We

would like to stress that for computational purposes it may be more operative to expand the state

space with auxiliary variable m ≡ u′(c)(Fk(k, 1) + 1 − δ), i.e. the shadow return of one unit of

investment. As in the preceding example, the Euler equation is linear in m. This will be useful in

the computation stage.

Let K be the domain of possible values for the capital stock and M the set of possible values

for m. We could start with space K ×M as an initial guess for all starting equilibrium values.

Usually, this universal set is too broad: Many pairs (k,m) may lack continuation values (k+, c+)

over the above Euler equation (9). Each initial guess will be refined under the action of the following

operator B embedding all short-run equilibrium conditions.

Let V : K → M be a large enough correspondence of potential continuation values (k+,m+).

For every k, let m ∈ B(V )(k) if there exists (c, k+,m+) with m+ ∈ V (k+) such that

c+ k+ = F (k, 1) + (1− δ)k(10)

u′(c) = βm+,(11)
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where m ≡ u′(c)(Fk(k, 1) + 1 − δ). Correspondence V is chosen large enough2 so that the new

correspondence B(V ) is a subset of V . Then, by construction we obtain a decreasing sequence of

correspondences Vn+1 = B(Vn) that converge to the equilibrium correspondence V ∗. Therefore,

starting from each pair (k,m) ∈ graph(V ∗) we can generate a sequence of equilibrium solutions

{ct, kt+1} satisfying the above equation system at all times. As a matter of fact, every sequential

equilibrium solution can be generated under some initial equilibrium pair (k,m) ∈ graph(V ∗).

To summarize, under the action of operator B, the recursive equilibrium algorithm finds a

Markov equilibrium correspondence V ∗ that can generate all (sequential) equilibrium solutions.

There are three main points to be emphasized from this exercise. First, the equilibrium corre-

spondence is the maximal fixed point of operator B. That is, V ∗ = B(V ∗) and V ′ ⊂ V ∗ for any

other fixed point V ′ = B(V ′). Hence, under a proper formulation of the state space the existence

of a fixed point V ∗ is tantamount to the existence of a sequential equilibrium solution. Second,

the iteration process under operator B proceeds over correspondences rather than functions. While

iteration over correspondences may be computationally more costly, the recursive equilibrium al-

gorithm guarantees convergence to the set of equilibrium solutions under a good initial guess V0.

And third, the recursive equilibrium algorithm is subject to the curse of dimensionality, as it may

involve maximizations and integrations over spaces of functions, and set iterations. Indeed, some

characterizations of Markov equilibria may not be computable. Therefore, the choice of the state

space is usually critical. In the previous two examples, the state space has been enlarged with the

shadow values of investment.

3. General Theory

In this section, we first set out a general analytical framework that encompasses various recursive

economic models. Their equilibrium time series, however, may depend on full histories of shocks

and economic variables. Therefore, these equilibria are not directly amenable to computation unless
2 Our method works under the weaker condition that V contains equilibrium correspondence V ∗ presently defined.
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we can find a Markovian representation over a well chosen state space. Then, we present a formal

version of our recursive algorithm. In Section 4 we develop a convergent numerical algorithm with

desirable approximation properties.

Following Ljungqvist and Sargent (2000), a recursive equilibrium representation is conformed

by “a transition mapping the state of the model today into the state tomorrow and a function

mapping the state into the other endogenous variables of the model.” Duffie et al. (1994) show

that under fairly general conditions it is possible to provide a recursive representation of sequential

competitive equilibria by expanding the state space with all endogenous variables. Their approach

does not cover models with endogenous constraints – nor does it provide a way to find or approximate

equilibria. Our analysis will be guided by computational considerations, and so it is imperative to

keep a manageable state space.

3.1. General Framework

Time is discrete t = 0, 1, 2, · · · . At every date t the economy is composed of I agents, and it

is shocked by a vector of exogenous variables z. This vector follows a Markov chain (zt)t≥0 over

a finite set Z =
{

1, 2, ..., Ẑ
}

as described by transition probabilities π (z′|z) for all z, z′ ∈ Z. The

initial state, z0 ∈ Z, is known to all agents in the economy. Then zt = (z0, z1, z2, ..., zt) ∈ Zt+1

is a history of shocks, often called a date-event or node. Endogenous predetermined variables are

denoted by x, with x ∈ X, X ⊂ RN . Vector x may include agents’ holdings of physical capital,

human capital, and financial assets. All other endogenous variables are denoted by y, with y ∈ Y,

Y ⊂ RL. Vector y may include equilibrium prices, choice variables such as consumption and

investment, and auxiliary variables such as Lagrange multipliers, shadow values of investment and

continuation utilities. Indeed, certain auxiliary variables may either be necessary or may allow for

a more operational representation of equilibrium.

In Section 6 below, our set of auxiliary variables includes shadow values of investment of each

existing asset for every agent, m ∈M, M ⊂ RK , and continuation utilities, p ∈ RI , as is common in

the literature on incentive constraints. Agents will have the choice to default. It is thus necessary to

specify the payoff of default, which in our case implies permanent exclusion from commodities and
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financial markets. Default carries a lifetime utility that may depend on the vectors of shocks z and

endogenous predetermined state variables x. When non-convexities arise from individual effects on

the aggregate state variables, first-order conditions cannot longer be invoked. Hence, computations

must consider global maximization methods. More precisely, each of the I agents in this economy

confronts an expected discounted lifetime utility given by a function P aut : RN × Z → RI in case

of default. This payoff function P aut may depend on both individual and aggregate state variables,

and may give rise to a non-concave individual optimization problem.

The thrust of our analysis is the computation of sequential competitive equilibria (SCE), as

described by infinite sequences {x(zt), y(zt)}t≥0. We limit this exercise to models where all SCE lie

in a compact space and can be characterized by aggregate resource constraints and short-run opti-

mality conditions involving only variables of two contiguous time periods, t and t+ 1. Specifically,

the law of motion of the state vector x is conformed by a system of non-linear equations:

(12) ϕ (xt+1, xt, yt, zt) = 0.

Function ϕ may embed technological constraints as well as individual budget constraints. For some

models we can explicitly solve for xt+1 as a function of (xt, yt, zt) . But in some other applications

such as in models with adjustment costs, xt+1 may not admit an analytical solution.

Further, a SCE {x(zt), y(zt)}t≥0 must satisfy an infinite system:

(13) (xt, yt, zt, xt+1, yt+1, zt+1) ∈ Φ

for all t ≥ 0. Functional Φ describes various short-run equilibrium conditions: (i) Euler equa-

tions, in which case Φ represents simply a non-linear system, (ii) one-period ahead constrained-

optimization to account for non-concave maximization programs because of real and financial dis-

tortions and additional participation constraints, (iii) market-clearing conditions, and (iv) various

types of budget restrictions and resource constraints.

We say that a model is recursive and time invariant if there exist functionals ϕ and Φ char-
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acterizing the set of all SCE under conditions (12-13). Several assumptions underlie this abstract

formulation.

First, the space of endogenous variables X × Y is compact. Hence, transversality conditions

at infinity are usually trivially satisfied. Section 6 below shows how a compact domain X × Y

may arise from optimization conditions in the presence of unbounded utility and production func-

tions. Therefore, (12-13) must provide a set of sufficient conditions for the characterization of all

SCE. Second, (12-13) only involve variables at times t and t + 1. Hence, production and utility

functions, technological, borrowing, and incentive constraints, must satisfy certain intertemporal

separability assumptions. For instance, some forms of habit formation may be incorporated in the

analysis by including auxiliary variables. Third, (12-13) are time invariant. That is, we search

for a time-homogeneous Markovian representation of SCE, which will be given by an equilibrium

correspondence mapping current states into equilibrium values for each successor node.

3.2. The Recursive Equilibrium Algorithm

The set of SCE may not admit a recursive representation over the standard state space compris-

ing exogenous shocks z and predetermined endogenous variables x. To recover a recursive structure

it is necessary to enlarge the state space. The required expansion of the state space will depend

on the economic application. Hence, at this stage of our analysis we will simply assume that the

equilibrium values of the required vector of auxiliary variables are described by an equilibrium

correspondence V ∗ : (x, z) 7−→ V ∗ (x, z) ⊆ Y. This equilibrium correspondence may contain discon-

tinuities and multiple equilibria. Under standard continuity conditions on utility and production

functions, the equilibrium correspondence is usually upper semicontinuous.

The theoretical underpinnings of our recursive equilibrium algorithm rest on the iteration of

monotone equilibrium inclusions (Kydland and Prescott 1980 and Abreu, Pierce and Stacchetti

1990) that lead to a convergent process. We first select an appropriate set of state variables, and

a well chosen initial correspondence V0. Then, we apply a monotone operator, B, that generates

sequences of non-empty decreasing compact sets {Vn} shrinking to the equilibrium correspondence

V ∗. Operator B embodies all short-run equilibrium conditions (12-13) from any initial value z to

12



all immediate successor nodes z+. This operator is analogous to the expectations correspondence

of Duffie et al. (1994), albeit it may contain a smaller set of endogenous variables. Using operator

B, we can generate the set of all SCE under time-invariant equilibrium selections.

More precisely, for any given V under the action of operator B we obtain V ′ = B (V ). Cor-

respondence V ′ is defined as follows. Pick a vector (x, z). Then, v ∈ V ′(x, z) if there is a vector

(y, x+, y+(z+), v+(z+)) for all z+ ∈ Z, with v+ (z+) ∈ V (x+, z+) such that the resulting vector

(x, y, z, x+, y+, z+) satisfies the temporary equilibrium conditions (12-13).

