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What is answer set programming to propositional
satisfiability

Yuliya Lierler1

Published online: 16 December 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract Propositional satisfiability (or satisfiability) and answer set programming are two
closely related subareas of Artificial Intelligence that are used to model and solve difficult
combinatorial search problems. Satisfiability solvers and answer set solvers are the software
systems that find satisfying interpretations and answer sets for given propositional formulas
and logic programs, respectively. These systems are closely related in their common design
patterns. In satisfiability, a propositional formula is used to encode problem specifications
in a way that its satisfying interpretations correspond to the solutions of the problem. To
find solutions to a problem it is then sufficient to use a satisfiability solver on a correspond-
ing formula. Niemelä, Marek, and Truszczyński coined answer set programming paradigm
in 1999: in this paradigm a logic program encodes problem specifications in a way that the
answer sets of a logic program represent the solutions of the problem. As a result, to find
solutions to a problem it is sufficient to use an answer set solver on a corresponding pro-
gram. These parallels that we just draw between paradigms naturally bring up a question:
what is a fundamental difference between the two? This paper takes a close look at this
question.

Keywords Propositional satisfiability · Answer set programming · Computational logic

1 Introduction

Propositional satisfiability (or satisfiability) [6] and answer set programming [7] are two
closely related subareas of Artificial Intelligence that are used to model and solve diffi-
cult combinatorial search problems. Satisfiability and answer set programming in the past
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decade have seen ever faster computational tools, and a growing list of successful appli-
cations. Satisfiability solvers are used as general purpose tools in areas such as hardware
and software verification [5, 64]; planning [36, 66]; and scheduling [33]. Answer set pro-
gramming [49, 59] is increasingly leaving its mark in tackling applications in science,
humanities, and industry [7]. A space shuttle control system by Nogueira et al. [62] can
be regarded as an early success story of this programming paradigm. Recent examples of
answer set programming applications include a Linux package configuration tool [25] (that
improves the experience of thousands Debian GNU/Linux users working with the operating
system); large-scale biological networks repairs [19, 28]; and team building and schedul-
ing [65]. Furthermore, the advances in algorithmic techniques developed in satisfiability are
often borrowed and relied upon in other areas of automated reasoning including answer set
programming, satisfiability modulo theory, first order model building, and constraint pro-
gramming. At the same time, answer set programming tools offer remarkably sophisticated
techniques for so-called model enumeration problem.

Propositional satisfiability (SAT) is the problem of determining whether a given propo-
sitional classical logic formula in conjunctive normal form (CNF formula) has a satisfying
interpretation. These satisfying interpretations are called models of a formula. The problem
of determining whether there exists a model for a propositional formula is NP-complete.
Another relevant task to determining whether a formula is satisfiable is the task of enumer-
ating/generating its models. Here we use the term SAT problem to denote both decision and
enumeration problems. To summarize, propositional CNF formulas form the language of
SAT, in other words, they form its key syntactic object. Satisfying interpretations of these
formulas form the semantic objects of this paradigm. SAT solvers are the software systems
that find satisfying interpretations for propositional formulas. To model a problem using
SAT, propositional CNF formulas are used to encode problems specifications in a way that
its satisfying interpretations correspond to the solutions of the problem. Then, to find solu-
tions to a problem it is sufficient to use a SAT solver on a corresponding formula. Thus,
SAT can be seen as a constraint programming paradigm [67].

Answer set programming (ASP) is a programming paradigm, whose key syntactic object
is a logic program. A logic program is a collection of rules that in their form are reminiscent
of implications in classical logic. Answer sets (stable models) [30] of a logic program form
the semantic objects of ASP. These answer sets are reminiscent of satisfying interpretations
of formulas in classical logic. The problem of determining whether there exists an answer
set for a logic program is NP-complete. Answer set solvers are the software systems that
enumerate answer sets for logic programs. Niemelä [59] and Marek and Truszczyński [49]
proposed answer set programming as a declarative programming paradigm for solving diffi-
cult search problems. In this paradigm a logic program encodes problem specifications in a
way that the answer sets of this program represent the solutions of the problem. As a result,
to find solutions to a problem it is sufficient to use an answer set solver on a correspond-
ing program. Thus, similarly to SAT, answer set programming can be seen as a constraint
programming paradigm.