For models where a SCE exists, correspondence B(V ) will be non-empty provided that our

initial guess V0 has been properly chosen. Note that by construction operator B is monotone: If

V ⊂ V̂ then B(V ) ⊂ B(V̂ ).3 Further, under standard continuity conditions on functionals ϕ and Φ

it follows that if V has a closed graph then B(V ) will have a closed graph.

Assumption 3.1 Operator B preserves compactness: If V is compact valued then B(V ) is also

compact valued.

Assumption 3.1 will allow us to establish some uniform convergence properties of the algorithm.

This assumption could be weakened to show existence of a fixed-point solution V ∗ and the global

convergence of the iteration process.

Theorem 3.1 (existence and global convergence) Let V0 be a compact-valued correspondence such

that V0 ⊃ V ∗. Let Vn = B (Vn−1) for all n ≥ 1. Then, operator B has a fixed-point solution, i.e.,

V ∗ = B(V ∗), where V ∗ = limn→∞ Vn. Moreover, V ∗ is the largest fixed point of operator B, i.e.,

V = B(V ) implies V ⊂ V ∗.

We again would like to remark that operator B iterates over sets rather than functions. Hence,

if there are multiple equilibria we can find all of them. By definition, for any (x, z, v) ∈ graph(V ∗),

under the action of operator B we can generate a new vector (x+, z+, y, v+) that can be extended

3 For correspondences V, V̂ we say that V ⊂ V̂ if V (x, z) ⊂ V̂ (x, z) for all (x, z). We shall consider the usual

notion of distance over sets given by the Hausdorff metric.
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into a SCE {x(zt), y(zt)}t≥0. Since the fixed point of operator B is an upper semicontinuous corre-

spondence, it is possible to select a measurable policy function y = gy(x, z, v), a transition function

v+ (z+) = gv(x, z, v; z+), and continuation values for the endogenous predetermined variables x+ so

that ϕ (x+, x, y, z) = 0. Let us summarize these future equilibrium values over the extended state

space as g(x, z, v; z+) = (x+, z+, v+). Then, g is a Markovian equilibrium selection.4

To summarize, the set of SCE {x(zt), y(zt)}t≥0 admits a recursive representation in an expanded

state space. Our recursive equilibrium algorithm rests upon iteration of sets under a monotone

operator B. For a well chosen initial correspondence, the iteration process converges to the Markov

equilibrium correspondence V ∗. We now proceed to the numerical implementation of the algorithm

and to study its approximation properties.

4. Numerical Implementation

In this section we develop a numerical implementation of operator B and study its convergence

and accuracy properties. For models with multiple equilibria, the fixed point of the numerical

algorithm converges uniformly to the Markov equilibrium correspondence as the mesh size of the

discretization converges to zero. For models with a unique equilibrium, our results imply that the

accuracy of the numerical approximation is of the same order of magnitude as the mesh size of our

discretization.

For dynamic games, Judd, Yeltekin and Conklin (2003), and Judd and Yeltekin (2010), de-

velop an approximation procedure with good accuracy properties. Essentially, their approximation

method works well for convex equilibrium correspondences. The convexity of the equilibrium cor-

respondence may be achieved via a public randomization device. Randomization over the original

set of strategies seems quite appealing in game theoretic settings. Such ex post convexification,

however, may arbitrarily expand the equilibrium set of a competitive economy, and may not be
4 It should be clear that g(·; z+) denotes a coordinate function of g(·) corresponding to the successor node z+|z.
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compatible with individual optimization behavior. Note that by construction operator B is mono-

tone, and maps compact sets into compact sets, but it does not preserve convexity.

We now proceed as follows. First, we partition the state space into a finite set of J simplices with

mesh size h. Compatible with this partition we consider a sequence of step correspondences, which

take constant set-values on each simplex. Step correspondences are the analog of step functions, and

have good approximation properties. We also introduce a finite-dimensional outer approximation

over the image of the step correspondences; this outer approximation is made up of Σ cubes or finite-

dimensional elements. Then, combining these approximations we obtain a computable operator

Bh,Σ with accuracy parameters (h,Σ). Under the action of operator Bh,Σ, we construct a sequence

of correspondences that converge to a fixed point containing equilibrium correspondence V ∗. We

shall study accuracy properties of the algorithm as we refine our discretizations over (h,Σ).

4.1. The Numerical Algorithm

Assume that all equilibrium state vectors (x, z, v) belong to some set S, which is a subset of the

product space S = X×Z×Y . Let
{
Xj
}J
j=1

be a finite family of simplices with non-empty interior

such that ∪jXj = X and int(Xj)∩ int(Xj′) is empty for every pair Xj , Xj′ . Define the mesh size

h of this discretization as

(14) h = max
j
diam

{
Xj
}
.

For any multivalued mapping V : X × Z → 2Y , where 2Y denotes the subsets of vectors for space

Y containing the required auxiliary variables, an approximation V h compatible with the partition{
Xj
}
takes on constant set-values V h(x, z) on each simplex Xj . More precisely,

(15) V h(x, z) = ∪x∈XjV (x, z), for each given z and all x ∈ Xj .

This definition of step correspondence V h will include all equilibrium values and preserve the

monotonicity property over the discretized process. Analogously, over each Xj we define operator
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Bh(V ) as Bh(V )(x, z) = ∪x∈XjB(V )(x, z), for each given z and all x ∈ Xj . As before, one

can prove that Bh has a fixed-point solution. To obtain a computable representation of these

correspondences we also discretize the image space. For a given set V we say that CΣ (V ) ⊇ V

is an Σ-element outer approximation of V if CΣ (V ) can be generated by Σ elements. We require

this numerical representation to preserve monotonicity: V ⊂ V̂ implies CΣ (V ) ⊂ CΣ(V̂ ). This

is essential to guarantee monotonicity of a computable version of operator B. We also require

limΣ→∞ CΣ (V ) = V.

Combining these approximations, we can construct a new operator Bh,Σ as follows. We first

define the step correspondence Bh(V ) of B(V ). Then, each set-element of Bh(V ) is adjusted by

the Σ-element outer approximation to get CΣ
(
Bh(V )

)
.

Therefore, the output of our numerical algorithm would be summarized by correspondences

V h,Σn under the action of a globally convergent operator Bh,Σ. From the application of operator

Bh,Σ on V h,Σn , we can choose an approximate policy function y = gy,h,Σn (x, z, v), and a transition

function v+ (z+) = gv,h,Σn (x, z, v; z+). From the computed selections we can generate approximate

SCE paths {xt(zt), yt(zt)}∞t=0. Sections 5 and 6 illustrate examples of such operators, and their

application to different dynamic models.

4.2. Convergence and Accuracy Properties

We finally show that our discretized operator Bh,Σ has good convergence properties: The fixed

point of this operator V ∗,h,Σ contains equilibrium correspondence V ∗, and it converges uniformly

to this limit point as we refine the approximations. The proof of this result extends the convergence

arguments of Beer (1980) to a dynamic setting.

Theorem 4.1 For given h, Σ, let V0 ⊇ V ∗. Let V h,Σn = Bh,Σ(V h,Σn−1) for all n ≥ 1. Then, (i)

V h,Σn ⊇ V ∗ for all n; (ii) V h,Σn → V ∗,h,Σ as n→∞; and (iii) V ∗,h,Σ → V ∗ as h→ 0 and Σ→∞.

As stated in the theorem, three points are to be emphasized from these results. First, the

set of numerical solutions always contains the equilibrium correspondence. Second, the iteration

process is globally convergent. And third, as we refine these approximations, the fixed point of our
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numerical algorithm shrinks to the equilibrium correspondence.

We now establish uniform convergence over accuracy parameters (h,Σ). Hence, the approxima-

tion error is directly correlated with the mesh size of the discretizations. For correspondences V h,Σn

and V , consider the distance d(graph(V h,Σn ), graph(V )), where d refers to the Hausdorff metric.

Theorem 4.2 Under the conditions of Theorem 4.1, for any given ε > 0 there are Σ̂, ĥ, n̂ such that

the distance d(graph(V h,Σn ), graph(V ∗)) ≤ ε for all Σ ≥ Σ̂, h ≤ ĥ, n ≥ n̂ .

Hence, for any sufficiently close discretization (Σ, h, n), all approximate solutions (x, z, v) are

within an ε-ball of graph(V ∗); further, an ε-ball of graph(V h,Σn ) contains graph(V ∗). This important

approximation result comes directly from the construction of our numerical operator Bh,Σ that

preserves equilibrium solutions and compactness over the iteration process. As already remarked,

if the equilibrium correspondence V ∗ is just a function, then Theorem 4.2 implies the existence of

error bounds for the approximate solutions. Indeed, these bounds follow directly from the size of

the errors of the discretization procedure under parameters (h,Σ).

5. Stochastic OLG Economies

OLG models have become quite relevant in the analysis of several macro issues, such as the fund-

ing of social security, the optimal profile of savings and investment over the life cycle, the effects of

various fiscal and monetary policies, and the evolution of future interest rates and asset prices under

current demographic trends.5 As already stressed, there are no known convergent procedures for

the computation of sequential competitive equilibria in OLG models even for frictionless economies

with complete financial markets. Our approach delivers a reliable, computable algorithm for the
5 For instance, see Conesa, Krueger and Kitao (2009), Geanakoplos, Magill and Quinzii (2003), Gourinchas and

Parker (2002), Imrohoroglu, Imrohoroglu, and Joines (1995), Storelesletten, Telmer and Yaron (2004), and Ventura

(1999).
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solution of competitive equilibria in a general class of OLG models. As shown below, the application

of standard numerical methods that build on the existence of a continuous policy function is not

adequate for the computation of these economies. Indeed, a continuous Markov equilibrium may

not exist – or there could be a vast multiplicity of equilibria. Citanna and Siconolfi (2010) establish

generic existence of this Markovian property of equilibrium under the additional assumption that

the number of agents is sufficiently large. Of course, for computational reasons many economies of

practical interest contain a limited number of agents which are given as model primitives; further,

this recursive representation is not necessarily continuous.