As mentioned earlier, the problems of determining whether there exists a model for
a propositional formula or an answer set of a logic program is NP-complete. Therefore,
SAT solvers and answer set solvers are nontrivial software systems tackling computation-
ally difficult tasks. The Davis-Putnam-Logemann-Loveland (DPLL) procedure [11] is a
well-known backtrack-search method that explores interpretations to generate models of a
propositional formula. The CDCL [50, 51, 81] algorithm is at the heart of most modern SAT
solvers. On the one hand, the CDCL algorithm can be seen as an enhancement of DPLL [61].
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On the other hand, it has been shown that there are problems for which CDCL provides expo-
nential speed up [4, 63]. Extensions of CDCL also form the basis of state-of-the art answer
set solvers [2, 27, 31, 42]. Thus, the solving technology underlying the search for solutions
is closely related in SAT and ASP.

Observed parallels between answer set programming and satisfiability naturally bring
up a question: what is a fundamental difference between the two paradigms? This is the
question that we address in this paper. A short answer that summarizes our discussion
follows

Answer set programming provides a declarative constraint programming language,
while SAT does not.

Typically, to use a SAT solver to compute solutions of a search program, a specialized
program implemented in an imperative programming language is designed to generate spe-
cific propositional formulas that encode an instance of a problem. Propositional formula is
an artifact in spirit of declarative programming: it provides specifications or, in other words,
constraints of a problem. In contrast to imperative programming, where we provide instruc-
tions on steps to be executed in order to achieve a solution. Yet, propositional language of
SAT solvers itself is incapable to serve the role of a declarative programming language.
Encoding practical problems often requires thousands to millions of propositional clauses.1

Indeed, propositional clauses are constructed by means of propositional (Boolean) atoms so
that knowledge must be encoded in these basic binary terms. As a result, one not only has
to design a SAT encoding of a problem, but also find means to generate this encoding.

Answer set programming relies on dialects of a logic programming language in spirit of
Prolog. Thus, its language allows first-order atoms with variables. Simple ASP programs
look like Prolog programs, while more complex programs may contain specialized expres-
sions that are convenient for modeling different kinds of constraints including aggregates.
To use an answer set solver to compute solutions of a search program, a logic program
that captures specifications of a problem is designed. This way no imperative program-
ming is required as a step in utilizing answer set programming technology. To draw a
parallel to terminology used in programming languages, propositional CNF formulas of
SAT can be viewed as a low-level programming language, whereas logic programs of ASP
form a high-level programming language. The concept of elaboration tolerance was first
mentioned in [52] as the ability of a computer program’s representation of a problem to
accept changes in problem specifications without need to rewrite an entire program. Answer
set programming provides a general purpose modeling language that supports elaboration
tolerant solutions for search problems. In contrast, SAT lacks this property.

Answer set programming can be seen as a convenient declarative programming front-
end for SAT-like technology. It is used to declaratively model problems’ specifications. An
answer set solver is only one of the two main building blocks of a typical ASP system. A
grounder is another block. A grounder is a software system that takes logic programs with
variables as its input and produces propositional programs (programs whose logic rules may
only contain propositional atoms) as its output. Propositional programs are crucial in devis-
ing efficient solving procedures, yet it is the logic programming language with variables

1A clause is the main building block of a CNF formula. A clause is a disjunction of atoms or their negations,
whereas a CNF formula is a conjunction of clauses.
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that facilitates modeling and effective problem solving by means of answer set program-
ming. Modern languages supported by ASP technology also support additional constructs,
e.g., aggregates [20, 22], to facilitate concise modeling of problems. First-order logic is
a counterpart of propositional logic that allows modeling with variables. In this paper we
illustrate how a built-in closed world assumption (presumption that what is not currently
known to be true is false) as well as an ability to express transitive closure makes logic pro-
grams a convenient modeling language for describing search problems that SAT and ASP
commonly deal with. Classical first order formulas lack the closed world assumption and,
more generally, are monotonic. Possibly this explains the fact that it is logic programs under
answer set semantics – a nonmonotonic formalism – which built the basis for the declarative
programming language utilizing SAT-like technology.