5.1. The Economic Environment

At each date a new generation made up of 2 agents appears in the economy. Each agent is alive

for 2 periods. Let (i, zt) denote an agent of type i = 1, 2 born at date-event zt = (z0, z1, · · · , zt).

There are 2 perishable commodities available for consumption at any given date-event. Let good

1 be the numeraire commodity, and p the relative price of good 2. There are two assets. The first

asset is a one-period risk-free bond trading at price qb(zt). The second is a Lucas tree, trading at

price qs(zt). The tree generates a random stream of dividends d(zt). Let (θb,i,z
t

, θs,i,z
t

) be a pair of

bond and share holdings of agent (i, zt) . Shares cannot be sold short: θs,i,z
t ≥ 0. Each individual

faces the following budget constraint:

(16) p(zt) · ci,z
t

(zt) + θb,i,z
t

(zt)qb(zt) + θs,i,z
t

(zt)qs(zt) ≤ p(zt) · ei,z
t

(zt)

(17) p(zt+1)·ci,z
t

(zt+1) ≤ θb,i,z
t

(zt)+θs,i,z
t

(zt)[d(zt+1)+qs(zt+1)]+p(zt+1)·ei,z
t

(zt+1) all zt+1|zt.

The utility function U i is separable over consumptions of different dates:

(18) U i
(
ci,z

t

; zt, zt+1
)

= ui
(
ci,z

t (
zt
)
, zt

)
+ β

∑
zt+1∈Z

vi
(
ci,z

t (
zt+1

)
, zt+1

)
π
(
zt+1|zt

)
.
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Assumption 5.1 For each z ∈ Z the one-period utility functions ui(·, z), vi(·, z) : R+ → R∪{−∞}

are increasing, strictly concave, and continuous. These functions are also continuously differentiable

at every interior point c > 0.

As before, a SCE is a collection of vectors
{(

ci,z
t

(zt) , ci,z
t (
zt+1

)
, θi,z

t

(zt)
)2

i=1
, p(zt), q (zt)

}
t≥0

such that each consumption-savings plan
{
ci,z

t

(zt), ci,z
t

(zt+1), θi,z
t

(zt)
}

solves the constrained-

utility maximization of the agent, and goods and assets markets clear.

Note that in this economy the aggregate commodity endowment is bounded by a portfolio-

trading plan (Santos and Woodford 1997), and hence asset pricing bubbles cannot exist in a SCE.

Therefore, equilibrium asset prices must be bounded at each date. It follows that the existence of

a SCE can be established by standard methods (e.g., Balasko and Shell 1980, and Schmachtenberg

1988).

5.2. Lack of Recursive Equilibria on the Natural State Space

Let us first discuss the model specification of Kubler and Polemarchakis (2004) where the real

asset is not available. The intertemporal objective of agent of type 1 is given by

− 1024(
c1,z

t

1

)4 + Ezt+1|zt

− 1024(
c1,z

t

1 (zt+1)
)4 −

1(
c1,z

t

2 (zt+1)
)4


while that of agent of type 2 is given by

− 1(
c2,z

t

1

)4 + Ezt+1|zt

− 1(
c2,z

t

1 (zt+1)
)4 −

1024(
c2,z

t

2 (zt+1)
)4

 .
Each individual receives a random endowment of good 1 in their first period of life. Specifically,

e1,zt

1 (zt) = 10.4, e2,zt

1 (zt) = 2.6 if zt = z1, and e1,zt

1 (zt) = 8.6313, e2,zt

1 (zt) = 4.3687 if zt = z2.

Endowments during the second period of life are deterministic and include positive amounts of both
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goods. Namely, e1,zt
(
zt+1

)
= (12, 1) and e2,zt

(
zt+1

)
= (1, 12) .

Kubler and Polemarchakis (2004) show that bond holdings turn out to be equal to zero in the two

states. To determine consumption when old we must know the realization of the endowment when

young.6 Bond holdings and current shocks are not enough to pin down the dynamic behavior of

equilibrium. In other words, the model does not admit a Markov equilibrium representation over the

natural state space. The specific configuration of equilibrium is as follows: At any state history zt−1

with zt−1 = z1, and for any possible value of the shock today
(
c1,z

t−1

1 (zt) , c1,z
t−1

2 (zt)
)

= (10.4, 2.6),(
c2,z

t−1

1 (zt) , c2,z
t−1

2 (zt)
)

= (2.6, 10.4), and q = 1, p = 1. Likewise, for any state history zt−1 with

zt−1 = z2, and for any possible value of the shock today
(
c1,z

t−1

1 (zt) , c1,z
t−1

2 (zt)
)

= (8.4, 1.4),(
c2,z

t−1

1 (zt) , c2,z
t−1

2 (zt)
)

= (4.6, 11.6) , and q = 1, p = 7.9.

What would happen if we approximate this economy by standard methods? To answer this

question we applied a projection method with collocation and piecewise linear interpolation. This

collocation method approximates the Euler equation to search for a continuous equilibrium function

over the natural state space. The computed equilibrium function delivers reasonable Euler equation

residuals (i.e., of the order of 10−5) and a researcher may be led to believe that this function is a

good approximate solution; however, the computed prices and allocations are quite different from

those of the exact equilibrium; see Table 1.

Statistics q c1,z
t−1

1 c1,z
t−1

2 c2,z
t−1

1 c2,z
t−1

2

(µtrue, µprojection) (1.0,0.6) (9.7,9.7) (2.0,1.7) (3.6,3.8) (11.0,11.3)

(σ2
true, σ

2
projection) (0.0,0.05) (1.0,0.2) (0.36,0.81) (1.0,0.09) (0.36,0.08)

Table 1: Statistical properties of the true equilibrium vs. an equilibrium generated by the

projection method. Statistics: Mean µ and variance σ2.

The relative price of good 2 is a function of the endowment in the previous period. The price
6 Because of an indeterminacy problem of the Euler equation, we can approximate the equilibrium of this more

limited economy by letting the stock of trees go to zero.
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is not signaled by the natural state space as there is no trade among generations. The equilibrium

relative price of good 2 can take on two values and asset holdings take on one single value. This

observation may explain the large differences in Table 1 between the simulated moments generated

by the true and computed solutions. Indeed, the computed function by the projection method

takes on a single value for the relative price of good 2 midway between the two possible equilibrium

values.

5.3. The Recursive Equilibrium Algorithm

A recursive representation of equilibria can be readily recovered on an enlarged state space com-

posed of the natural state variables and the shadow values of investment as auxiliary variables. For

the present economy of Kubler and Polemarchakis (2004), the Markov equilibrium correspondence

can be defined as follows:

(19) V ∗ (θ0, z0) =


(
Dcv

1(c1,z
0

(z0) , z0), Dcv
2(c2,z

0

(z0) , z0)
)

:{(
ci,z

t

(zt) , ci,z
t (
zt+1|zt

)
, θi,z

t (
zt+1

))2

i=1
, p(zt), q (zt)

}
t≥0

is a SCE

 .

Operator B will build on the first-order and market-clearing conditions. After some algebra,

these conditions can be written as:

12 + p+ θ

4p1/5 + p
+

4 + 48p− 4θ

p1/5 + 4p
= 13(20)

q

(e1
1(z)− qθ)5 =

π[z+ = z1|z](
12+p(z+)+θ+

1+0.25p(z+)4/5

)5 +
1− π[z+ = z1|z](

12+p(z+)+θ+
1+0.25p(z+)4/5

)5(21)

q

(e2
1(z) + qθ)

5 =
π[z+ = z1|z](

1+12p(z+)−θ+
1+4p(z+)4/5

)5 +
1− π[z+ = z1|z](

1+12p(z+)−θ+
1+4p(z+)4/5

)5 .(22)

Then, for each given (z, θ), andm ∈ V (z, θ) we have thatm ∈ BV (z, θ) if there are (q, p, z+, θ+,m (z+))
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such that

12 + p+ θ

4p1/5 + p
+

4 + 48p− 4θ

p1/5 + 4p
= 13(23)

q

(e1
1(z)− qθ)5 = Em1

+(24)

q

(e2
1(z) + qθ)

5 = Em2
+.(25)

The numerical implementation of our recursive equilibrium algorithm is quite simple in this

model. The only equilibrium portfolio is θ = 0. However, to test the algorithm we consider a

slightly larger domain [θ, θ], with θ < 0 < θ. Our family of simplices is given by the set of N

intervals of the form [θ+nh, θ+(n+1)h], for n = 1, 2, ..., N−1, and h is such that θ = θ+Nh. The

only equilibrium price for the bond is q = 1. This value together with the definition of the shadow

values of investment are now used to set up our discretization for the initial step correspondence.