Before proceeding to the technical content of the paper we illustrate the effect of the
built-in closed world assumption and the benefits of ASP as a nonmonotonic formalism on
a toy bird-penguin domain. Consider the following knowledge:

birds normally fly
penguins do not fly

The first statement is an example of default—a statement that includes a word such as
normally or usually. We can use this default to draw conclusions as long as they do not
contradict our knowledge. The second statement presents an exception to the default birds
normally fly: although penguins are birds they do not fly. ASP provides means to encode
defaults and exceptions. For example, the following logic programming rules capture the
two statements above:

fly(X) ← bird(X), not abnormal fly(X).

abnormal fly(X) ← penguin(X).
(1)

The former rule states the default birds normally fly by saying that if an entity is a bird and
not known to be abnormal with respect to the flying property, then this entity flies. The later
rule states that if an entity is a penguin, then it is abnormal with respect to flying property.
Adding

bird(tweety). (2)

as a fact to program (1) allows us to conclude that a bird named tweety flies, because the
resulting program has a unique answer set consisting of atoms

{bird(tweety), fly(tweety)}.
Indeed, there is no evidence for bird tweety to be abnormal with respect to the flying
property. This illustrates the built-in closed world assumption in ASP.

On the other hand, consider treating these rules in (1) and (2) as classical logic formulas
that seemingly encode the same knowledge:

bird(X) ∧ ¬abnormal fly(X) → fly(X)

penguin(X) → abnormal fly(X)

bird(tweety)

This set of formulas has several models: one suggesting that the bird named tweety flies;
and another one suggesting that the bird tweety does not fly as it is abnormal with respect
to the flying property.

Now let us add the fact penguin(tweety) to the program constructed from the rules in (1)
and (2). The new program will correctly identify tweety as abnormal with respect to the
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flying property and withdraw the earlier conclusion that tweety flies. Indeed, the only answer
set of the resulting program is

{penguin(tweety), bird(tweety), abnormal f ly(tweety)}.
This illustrates the benefits of ASP as a nonmonotonic formalism.

To demonstrate the elaboration tolerance of ASP, consider the case of learning more
information about specific species of birds in bird-penguin domain. For example, in addi-
tion to the fact that penguins do not fly we learn that ostriches do not fly. We can extend
program (1) with a new exception by adding the rule

abnormal fly(X) ← ostrich(X).

to capture new knowledge.
To compare and contrast the SAT and ASP paradigms, we start the paper by introduc-

ing propositional satisfiability (Section 2) and propositional logic programs (Section 3).
Section 4 introduces notion of completion. In Section 5, logic programs with variables are
presented. We also discuss common modeling patterns used in SAT and answer set pro-
gramming in Sections 2, 3, 6, and 7. We use graph coloring and Hamiltonian cycle search
problems as runnings examples in this paper. Section 8 presents details on SAT and answer
set solvers in the form that makes it easy to draw parallels between these systems. So-called
effectively propositional logic is discussed in Section 9 as a counterpart to programs with
variables of ASP for SAT formalism. Section 10 elaborates on related work and provides
more links to literature.

2 Satisfiability and test modeling methodology

We consider atoms as customary in predicate logic. A literal is an atom or a negated atom.
Ground literals and atoms are literals and, respectively, atoms that contain no variables. A
clause is a non-empty disjunction of literals. We sometimes identify a clause with the set of
its literals. We say that a clause is ground if it consists of ground literals. A formula is said
to be in conjunctive normal form (CNF) if it is a conjunction of ground clauses (possibly
the empty conjunction �). A set M of literals is called consistent if there is no atom a such
that M contains a and its complement ¬a. A signature is a set of ground atoms. A set M of
literals over signature σ is complete if for every atom a in σ either a or ¬a (possibly both)
occurs in M . An interpretation over signature σ is a complete and consistent set of literals
over σ . For a formula F , by σF we denote the signature composed of atoms that occur in F .
We also call σF the signature of F . We say that a clause C is satisfied by a consistent set M
of literals (over σ ), written M |= C, when M ∩C �= ∅. Let F be a CNF formula. Formula F

is satisfied by an interpretation M over σF , written M |= F , if M satisfies each conjunct (a
clause) in F . We call such interpretations models. Formula F is satisfiable if it has models.

Consider a graph coloring problem GC :

A 3-coloring of a directed graph is a labeling of its vertexes with at most 3 colors
such that no two vertexes sharing an edge have the same color.

For instance, see two specific graphs G1 and G2 in Fig. 1. It is easy to see that there are six
distinct 3-colorings for graph G1 including the following:

assigning color 1 to vertexes a and c, color 2 to vertex b, and color 3 to vertex d forms
a 3-coloring of G1.
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Fig. 1 Sample graphs G1 and G2

We denote this 3-coloring of graph G1 by SG1 . Graph G2 has no 3-colorings.
We now illustrate how the problem of finding a 3-coloring of a graph (V ,E) can be

encoded as a SAT problem. For every vertex v ∈ V and every color i ∈ {1, 2, 3}, we
introduce an atom cvi that intuitively says that vertex v is assigned color i. The models of
the formula ∨

1≤i≤3 cvi (v ∈ V ),

¬cvi ∨ ¬cvj (v ∈ V, 1 ≤ i < j ≤ 3),

¬cvi ∨ ¬cwi ({v,w} ∈ E, 1 ≤ i ≤ 3).

(3)

are in one to one correspondence with the 3-colorings of the graph (V ,E). The first line
in (3) intuitively says that each vertex is assigned some colors. The second line says that it
is impossible that a vertex is assigned two colors. The third line says that it is impossible
that any two adjacent vertexes are assigned the same color.

The formula in spirit of (3) for graph G1 consists of clauses given in Fig. 2. Horizontal
lines separate the clauses that come from distinct ”schematic formulas” in (3). This formula
has six satisfying interpretations including

{ca1, cb2, cc1, cd3, ¬ca2, ¬ca3, ¬cb1, ¬cb3, ¬cc2, ¬cc3, ¬cd1, ¬cd2}.
This model captures solution SG1 . To encode the 3-coloring problem for graph G2 one has
to extend the set of formulas in Fig. 2 by the following clauses

¬ca1 ∨ ¬cc1 ¬ca2 ∨ ¬cc2 ¬ca3 ∨ ¬cc3

to account for a new edge. This formula is unsatisfiable, which says that it is impossible to
color this graph in accordance with the constraints posed by 3-coloring problem.

A word TEST captures a common methodology to model a search problem using SAT.
Interpretations over a signature of a CNF formula define space of possible solutions. Each
clause of a CNF formula forms a constraint or, in other words, is part of a TEST that each
solution to a problem has to satisfy. The specification (3) of the graph coloring problem

Fig. 2 SAT GC problem encoding for graph G1
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is a fine example of this methodology. Indeed, each line in (3) corresponds to a group of
constraints that an interpretation must satisfy in order to be a solution to the graph coloring
problem.

3 Propositional logic programs and generate-and-test methodology

Answer set programming practitioners develop applications that rely on ASP languages,
which go beyond propositional/ground atoms. Yet, common ASP solvers, SMODELS2 [60,
71], CLASP3 [26, 27], WASP4 [1, 2] to name a few, process propositional logic programs
only. In this section we introduce such programs. Semantics of CNF formulas in earlier
section is given by means of interpretations – sets of literals. Semantics of logic programs
relies on the notion of answer sets, which are sets of atoms. A set X of atoms over some
signature σ can be identified with an interpretation over σ :

{a | a ∈ X} ∪ {¬a | a ∈ σ \ X}.
A (propositional) logic program is a finite set of rules of the form

a0 ← a1, . . . , ak, not ak+1, . . . , not am, not not am+1, . . . , not not an, (4)

where a0 is a ground atom or symbol ⊥; a1, . . . , an are ground atoms. We call rule (4)
normal when m = n. A program is normal when it is composed of normal rules. The left
hand side expression of rule (4) is called the head. The right hand side is called the body.
Expressions

a1, . . . , ak

and
not ak+1, . . . , not am, not not am+1, . . . , not not an

constitute positive part and negative part of the body, respectively. We call rule (4)

• a fact when its body is empty (we then drop ← from a rule);
• a denial when its head is symbol ⊥ (we then drop ⊥ from a rule).

We call a program definite when it is composed of rules of the form

a0 ← a1, . . . , ak. (5)

For instance,
p

r ← p, q
(6)

and
p ← not q

q ← not r
(7)

are both normal programs, where program (6) is also definite.
We say that a set X of atoms is closed under a definite program � if for all rules (5)

in �, a0 ∈ X whenever a1, . . . , ak ∈ X. For example, sets {p}, {p, r}, and {p, q, r} are
closed under definite program (6).