Let θ ∈[θ + nh, θ + (n+ 1)h]. Then

V h,Σ0 (θ, z) =
⋃
i,j{(m1,m2) ∈

[
1

e1(z)−(θ+nh)−iΣ ,
1

e1(z)−(θ+nh)−(i+1)Σ

]
×
[

1
e2(z)+(θ+(n+1)h)−jΣ ,

1
e2(z)+(θ+(n+1)h)−(j+1)Σ

]
}

for i = 1, ..., Ni, j = 1, ..., Nj , and e1(z) − (θ + nh) − (Ni + 1)Σ = (θ + (n + 1)h), and e2(z) +

(θ + (n + 1)h) − (Nj + 1)Σ = e2(z) + (θ + nh). This specification is also very convenient because

we have partitioned the image of the correspondence into Ni × Nj pieces at each element of the

simplex of the domain of asset holdings. Iteration of operator Bh,Σ will eliminate those pieces that

cannot be linked to a continuation value. After k iterations, correspondence V h,Σk is conformed

by the union of those pieces that have not been eliminated. Operator Bh,Σ is then defined as

follows: For any given simplex, an element (i, j) of V h,Σk remains in Bh,ΣV h,Σk = V h,Σk+1 if there is at

least one θ ∈ [θ+ nh, θ+ (n+ 1)h], and a pair (m1,m2) ∈
[

1
e1(z)−(θ+nh)−iΣ ,

1
e1(z)−(θ+nh)−(i+1)Σ

]
×[

1
e2(z)+(θ+(n+1)h)−jΣ ,

1
e2(z)+(θ+(n+1)h)−(j+1)Σ

]
for which we can find (q, p, z+, θ+,m (z+)) satisfying

conditions (23-25).
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6. International Risk Sharing

A growing literature has developed to explore the performance of business cycle models under

market imperfections leading to limited risk sharing. As documented in various papers (e.g., Backus,

Kehoe and Kydland 1992), standard versions of the neoclassical growth model cannot account for

certain co-movements of macroeconomic aggregates. We now show that our reliable algorithm can

naturally be applied to the computation of two-country models with real and financial frictions.

6.1. The Economic Environment

We just outline an economy in the spirit of Kehoe and Perri (2002) in which we include shocks

on preferences and taxes. There are two countries with a representative household in each country.

Each economy is affected by a vector of shocks z that follow a Markov chain. There is a unique

aggregate good. Production technologies are country specific. Labor and capital stocks cannot be

moved across countries, but limited international borrowing is possible. Assets include physical

capital and bonds.

The representative household of country i = 1, 2 has preferences over stochastic sequences of

consumption and labor given by the utility function

(26) E

[ ∞∑
t=0

βtui
(
cit, l

i
t, zt

)]
.

Function ui(·, ·, zt) : R2 → R is increasing in ci ≥ 0 and decreasing in li ∈ [0, 1], strictly concave, and

twice continuously differentiable. Stochastic consumption plans
(
cit
)
t≥0

are financed by commodity

endowments, after-tax capital returns, labor income, and lump-sum transfers. These values are

expressed in terms of the single good, which is taken as the numeraire commodity of the system

at each date-event, zt. For a given rental rate rit and wage wit in country i, the representative

household offers kit(zt−1) ≥ 0 units of capital accumulated from the previous period, and supplies

lit(z
t) units of labor.
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One-period bonds can be traded at all times. Let bi(zt, ξlt+1(zt)) denote bond holdings of agent

i, where ξlt+1(zt) is a representative element of a given partition of the possible successors zt+1|zt.

Hence, ∪lξlt+1(zt) equals the set of all zt+1|zt, and ξl′t+1(zt) ∩ ξlt+1(zt) = 0 whenever l′ 6= l. A bond

is a promise to deliver 1 unit of the consumption good whenever zt+1 ∈ ξlt+1(zt), and 0 otherwise.

This specification allows for a full set of state contingent bonds if ξlt+1(zt) is a unique element

for each l. An uncontingent bond pays one unit of the good for any possible future state. Let

q(zt, ξlt+1(zt)) be the price of a bond issued at zt.

The representative household of country i is subject to the following sequence of budget con-

straints:

cit (zt) + kit+1 (zt) + bi(zt, ξlt+1(zt))q(zt, ξlt+1(zt)) = wit (zt) lit (zt) +(27)

(1− τ ik(Ki))rit (zt) kit
(
zt−1

)
+ (1− δ) kit

(
zt−1

)
+ eit (zt) + bi(zt−1, ξlt(z

t−1)) + T it (zt) ,

for all zt, t ≥ 0, given ki0.

Endowments eit(zt) are strictly positive and depend only on the current realization of the shock

zt. Capital income is taxed according to function τk, which may depend on the aggregate capital

stock,Ki
t , or some other state variables. This tax function is assumed to be positive, continuous, and

bounded away from 1. Tax revenues are rebated back to the representative consumer as lump-sum

transfers T it (zt) = τ ik(Ki)rit (zt)Ki
t (zt) .

As in Kehoe and Perri (2002), we consider two scenarios for financial markets. A debt-constrained

economy and a liquidity-constrained economy. In the debt-constrained economy, consumers have a

complete menu of contingent bonds. Financial markets would be therefore complete, except for the

fact that there are constraints on debt holdings. Debt repudiation is possible and entails perma-

nent exclusion from financial markets. As a result, holdings of debt are constrained by the following

individually rational constraint at every possible node zt:

(28) Ezt
∞∑
τ=t

(
βi
)τ
ui
(
ciτ , l

i
τ , zτ

)
≥ V i,aut(Ki

t−1(zt), zt), for all t ≥ 0.
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Here, V i,aut is the expected discounted utility value for autarky as a result of zero bond trading for

country i at all dates after zt. Hence, Ki
t−1(zt) is the average level of physical capital of country i

starting at node zt. It is important to stress that the representative agent in each country makes

choices on their capital holdings, kit, assuming that the average value of the stock of capital Ki
t−1

is given. As is typical in many models with externalities, no individual agent realizes that her

choices affect the aggregate borrowing constraint (28). Therefore, in this setting the constraint set

is convex, and so the first-order approach can be used to characterize equilibria.

In the liquidity-constrained economy, households can trade quantities bi(zt) of a single uncon-

tingent bond that yields one unit of the commodity for all states, subject to the following exogenous

constraint:

(29) bi(zt) ≥ −Ωi,

where Ωi > 0.

Because of constant-returns-to-scale technologies, we can focus on the problem of a represen-

tative firm without loss of generality. After observing the current shock z the firm rents Ki units

of capital and hires Li units of labor. The total quantity produced of the single aggregate good is

given by a production function AitF
(
Ki
t , L

i
t

)
, where Ait is a TFP index and F

(
Ki
t , L

i
t

)
is the direct

contribution of the firm’s inputs to the production of the aggregate good. At every date-event zt

factors of production are demanded by the firm to the point in which the marginal productivity of

capital equals the rental rate rit and the marginal productivity of labor equals the wage wit. We

shall maintain the following standard conditions on production function F . Let D1F (K,L) be the

derivative of F with respect to K.

Assumption 6.1 F : R+ × R+ → R+ is increasing, concave, continuous, and linearly homo-

geneous. This function is continuously differentiable at each interior point (K,L); moreover,

limK→∞D1F (K,L) = 0 for all L > 0.
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6.2. Competitive Equilibrium

Definition 6.1 A SCE is a tax function τ ik(K), and a collection of vectors(
{cit(zt), lit(zt), kit+1(zt), bi(zt, ξlt+1(zt)),Ki

t+1(zt), Lit(z
t), rit(z

t), wit(z
t)}i=1,2, q(z

t, ξlt+1(zt))
)
t≥0

that

satisfy the following conditions:

(i) Constrained-utility maximization: For i = 1, 2 the sequence {cit, lit, kit+1, b
i
t}t≥0 solves the

maximization problem for the objective (26) subject to the sequence of budget constraints (27),

as well as constraint (28) for the debt-constrained economy, and constraint (29) for the liquidity-

constrained economy.

(ii) Market clearing in all the markets: Goods, capital, labor, and bond markets.

We are just extending the definition of SCE of Kehoe and Perri (2002) with the addition of

taxes. Note that in this economy international borrowing allows for imports of the aggregate good

produced abroad – available for consumption and investment – but the representative firm can only

hire local inputs – capital and labor.

There does not seem to be a general proof of existence of competitive equilibria for infinite-

horizon economies with distortions. We are aware of a related contribution by Jones and Manuelli

(1999), but their analysis is not directly applicable to models with incomplete markets or external-

ities. Hence, the Appendix outlines a proof of the following result.

Proposition 6.2 A SCE exists.

6.3. Bounds on Equilibrium Allocations and Prices

The Appendix shows existence of positive constantsKmax andKmin such that for every equilibrium

sequence of physical capital vectors {kit+1(zt))}t≥0 if Kmax ≥
∑2
i=1 k

i
0(z0) ≥ Kmin then Kmax ≥∑2

i=1 k
i
t+1(zt) ≥ Kmin for all zt. Hence, in what follows the domain of aggregate capital will be

restricted to the interval [Kmin,Kmax]. We also show that every equilibrium sequence of factor

prices {rit(zt), wit(zt)}t≥0 is bounded.
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To build operator B, we need to bound the equilibrium shadow values of investment. For this

purpose, we introduce the following dynamic programming argument: We define an auxiliary value

function of an individual sequential optimization problem. For a given sequence of factor and bond

prices and aggregate capital (r0(z0),w0(z0),q(z0),K(z0)) = {rt(zt), wt(zt), qt (zt) ,Kt+1 (zt)}t≥0,

let

(30) J i(ki0, b
i
0, z0, r0(z0),w0(z0),q(z0),K(z0)) = maxE

∞∑
t=0

βtui(ct(z
t), lt(z

t), zt)

subject to the sequence of budget constraints (27), as well as constraint (28) for the debt-constrained

economy, and constraint (29) for the liquidity-constrained economy, for given initial conditions

ki0, b
i
0. That is, J i(ki0, bi0, z0, r0(z0),w0(z0),q(z0),K(z0)) is the maximum utility attained for initial

ki0, b
i
0, over an expected future sequence of equilibrium prices and tax rebates.