2http://www.tcs.hut.fi/Software/smodels/.
3http://www.cs.uni-potsdam.de/clasp/.
4http://alviano.github.io/wasp/.

http://www.tcs.hut.fi/Software/smodels/
http://www.cs.uni-potsdam.de/clasp/
http://alviano.github.io/wasp/
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We say that a set X of atoms reduces rule (4), when X ∩ {ak+1, . . . , am} = ∅
and {am+1, . . . , an} ⊆ X. For instance, sets {p} and {p, r} reduce the first rule

p ← not q

of program (7), while set {p, q, r} does not. Let � be a program. The reduct �X of � with
respect to a set X of atoms is the set of rules (5) for all rules (4) in � such that X reduces (4).
Note that �X is a definite program. A set X of atoms is an answer set of the program � if X

is minimal among the sets of atoms that are closed under �X . For instance, let �1 denote
program (7) and X1 denote set {q}. The reduct �

X1
1 consists of a single fact q. Set {q} is

the minimal set closed under �
X1
1 . Consequently, X1 is an answer set of �1. Let X2 denote

set {p}. The reduct �
X2
1 consists of two facts p and q. Set {p, q} is the minimal set closed

under �
X2
1 . Thus, {p} is not an answer set of �1.

To the set of atoms that occur in a program �, we refer as the signature of �. When
convenient, we identify answer sets of � with interpretations over the signature of �. In
these cases we refer to answer sets as stable models of �.

We now consider several special case programs in order to illustrate some interesting
properties of answer sets. Let a program consist of facts only. The set of these facts form the
only answer set of such a program. Intuitively, each fact states what is known and an answer
set reflects this information by asserting that each atom mentioned as a fact is true, whereas
anything else is false. Thus answer sets semantics follows closed world assumption (CWA) –
presumption that what is not currently known to be true is false.

Consider a definite program. It is obvious that the reduct of a definite program � with
respect to any set of atoms coincides with �. We can trivially simplify the definition of an
answer set for a definite program �: A set X of atoms is an answer set of � if X is minimal
among the sets of atoms that are closed under �. Consequently, definite programs without
denials have a unique answer set. For instance, set {p} is the only answer set of definite
program (6).

It is intuitive to argue that answer set semantics for logic programs generalizes CWA.
This is a good place to note that an atom, which does not occur in the head of some rule in
a program, will not be a part of any answer set of this program.

Closed world assumption has been recognized important in design of knowledge repre-
sentation languages, thus it is not surprising that logic programs under answer set semantics
“found their home” in knowledge representation and reasoning community and answer set
programming is often positioned as a prominent knowledge representation and reasoning
formalism.

Let a program consist of the rule

p ← not not p. (8)

This program has two answer sets ∅ and {p}. This rule can be used to “eliminate” CWA for
an atom p. Intuitively, it states that an atom p may be a part of an answer set. Denecker et
al. [13] elaborate on this observation.

The version of the language of logic programs that allows doubly negated atoms is a
special case of programs with nested expressions introduced by Lifschitz et al. [46]. This
extension of logic programs is essential. Choice rules [60] of the form

{a0} ← a1, . . . , ak, not ak+1, . . . , not am, (9)
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are important constructs of common ASP dialects. Ferraris and Lifschitz [18] show that a
choice rule (9) can be seen as an abbreviation for a rule with doubly negated atoms of the
form

a0 ← a1, . . . , ak, not ak+1, . . . , not am, not not a0.

In this work we adapt this abbreviation. The simplest choice rule

{p}
corresponds to rule (8).

Consider a denial ← p. Extending program (6) by this rule will result in a program that
has no answer sets. In other words, denial ← p eliminates the only answer of (6). It is
convenient to view any denial

← a1, . . . , ak, not ak+1, . . . , not am, not not am+1, . . . , not not an, (10)

as a clause
¬a1 ∨ · · · ∨ ¬ak ∨ ak+1 ∨ · · · ∨ am ∨ ¬am+1 ∨ · · · ∨ ¬an. (11)

Then, we can state the general property about denials: stable models of a program satisfy
the CNF formula composed of its denials. Furthermore, for a program � and a set � of
denials the stable models of � ∪ � coincide with the stable models of � that satisfy � [43].
Consequently, denials can be seen as elements of classical logic in logic programs.

We now present how a propositional logic program under answer set semantics encodes
the graph coloring problem GC so that answer sets of this program are in one to one corre-
spondence with the 3-colorings of a given graph (V ,E). As in case of SAT encoding (3),
we take atoms of the form cvi to stand for an assertion that vertex v is assigned color i.
Consider a following program

{cvi} (v ∈ V, 1 ≤ i ≤ 3)

← cvi, cvj (v ∈ V, 1 ≤ i < j ≤ 3),

← cvi, cwi ({v, w} ∈ E, 1 ≤ i ≤ 3),

← not cv1, not cv2, not cv3. (v ∈ V ).

(12)

A collection of choice rules for each vertex v captured by the first line in (12) intuitively
says that vertex v may be assigned some colors. The second line says that it is impossible
that a vertex is assigned two colors. The third line states that it is impossible that any two
adjacent vertexes are assigned the same color. The last line states that it is impossible that a
vertex is not assigned a color.

Recall graph G1 in Fig. 1. In Fig. 2 we illustrated SAT encoding stated in (3) for this
graph. Figure 3 presents a logic program in spirit of (12) for G1. Horizontal lines separate
the clauses that come from distinct ”schematic rules” in (12). This program has six answer
sets including

{ca1, cb2, cc1, cd3},
which captures solution SG1 . To encode the 3-coloring problem for graph G2 one has to
extend the set of rules in Fig. 3 with rules

← ca1, cc1 ← ca2, cc2 ← ca3, cc3.

This program has no answer sets, which captures the fact that this graph has no 3-colorings.
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Fig. 3 Logic program for 3-coloring for graph G1

Just as the SAT specification (3) of the graph coloring problem GC is a fine example of
the TEST methodology by means of SAT, the ASP specification (12) illustrates the use of the
so-called GENERATE and TEST methodology within answer set programming paradigm. The
GENERATE part of the specification “defines” a collection of answer sets (interpretations)
that can be seen as potential solutions. The TEST part consists of conditions that eliminate
the answer sets of the GENERATE part that do not correspond to solutions. The first line
in (3) corresponds to GENERATE, whereas the remaining lines correspond to TEST. Observe,
how denials are used to formulate TEST.

It is interesting to note how the GENERATE part is non-existent in SAT specifications.
Any interpretation of the signature of a problem forms a potential solution in SAT: so in
a sense the GENERATE part is implicit. CWA present in answer set programming poses a
need for the explicit GENERATE part. Choice rules provide a convenient tool in ASP for
formulating GENERATE.

4 Completion

The SAT and ASP formulations (3) and (12) look closely related. This is not by chance.
Fages [17] showed that for a large syntactic class of “tight” programs, their stable models
coincide with the models of programs’ “completion“ – a propositional formula defined by
Clark [10]. It turns out that

i. the completion of program (12) is equivalent to formula (3) (in fact, a simple equivalent
transformation on the completion of program (12) will result in formula (3)), and

ii. program (12) is tight.

We now recall the definitions of tightness and Clark’s completion.
For any propositional program �, the dependency graph of � is the directed graph that

• has all atoms occurring in � as its vertexes, and
• for each rule (4) in � has an edge from a0 to ai , where 1 ≤ i ≤ k.

We say that a program is tight if its dependency graph is acyclic.
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Fig. 4 Sample dependency graphs for programs (6) and (7)

Sample programs (6) and (7) are tight. Figure 4 presents the dependency graph for these
programs. The encoding (12) of the graph coloring GC problem is also a tight program as
its dependency graph has no edges. Many practical logic programs are tight.

The simple non-tight program follows

p ← p. (13)

Indeed, its dependency graph consists of a single vertex p that has an edge from this vertex
to itself.

Let us identify the rule (4) with the clause

a0 ∨ ¬a1 ∨ · · · ∨ ¬ak ∨ ak+1 ∨ · · · ∨ am ∨ ¬am+1 ∨ · · · ∨ ¬an.

As before, in case if the rule is denial (10), then we identify this rule with the clause (11).
This allows us to view a program � as a CNF formula. It is also convenient to identify the
body

a1, . . . , ak, not ak+1, . . . , not am, not not am+1, . . . , not not an, (14)

of a rule (4) with the conjunction

a1 ∧ · · · ∧ ak ∧ ¬ak+1 ∧ · · · ∧ ¬am ∧ am+1 ∧ · · · ∧ an.

If a body is empty (for a rule that is a fact), we identify it with the empty conjunction �.
The completion of a program �, comp(�), is a conjunction of

(i) equivalences of the form

a ↔
∨

a←B∈�

B (15)

for each atom a that occurs in � and
(ii) the clauses that correspond to denials of �.