For every bounded sequence (r0(z0),w0(z0),q(z0),K(z0)), the value function J i(ki0, z0, b
i
0, r0(z0),w0(z0),q(z0),K(z0))

is well defined, and continuous. Moreover, mapping J i(·, ·, z0, r0(z0),w0(z0),q(z0),K(z0)) is in-

creasing, concave, and differentiable with respect to ki0 and bi0 (cf. Rincon-Zapatero and Santos

2009). Let

Dk,bJ
i(·, ·, z0, r0(z0),w0(z0),q(z0),K(z0)) be the partial derivative of function

J i(·, ·, z0, r0(z0),w0(z0),q(z0),K(z0)) with respect to (k0, b0). Then,

Dk,bJ
i(·, ·, z0, r0(z0),w0(z0),q(z0),K(z0)) varies continuously with

(ki0, b
i
0, r0(z0),w0(z0),q(z0),K(z0)). The next result readily follows from these regularity properties

of the value function.

Proposition 6.3 For all SCE(
{cit(zt), lit(zt), kit+1(zt), bi(zt, ξlt+1(zt)),Ki

t+1(zt), Lit(z
t), rit(z

t), wit(z
t)}i=1,2,

)
t≥0

with Kmax ≥
∑2
i=1 k

i
0(z0) ≥

Kmin, there is a constant vector γ̂ = (γ, γ) for γ > 0 such that

0 ≤ Dk,bJ
i(·, ·, z0, r0(z0),w0(z0),q(z0),K(z0)) ≤ γ̂ for all zt.

The proof is sketched in the Appendix. Observe that these bounds apply to the following

types of utility functions: (i) Both function u(·, ·, z) and its derivative are bounded; (ii) function

u(·, ·, z) is bounded, and its derivative function is unbounded; and (iii) both function u(·, ·, z) and
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its derivative are unbounded. Phelan and Stacchetti (2001) deal with case (i) and Kubler and

Schmedders (2003) consider utility functions of type (iii). We provide a uniform method of proof

that covers all three cases, as well as production functions with bounded and unbounded derivatives,

and exogenous and endogenous constraints. As a matter of fact, Proposition 6.3 fills an important

gap in the literature for production economies with heterogeneous consumers and market frictions,

since no general results are available on upper and lower bounds for equilibrium allocations and

prices.

For any initial distribution of capital k0 = (k1
0, k

2
0), bonds b0 = (b10, b

2
0) and a given shock z0,

the shadow values of investment that belong to the equilibrium correspondence are defined as

(31) V ∗ (k0, b0, z0) =

 {Dk,bJ
i(ki0, b

i
0, z0, r0(z0),w0(z0),q(z0),K(z0))}i=1,2 :

There is a SCE

 .

Hence, the set V ∗ (k0, b0, z0) contains all current equilibrium shadow values of investment returns

mi
0, for every household i.

Corollary 6.4 Correspondence V ∗ is non-empty, compact-valued, and upper semicontinuous.

This corollary is a straightforward consequence of Propositions 6.2 and 6.3. These bounds insure

that our operator B maps compact sets into compact sets [cf., Assumption 3.1]. The construction

of B follows the same steps of the preceding section.

6.4. The Recursive Equilibrium Algorithm

The natural state space is conformed by the space of shocks and the distribution of wealth (namely,

individual country holdings of the capital stock and bonds). Because of financial and real frictions,

auxiliary variables are also needed to guarantee a recursive representation of equilibria. For the

economy with exogenous debt limits we enlarge the state space with the shadow values of investment.

For the economy with endogenous debt limits we enlarge the state space with both the shadow values

of investment, m, and values of participation, p.
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Note that in equilibrium b1(zt, ξlt+1(zt)) = −b2(zt, ξlt+1(zt)). Hence, in the sequel we let b be

the share holdings of country 1. Then, the equilibrium correspondence V ∗(b, k1, k2, z1, z2) is a map

from the space of possible values for each country’s capital stock and shocks, and bond holdings for

agent 1, into the set of possible equilibrium values for the auxiliary variables.

For the economy with exogenous constraints, both b, q are scalars, and the shadow values of

investment are defined as:

mi
k(b, k1, k2, z1, z2) =

(
Ai(zi)Fk(ki, li) + (1− δ)

)
uic(32)

mi
b(b, k

1, k2, z1, z2) = quic.(33)

We can now build operator B from the first-order and market-clearing conditions. For any pair

of equilibrium values for the shadow values of investment (m1,m2) ∈ V ∗(b, k1, k2, z1, z2), there must

be bond prices q, multipliers λ, tomorrow’s bond holdings, b+, capitals, k1
+, k

2
+, and shadow values

of investment (m1
+,m

2
+) ∈ V ∗(b+, k1

+, k
2
+, z

1
+, z

2
+) such that the short-run equilibrium conditions

uic = λi + βiEmi
+(34)

uicA
iFL = uil(35)

are satisfied. Here λi ≥ 0, with strict inequality only if today’s borrowing constraint binds. As

before, E is the expectations operator.

Analogously, for the economy with endogenous constraints, given a tuple of equilibrium shadow

values of investment and participation, (m1,m2, p1, p2) ∈ V ∗(b, k1, k2, z1, z2), it must be possible

to find continuation values that satisfy the following short-run equilibrium conditions:

uic = ζiβiπ[zi+|zi]mi
+(36)

uicA
iFL = uil(37)

pi = u+ βiEpi+.(38)
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In the Euler equation above, ζi ≥ 1 is a ratio of multipliers corresponding to the participation

constraints. Therefore, ζi > 1 only if tomorrow’s participation constraint is binding.

As before, we start with a correspondence V0 ⊇ V ∗. It is easy to bound this initial candidate

V0, since the lowest value of the endowment is a lower bound for consumption, and the marginal

utility of consumption can be used to bound asset prices as discounted values of dividends. It is

also straightforward to derive bounds for the value of participation p0.

For the purposes of presentation, let us just deal with the scenario of the exogenous borrowing

constraint (29) where values of participation are not required. For given (b, k1, k2, z1, z2), operator

B dictates that (m1,m2) ∈ BVn(b, k1, k2, z1, z2) if we can find continuation shadow values of

investment (m1
+,m

2
+) ∈ Vn(b+, k

1
+, k

2
+, z

1
+, z

2
+), a bond price q, and multipliers (λ1, λ2), such that

optimality conditions (34-35) are satisfied. If we cannot find continuation values that satisfy the

previous conditions, then (m1,m2) /∈ BVn(b, k1, k2, z1, z2). A new correspondence Vn+1 = B(Vn) is

defined after proceeding with these computations over every possible value (b, k1, k2, z1, z2).

Iterating over operator B we get new candidate values for the shadow values of investment

and values for participation over the short-run equilibrium conditions (36-38). Our algorithm can

then be used to generate a sequence of approximations to the equilibrium correspondence via the

recursion Vn+1 = B(Vn).

For the numerical implementation of the algorithm, we assume pre-specified intervals for the

values of bond and capital holdings. We then partition the state space over a set of vertex points

with grid size h. The step correspondence approximating V0 over each element in the partition of

the state sijl ≡ [bi, bi+1]× [k1
j , k

1
j+1]× [k2

l , k
2
l+1] can be defined as

V h0 (b, k1, k2, z1, z2) = ∪(b,k1,k2,z1,z2)∈sijlV0(b, k1, k2, z1, z2).(39)

The image of this correspondence comprises the shadow values of investment (m1,m2). Hence,

a simple outer approximation CΣ
(
Bh(V )

)
would be a finite collection of hypercubes for vectors

(m1,m2). This completes the numerical implementation of operator Bh,Σ, defined over computable

step correspondences.
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We use our method to compute SCE of this two-country model with endogenous and exogenous

borrowing constraints. In both scenarios we find that the equilibrium correspondence converges to

a function (up to numerical accuracy of 10−6), which indicates that the SCE is unique for given

initial conditions. This is the only model of the paper where computational time is a substantial

issue. The basic form of our algorithm is fairly easy to implement: It only requires to search

for continuation values over the short-run equilibrium conditions required by operator B. As this

process of search is independent across states, it is straightforward to use parallel computing. In

terms of running times, as in most algorithms the choice of initial guess matters greatly. The

initial guess we employed was the solution of a similar economy but with complete markets and no

distortions, which can easily be secured with a standard dynamic programming algorithm. Our grid

considers 51 equally spaced points for K and 501 points for m for each country i = 1, 2. We ran our

C++ MPI code using an IBM Server 1350 Cluster, with 50 Xeon 2.3GHZ processors. The average

time per iteration of operator B was 24 minutes. The program took 94 iterations to converge to a

desired level of accuracy. These times were lower in the liquidity-constrained economy.

6.5. Quantitative Experiments

We now explore the quantitative implications of the above two financial scenarios. For comparison

purposes we will also report results for the model with complete markets to be solved under standard

dynamic programming techniques.

We assume a one-period utility with stochastic shock νi(z):

(40) ui(c, l, z) = νi(z)

[
cη(1− l)1−η]1−σ

1− σ
,

and a Cobb-Douglas production function:

(41) AF (K,L) = AKα(L)1−α.
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We shall use the following standard parameter values: α = 0.36, η = 0.36, and σ = 2. From quar-

terly data, we let β = 0.99 and δ = 0.025. We consider a discrete VAR process for the technology

shocks with four possible states: (A1 = 0.95613, A2 = 0.95613), (A1 = 0.95613, A2 = 1.04480),

(A1 = 1.04480, A2 = 0.95613), (A1 = 1.04480, A2 = 1.04480). These states evolve according to the

transition matrix

π =



0.83022 0.07849 0.07803 0.01326

0.10821 0.77567 0.00865 0.10747

0.10971 0.00793 0.77629 0.10607

0.01354 0.07934 0.07960 0.82752


.

Table 2 reports the simulated moments for the complete-markets economy, the debt-constrained

economy, and the liquidity-constrained economy in which the borrowing limit Ωi = 0. The resulting

simulated sample moments are in line with those reported in Kehoe and Perri (2002) who use a

slightly different calibration and a different computational method.

Only the debt-constrained economy offers a chance of generating reasonable correlations. In the

first three scenarios, preferences are non-stochastic (ν(z) = 1), and there are no taxes (τ = 0). The

last column of Table 2 reports a slightly different experiment for the liquidity-constrained economy

with stochastic preferences and taxes. The idea is to see how shocks on preferences and taxes may

improve the performance of the liquidity-constrained economy. We assume that νi = 1.05 if Ai > 1,

and νi = 0.95 if Ai ≤ 1. Hence, the representative household is more optimistic (or more willing

to consume) in the event of a good productivity shock. Also, τ i = 0.30 if Ai > 1, and τ i = 0.25

if Ai ≤ 1. That is, taxes are also procyclical. With respect to the liquidity-constrained economy,

this last calibration improves some of the bilateral correlations; still, it does not do as well for the

correlations of consumption c and GDP .

32



Data complete
markets

liquidity
constrained

debt
constrained

preferences/tax
shocks

Bilateral
correlations
Consumption 0.32 0.8003 -0.8767 0.2264 -0.36
GDP 0.51 −0.5947 -0.7568 0.0170 -0.28
Investment 0.29 −0.9117 −0.9953 0.6037 0.41
Labor 0.43 −0.9341 -0.8714 −0.1062 0.19

Table 2: Statistical properties of the economies with complete markets, and with exogenous or

endogenous constraints.

In summary, in this section we apply our reliable algorithm to a two-country general equilibrium

model with several real and financial frictions: Incomplete markets, exogenous and endogenous con-

straints, preference shocks, and taxes. We establish bounds for equilibrium allocations and prices as

a key condition for the numerical implementation of our algorithm. Our model simulations broadly

confirm the findings of Kehoe and Perri (2002): Endogenous debt constraints seem instrumental to

fix some international business cycles anomalies. We here obtain a related result with procyclical

preference shocks and taxation to improve the cross-country correlation of capital and labor. Our

computational method can accommodate some other extensions (e.g., time-to-build, adjustment

costs), or can be applied to related models of international investment (Bai and Zhang 2010).

7. Concluding Remarks

This paper provides a theoretical framework for the numerical simulation of dynamic competitive-

market economies in which the welfare theorems may fail to hold because of market frictions or

the existence of an infinite number of generations. This includes various macroeconomic models

with heterogeneous agents, incomplete financial markets, endogenous and exogenous borrowing

constraints, taxes, and money. Equilibrium solutions are not amenable to computation using social

planning problems because of the existence of real and financial frictions. They are not amenable
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to computation by projection methods with continuous equilibrium functions because a continuous

recursive representation of equilibrium may not exist. And they are not amenable to computation

by perturbation methods because the ergodic region may be quite large: Agents accumulate assets

to accommodate idiosyncratic and aggregate risks. All these computational methods may actually

generate large approximation errors.

To overcome these rather limiting technicalities, we propose a reliable recursive equilibrium

algorithm. Our approach is intended to be quite general – available characterizations of equilibria

are usually model-dependent. We consider an abstract framework that covers equilibrium models

with various real and financial frictions, and resource and participation constraints. Convexity

assumptions are not necessary, but certain mild continuity and time-separability conditions must

be satisfied. That is, the model must be recursive: An equilibrium solution must be characterized

by aggregate resource constraints and short-run optimality conditions comprising only variables of

two contiguous time periods, t and t+ 1.

Under mild regularity conditions, we can define a non-empty Markov equilibrium correspon-

dence that generates the set of all sequential competitive equilibria. This correspondence lies in an

expanded state space, and can be obtained as the fixed point of a monotone operator embedding

all aggregate constraints and short-run equilibrium conditions. The iteration process under this

operator is globally convergent for every initial guess containing the Markov equilibrium correspon-

dence.

We provide a discretized version of this operator which is also globally convergent. This dis-

cretized operator iterates over correspondences rather than functions. As we refine the discretization

process the fixed point of the discretized operator converges uniformly to the Markov equilibrium

correspondence on every compact subdomain. In the present general context, uniform convergence

is a very strong approximation result. Actually, for economies where equilibrium is unique the

nature of our approximation scheme makes it possible to derive uniform error bounds.

In the numerical implementation of the algorithm, the choice of auxiliary variables conforming

the state space becomes critical. It is simplest to enlarge the state space with all endogenous and

exogenous variables, but then the algorithm may not be computable. In the above applications,
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the computation of equilibria relied on first-order conditions in which the auxiliary variables were

the shadow values of investment for each asset and for each agent. Under this choice of the state

space the Euler equations were linear – speeding up the computation process. The linearity of the

Euler equations was preserved in models with exogenous borrowing constraints. With endogenous

borrowing constraints, continuation utility values were also added to the state space. The final

objective is to work with a minimal extension of the state space that becomes operative at the

computational stage.

Our quantitative analysis ends with the simulation of a stochastic overlapping generation econ-

omy and a business cycle model of international trading along the lines of Kehoe and Perri (2002).

The overlapping generations economy was instrumental to illustrate some of the pitfalls that may

occur in the computation of equilibrium solutions for non-optimal economies while using algorithms

that search for a continuous equilibrium function over the natural space of state variables. These

traditional algorithms cannot insure convergence of the approximate solution to the given equilib-

rium fixed point. As a matter of fact, the computed solution contained large approximation errors

because of a poor choice of the state space.

In the numerical simulation of the two-country business cycle model, we contemplate various

scenarios for cross-country risk sharing in a full-blown economic setting with capital accumulation,

taxation, and preference shocks. Among all the financial arrangements, endogenous borrowing

constraints improve substantially the predictions of the model relative to the data. This is in line

with the findings of Kehoe and Perri (2002). As these authors point out, models with additional

frictions may be necessary to make the theory fully compatible with the data. Under our recursive

equilibrium algorithm, it was fairly easy to accommodate procyclical preference shocks and taxes.

These extensions improve the cross-country correlation of investment and labor.

All of these results add to a large body of literature in macroeconomics and finance intended to

overcome some severe limitations of the representative-agent paradigm. The quantitative analysis

of nonoptimal dynamic economies is certainly a non-trivial task. Hence, reliable methods for the

numerical approximation of these economies should prove very valuable. Feng (2012) generalizes

our computational approach to quantify the welfare loss of time inconsistency in an economy with
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capital and labor taxation.

Of course, our methods must face some computational challenges, since iteration over corre-

spondences is much more costly than iteration over functions. The expansion of the state space

along with iteration over sets should certainly be manifested into an additional computational

burden. In the characterization of Markov equilibria, it is therefore imperative to select a set of

auxiliary variables with a view towards minimizing the computational cost. The development of

high-performance, parallel computing will certainly make our methods more attractive as the many

computational tasks in our algorithm can be decentralized.

The numerical implementation of our algorithm starts with an initial correspondence of potential

equilibrium values. In most numerical work it is necessary to bound the ergodic region. This task,

however, may become much more delicate for nonoptimal economies since no general theory is

available to bound asset prices and returns. In our applications above we have developed various

procedures to bound equilibrium allocations and prices by ruling asset pricing bubbles and by

defining a value function for each household over future equilibrium paths. This value function

is convenient because it can embed exogenous and endogenous borrowing constraints, as well as

other real and financial frictions. Hence, market imperfections need not be explicitly considered to

bound equilibrium allocations and prices. These techniques should certainly be valuable to establish

feasible bounds in related models with heterogeneous agents and market distortions.
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Appendix

A.1. Proofs

In this Appendix we prove some key results formally stated in Sections 3 and 4. For convenience,

we also offer a proof of existence for the model of Section 6, and establish equilibrium bounds. All

other claims in the paper rely on similar arguments.

Proof of Theorem 3.1:

Let V̂0 ⊃ V ∗, and V̂i = B(V̂i−1) for all i ≥ 1. To insure monotone convergence, let us now

redefine these sets as Vn = ∪∞i=nV̂i, for all n ≥ 0. Then Vn = B(Vn−1) and Vn ⊂ Vn−1 for all n ≥ 1.

It follows that the sequence {Vn} must converge to a set V U . Further, V U = ∩∞n=1Vn. Therefore,

V U = B(V U ). We next prove that V U = V ∗. Indeed, by the monotonicity of operator B we get

that V ∗ ⊂ V U ; also, V U ⊂ V ∗ since every fixed point conforms an equilibrium – given that no

transversality conditions are involved in this setting. To complete the proof of the theorem, just

note that V U ⊂ V ∗ ⊂ Vn for all n ≥ 1. Since we have already established that Vn → V U , we get

that Vn → V ∗. It is clear from these arguments that V ∗ is the largest fixed-point of operator B.

Proof of Theorem 4.1:

(i) Obvious. Operator Bh,Σ is monotone, V0 ⊇ V ∗ and Bh,Σ(V ∗) ⊃ V ∗.

(ii) The proof follows similar arguments as that of Theorem 3.1. Actually, V h,Σn ⊃ V ∗,h,Σ, and

our discretized procedure allows for a finite number of set-values. Hence, pointwise convergence

implies uniform convergence.

(iii) Note that operator Bh,Σ converges to B as h→ 0 and Σ→∞. Since V ∗ ⊂ V ∗,h,Σ, we get

that V ∗,h,Σ → V ∗ as h→ 0 and Σ→∞.

Proof of Theorem 4.2:

The proof goes by contradiction. Since X × Y is a compact set every sequence must have

a convergent subsequence; further, graph(V ∗) is always a subset of graph(V h,Σn ). Hence, if the
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assertion of Theorem 4.2 is not true there is a converging sequence {(xh,Σn , z, vh,Σn )} → (x, z, v) with

(xh,Σn , z, vh,Σn ) ∈ graph(V h,Σn ) and d(graph(V h,Σn ), graph(V ∗)) > ε. As h→ 0, Σ→∞, and n→∞,

we must have (cf. Theorem 3.1) that (x, z, v) ∈ graph(V ∗). However, this is in contradiction with

the previous assertion that d(graph(V h,Σn ), graph(V ∗)) > ε for all Σ, h, n.

Proof of Proposition 6.2:

The existence of a SCE can be established by approximating the infinite-horizon economy by a

sequence of finite economies. This is the strategy followed by Jones and Manuelli (1999), but their

proof does not apply to sequential competitive economies. Of course, the hardest part is to provide

upper bounds for equilibrium quantities over all the finite-horizon economies. These bounds follow

from Proposition 6.3 below.

Hence, following Jones and Manuelli (1999), we consider the following steps for the proof of

a SCE: (i) Existence of an equilibrium for a finite horizon economy. This result is covered by

the general proofs of existence of competitive equilibria for economies with taxes, externalities,

and incomplete markets (Arrow and Hahn 1971, Levine and Zame 1996, Mantel 1975, and Shafer

and Sonneschein 1976). (ii) Uniform bounds for equilibrium allocations and prices of finite-horizon

economies. As already pointed out, these bounds are established in Proposition 6.3 below. (iii) Exis-

tence of SEC as a limit point of finite equilibria. The preceding steps (i) and (ii) guarantee that there

is a collection of vectors
(
{cit(zt), lit(zt), kit+1(zt), bi(zt, ξlt+1(zt)),Ki

t+1(zt), Lit(z
t), rit(z

t), wit(z
t)}i=1,2, q(z

t, ξlt+1(zt))
)
t≥0

that can be obtained as limits of equilibria of finite economies. It is obvious that for such limiting

solution the market clearing conditions must be satisfied at each zt, and that one period-profits are

maximized. Moreover, for each agent i the limiting allocation (cit(z
t), lit(z

t), kit+1(zt), bi(zt, ξlt+1(zt))

must satisfy the sequence of budget constraints (27), as well as the endogenous or exogenous con-

straints. This allocation is optimal since the discounted utility function is continuous in the product

topology over the set of feasible consumption/leisure plans
(
cit (zt) , 1− lit (zt)

)
t≥0

which are pre-

ferred to the endowment allocation
(
eit (zt) , 1

)
t≥0

. This is because feasible consumption plans(
cit (zt)

)
t≥0

are bounded above, and the endowment process
(
eit (zt)

)
t≥0

is bounded below by a

positive quantity and the endowment of leisure is always equal to one.
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Proof of Proposition 6.3:

We first show that there are positive constants Kmax and Kmin such that for every equilibrium

sequence of physical capital vectors
(
kit+1(zt))

)
t≥0

if Kmax ≥
∑2
i=1 k

i
0(z0) ≥ Kmin then Kmax ≥∑2

i=1 k
i
t+1(zt) ≥ Kmin for all zt. The existence of Kmax follows directly from Assumption 6.1, since

the marginal productivity of capital converges to zero as K goes to ∞ for every fixed 0 ≤ L ≤ 1.

Also, it obvious that Kmin ≥ 0.

We now claim that there are constants rmax and wmax such that for every equilibrium sequence

of factor prices
(
rit (zt) , wit (zt)

)
t≥0

we have 0 ≤ rit(z
t) ≤ rmax and 0 ≤ wit(z

t) ≤ wmax for all zt.

The existence of wmax follows from continuity properties of the utility function. The household

is endowed with one unit of labor. Hence, if the wage is arbitrarily high it would be optimal to

consume a large amount of consumption by giving up a small quantity of leisure. If along an equi-

librium path we have that rit is arbitrarily large, then kit must go to zero. From the Euler equation,

consumption cit must also go to zero. But this is not possible under either exogenous or endogenous

constraints, as eit > 0 is bounded below by a positive quantity, and in the debt constrained econ-

omy the household can switch to autarky. Moreover, using a simple arbitrage argument, we have

that qt is also bounded. Hence, the value function J i(ki0, bi0, z0, r0(z0),w0(z0),q(z0),K(z0)) is well

defined. As already pointed out the derivative Dk,bJ
i(·, ·, z0, r0(z0),w0(z0),q(z0),K(z0)) is con-

tinuous in (ki0, b
i
0, z0, r0(z0),w0(z0),q(z0),K(z0)).7 By a simple notational change it follows from

(27) that function J i can be rewritten as J i(ai0, bi0, z0, r0(z0),w0(z0),q(z0),K(z0)) w0(z0),K(z0)),

where ai0 = ei0(z0) + (1− τ) r0k
i
0. Then, we can conclude that

0 ≤ Dk,bJ
i(ki0, b

i
0, z0, r0(z0),w0(z0),K(z0)) ≤ γ̂, since ei0(z0) is bounded below by a positive num-

ber, and all feasible vectors (ki0, b
i
0, z0, r0(z0),w0(z0),K(z0)) lie in a compact set.

7 Note that if bi0 is a large negative number then the value function is well defined, but the agent will switch to

autarky. In the autarky region the derivative of Ji with respect to bi0 is zero. Hence, at the point of switching to

autarky, the derivative of Ji will not be continuous but the differential is a compact correspondence.
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A.2. Numerical Algorithm

The overlapping generations economy of section 2.1

We discretize the state space with Ni equally spaced intervals. We discretize the graph of V with

Ni ×Nj rectangles. We then test all points inside each rectangle to check whether the one-period

temporary equilibrium conditions are satisfied. Our operator generates a new correspondence made

up of those rectangles surviving the test, and we use an index function to keep track of them. It

is straightforward to extend this construction to a multi-dimensional state state X. In such a case,

we will use hype-cubes to implement the discretization. The details are below.

We partition the state space with X = ∪iXi = ∪i
{
x|x ∈

[
x+ (x− x) i−1

Ni−1 , x+ (x− x) i
Ni−1

]}
.

For an initial value correspondence V (0) ⊇ V ∗, the discretization proceeds as follows:

V h,Σ,(0)(x) = ∪i,jV h,Σ,(0)
i,j (x)

= ∪i,j
{
m|x ∈ Xi,m ∈

[
mXi

+ (mXi −mXi

)
j − 1

Nj − 1
,mXi

+ (mXi −mXi

)
j

Nj − 1

]}
,

where i = 1...Ni − 1, j = 1...Nj − 1, x = inf X, x = supX, mXi

= inf V (0)(x|x ∈ Xi), mXi =

supV (0)(x|x ∈ Xi), h = (x−x)
Ni−1 , Σ = maxi

(mXi−mXi
)

Nj−1 . We also define an index function g(0)(i, j) =

1, for all i ∈ {1, ..., Ni − 1}, j ∈ {1, ..., Nj}.

Now, here are the workings of the algorithm. At iteration n, consider any b ∈ Xi and m ∈

V
h,Σ,(n)
i,j (b). If g(n)(i, j) = 1, then we test whether there is any b+ ∈ X and m+ ∈ V h,Σ,(n)(b+)

such that the one-period temporary equilibrium conditions can be satisfied. We let g(n+1)(i, j) = 1

in the affirmative case; for otherwise, we let g(n+1)(i, j) = 0. We let g(n+1)(i, j) = 0 if g(n)(i, j) =

0. After completing the above procedure for all i, j, we update V h,Σ,(n+1)(b) ≡ B
[
V h,Σ,(n)

]
=

∪i,j
{
V
h,Σ,(n)
i,j (b)|g(n+1)(i, j) = 1

}
. We repeat this whole procedure until convergence convergence

is reached; namely, we set V ∗ = V h,Σ,(n+1)(x) if V h,Σ,(n+1)(x) = V h,Σ,(n)(x).
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The overlaping generations economy of section 5.3

We partition the state space with X = ∪iXi = ∪i
{
x|x ∈

[
x+ (x− x) i−1

Ni−1 , x+ (x− x) i
Ni−1

]}
.

For an initial value correspondence V (0) ⊇ V ∗, the discretization works as follows:

V h,Σ,(0)(x) = ∪i,j1,j2V
h,Σ,(0)
i,j1,j2

(x)

= ∪i,j1,j2
{(
m1,m2

)
|x ∈ Xi,

(
m1,m2

)
∈
[
m1,Xi

j1−1,m
1,Xi

j1

]
×
[
m2,Xi

j2−1,m
2,Xi

j2

]}
,

where i = 1...Ni − 1, j1, j2 = 1...Nj − 1, x = inf X, x = supX, m1,Xi

j1
= m1,Xi

+ (m1,Xi −

m1,Xi

) j1
Nj−1 , m

2,Xi

j2
= m2,Xi

+ (m2,Xi − m2,Xi

) j2
Nj−1 , m

1,Xi

= inf V (0)(x,m2|x ∈ Xi), m1,Xi =

supV (0)(x,m2|x ∈ Xi), m2,Xi

= inf V (0)(x,m1|x ∈ Xi), m2,Xi = supV (0)(x,m1|x ∈ Xi), h =

(x−x)
Ni−1 , Σ = max

{
maxi

(m1,Xi−m1,Xi
)

Nj1
−1 ,maxi

(m2,Xi−m2,Xi
)

Nj2
−1

}
. We also define an index function

g(0)(i, j1, j2) = 1, for all i ∈ {1, ..., Ni − 1}, j1, j2 ∈ {1, ..., Nj}. As you can read from the defi-

nition of V h,Σ,(0)
i,j1,j2

(x), we now approximate the graph of V using Ni ×Nj ×Nj cubes.

Now, here are the workings of the algorithm. At iteration n, consider any θ ∈ Xi and

m ∈ V
h,Σ,(n)
i,j1,j2

(θ). If g(n)(i, j1, j2) = 1, then we test whether there is any θ+ ∈ X and m+ ∈

V h,Σ,(n)(θ+) such that the one-period temporary equilibrium conditions can be satisfied. We let

g(n+1)(i, j1, j2) = 1 in the affirmative case; for otherwise, we let g(n+1)(i, j1, j2) = 0. We let

g(n+1)(i, j1, j2) = 0 if g(n)(i, j1, j2) = 0. After going through all i, j1, j2, we update V h,Σ,(n+1)(b) ≡

B
[
V h,Σ,(n)

]
= ∪i,j1,j2

{
V
h,Σ,(n)
i,j1,j2

(b)|g(n+1)(i, j1, j2) = 1
}
. We repeat this whole procedure until con-

vergence is reached; namely, we set V ∗ = V h,Σ,(n+1)(x) if V h,Σ,(n+1)(x) = V h,Σ,(n)(x). Here is some

supplementary information regarding the iteration process:
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1. For each Xi, and (m1,m2) ∈ V h,Σ,(n)
i,j1,j2

, if g(n)(i, j) = 1, we check the following conditions:

12 + p+ θ

4p1/5 + p
+

4 + 48p− 4θ

p1/5 + 4p
= 13(42)

q

(e1
1(z)− qθ)5 = Em1

+(43)

q

(e2
1(z) + qθ)

5 = Em2
+.(44)

If (42 - 44 ) are satisfied, we set g(n+1)(i, j1, j2) = 1. Otherwise we setg(n+1)(i, j1, j2) = 0.

If g(n)(i, j1, j2) = 0, we set g(n+1)(i, j1, j2) = 0 without checking the above conditions.

2. We go through all i = 1, ..., Ni − 1, j1, j2 = 1, ..., Nj − 1. We then update V h,Σ,(n) as follows.

V h,Σ,(n+1)(x) ≡ B
[
V h,Σ,(n)(x)

]
= ∪i,j1,j2

{
V
h,Σ,(n)
i,j1,j2

(x)|g(n+1)(i, j1, j2) = 1
}
.

3. Stop if V h,Σ,(n) = V h,Σ,(n+1) and set V ∗ = V h,Σ,(n+1). Otherwise, we restart from step 1

until convergence is reached.

The international risk sharing model of section 6.5

We approximate both the state space X and the graph of V with hype-cubes:

X = ∪iXi = ∪i
{
x|x ∈ [bi1−1, bi1 ]×

[
k1
i2−1, k

1
i2

]
×
[
k2
i2−1, k

2
i2

]
× Z × Z

}
,

where x =
(
b, k1, k2, z1, z2

)
, i = (i1, i2, i3), i1, i2, i3 = 1...Ni − 1, bi1 = b + (b − b) i1

Ni−1 , k
1
i2

=

k + (k − k) i2
Ni−1 , k

2
i3

= k + (k − k) i3
Ni−1 , Z = {z1, .., zN}. For an initial value correspondence
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V (0) ⊇ V ∗, the discretization works as follows

V h,Σ,(0)(x) = ∪i,jV h,Σ,(0)
i,j (x)

= ∪i,j

{
y|x ∈ Xi, y ∈

∏
%

[
m%,Xi

j%,m−1,m
%,Xi

j%,m

]
×
[
p%,X

i

j%,p−1, p
%,Xi

j%,p

]}
,

where y =
(
m1,m2, p1, p2

)
, % = 1, 2 is the index for country, j%,m, j%,p = 1...Nj−1, j = (j1,m, j2,m, j1,p, j2,p),

m%,Xi

j%,m
= m%,Xi

+ (m%,Xi −m%,Xi

)
j%,m
Nj−1 , p

%,Xi

j%,p
= p%,X

i

+ (p%,Xi − p%,Xi

)
j%,p
Nj−1 , m

%,Xi

and p%,X
i

are

the inf of m%, p% for given (m−%, p−%) at Xi, and m%,Xi and p%,Xi are the sup of m%, p%. Finally,

Σ = max

{
max%

(m%,Xi−m%,Xi
)

Nj−1 ,max%
(p%,Xi−p%,X

i
)

Nj−1

}
.

We also define an index function g(0)(i, z1, z2, j) = 1. Now, here are the workings of the

algorithm:

1. At iteration n, consider any x =
(
b, k1, k2, z1, z2

)
∈ Xi and

(
m1,m2, p1, p2

)
∈ V h,Σ,(n)

i,j (x). If

g(n)(i, z1, z2, j) = 1, Then we test whether there is any x+ ∈ X and y =
(
m1

+,m
2
+, p

1
+, p

2
+

)
∈

V h,Σ,(n)(x+) such that the one-period temporary equilibrium conditions can be satisfied.

More specifically, we test whether any of the cases (1-3) described below are met. We let

g(n+1)(i, z1, z2, j) = 1 in the affirmative case; for otherwise, we let g(n+1)(i, z1, z2, j) = 0. If

g(n)(i, z1, z2, j) = 0, we set g(n+1)(i, z1, z2, j) = 0 without checking the above conditions.

2. We go through all i, z1, z2, j. We then update V h,Σ,(n):

(45) V h,Σ,(n+1)(x) ≡ B
[
V h,Σ,(n)(x)

]
= ∪i,j

{
V
h,Σ,(n)
i,j (x)|g(n+1)(i, z1, z2, j) = 1

}
.

3. Stop if V h,Σ,(n) = V h,Σ,(n+1) and set V ∗ = V h,Σ,(n). Otherwise, we restart from step 1 until

convergence is reached.

Here is some supplementary information regarding the iteration process:

Case 1,
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(46) uc(c
%, l%)− β

∑
z+

π(z+|z)m%
z+ = 0

(47) p% = u(c%, l%) + β
∑
z+

π(z+|z)p%z+ > V iaut(b, k
1, k2, z1, z2)

(48) p%z+ ∈ [p%min(b+, k
1
+, k

2
+, z

1
+, z

2
+), pimax(b+, k

1
+, k

2
+, z

1
+, z

2
+)]

(49) p% ∈ [p%min(b, k1, k2, z1, z2), pimax(b, k1, k2, z1, z2)]

Case 2,

• country 1:

(50) uc(c
1, l1)− β

∑
z+

π(z+|z)m1
z+ > 0

(51) u(c1, l1) + β
∑
z+

π(z+|z)p1
min(b+, k

1
+, k

2
+, z

1
+, z

2
+) ≤ V 1

aut(b, k
1, k2, z1, z2)

(52) V 1
aut(b, k

1, k2, z1, z2) ≤ u(c1, l1) + β
∑
z+

π(z+|z)p1
max(b+, k

1
+, k

2
+, z

1
+, z

2
+)

(53) V 1
aut(b, k

1, k2, z1, z2) ∈ [p1
min(b, k1, k2, z1, z2), p1

max(b, k1, k2, z1, z2)]
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• country 2:

(54) uc(c
2, l2)− β

∑
z+

π(z+|z)m2
z+ = 0

(55) p2 = u(c2, l2) + β
∑
z+

π(z+|z)p2
z+ > V 2

aut(b, k
1, k2, z1, z2)

(56) p2
z+ ∈ [p2

min(b+, k
1
+, k

2
+, z

1
+, z

2
+), p2

max(b+, k
1
+, k

2
+, z

1
+, z

2
+)]

(57) p2 ∈ [p2
min(b, k1, k2, z1, z2), p2

max(b, k1, k2, z1, z2)]

Case 3,

• country 1:

(58) uc(c
1, l1)− β

∑
z+

π(z+|z)m1
z+ = 0

(59) p1 = u(c1, l1) + β
∑
z+

π(z+|z)p1
z+ > V 1

aut(b, k
1, k2, z1, z2)

(60) p1
z+ ∈ [p1

min(b+, k
1
+, k

2
+, z

1
+, z

2
+), p1

max(b+, k
1
+, k

2
+, z

1
+, z

2
+)]

(61) p1 ∈ [p1
min(b, k1, k2, z1, z2), p1

max(b, k1, k2, z1, z2)]
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• country 2:

(62) uc(c
2, l2)− β

∑
z+

π(z+|z)m2
z+ > 0

(63) V 2
aut(b, k

1, k2, z1, z2) ≤ u(c2, l2) + β
∑
z+

π(z+|z)p2
max(b+, k

1
+, k

2
+, z

1
+, z

2
+)

(64) V 2
aut(b, k

1, k2, z1, z2) ∈ [p2
min(b, k1, k2, z1, z2), p2

max(b, k1, k2, z1, z2)]
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