If there is an atom a in a program � that never occurs in the head of any rule then we
view (15) as the clause ¬a. Process of completion captures the intuition that the collection
of rules in a program that share the same atom in their head defines this atom or, in other
words, provides complete list of specifications under which this atom holds. Thus, the fact
that a clause ¬a is added for any atom a that does not occur in any head of a program
captures CWA explicitly: if there is no reason to deduce an atom a, it is then false.

Recall sample programs (6) and (7). The completion of the former program is

p ↔ �
r ↔ p ∧ q

¬q,

(16)

while the completion of the latter is
p ↔ ¬q

q ↔ ¬r

¬r.

(17)
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Consider another sample program

{p}
{s}
q ← not r

q ← r, s

← q, not p.

(18)

Its completion follows
p ↔ p

s ↔ s

q ↔ ¬r ∨ (r ∧ s)

¬r

¬q ∨ p.

(19)

The only model of (16) is set {p,¬q, ¬r}. The only model of (17) is set {¬p, q, ¬r}. There
are two models of (19): sets {p, q, ¬r, ¬s} and {p, q, ¬r, s}. These models are also stable
models of respective programs. This is not by chance. Programs (6), (7), and (18) are tight
and hence their models of completion and stable models coincide.

The completion of program (13) consists of a single equivalence

p ↔ p.

This formula has two models {p} and {¬p}, while program (13) has only one stable model
{¬p}. It is a general fact that any stable model of a program � is a model of comp(�). The
converse does not hold generally (but in case of tight programs the converse also holds).

Recall program (12). Its completion is composed of (3) and equivalence

cvi ↔ cvi (v ∈ V, 1 ≤ i ≤ 3).

This formula is a tautology in propositional logic and can be safely dropped form the
completion.

5 Programs with variables

As mentioned earlier, ASP practitioners develop applications that rely on languages, which
go beyond propositional/ground atoms. Figure 5 presents a typical architecture of an answer
set programming tool that encompasses two parts: a system called grounder and a system
called solver. The former is responsible for eliminating variables in a program. The latter is
responsible for finding answer sets of a respective propositional (ground) program. Systems
LPARSE [74] and GRINGO5 [23, 29] are two well known grounders that serve as front-ends
for many solvers including SMODELS [71], CLASP [27], and WASP [2].

In this section we refer to non-ground atoms that are constructed as customary in
predicate logic: they may contain variables, object constants, and function symbols.

5http://potassco.sourceforge.net/.

http://potassco.sourceforge.net/
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A logic program with variables is a finite set of rules of the form (4), where a0 is sym-
bol ⊥ or a non-ground atom; and a1, . . . , an are non-ground atoms. Grounding a logic
program replaces each rule with all its instances obtained by substituting ground terms,
formed from the object constants and function symbols occurring in the program, for all
variables. For a program �, by ground(�) we denote the result of its grounding. (We
use the convention common in logic programming: variables are represented by capitalized
identifiers.) For example, let � be a program

{a(1)} {a(2)} {b(1)}
c(X) ← a(X), b(X),

(20)

ground(�) follows
{a(1)} {a(2)} {b(1)}
c(1) ← a(1), b(1)
c(2) ← a(2), b(2).

The answer sets of a program � with variables are answer sets of ground(�) [30]. For
instance, there are eight answer sets of program (20) including ∅ and set {a(1) b(1) c(1)}.

Given a program � with variables, grounders often produce a variable-free program that
is smaller than ground(�), but still has the same answer sets as ground(�); we call any
such program an image of �. For example, program

{a(1)} {a(2)} {b(1)}
c(1) ← a(1), b(1)

is an image of (20).
When a program�with variables has at least one function symbol and at least one object

constant, grounding results in infinite ground(�). Yet, even for an input program of this
kind, grounders often find an image that is a finite propositional program (finite image). For
instance, for program

p(0)
q(f (X)) ← p(X)

(21)

grounding results in infinite program outlined below

p(0)
q(f (0)) ← p(0)
q(f (f (0))) ← p(f (0))
q(f (f (f (0)))) ← p(f (f (0)))
· · ·

A finite image of program (21) follows

p(0)
q(f (0)) ← p(0).

Program
p(0)
q(f (0))

is another image of (21). In fact, given program (21) as an input grounders LPARSE and
GRINGO will generate the latter image.

To produce images for input programs, grounders follow techniques exemplified by intel-
ligent grounding [9]. Different grounders implement distinct procedures so that they may
generate different images for the same input program. One can intuitively measure the qual-
ity of a produced image by its size so that the smaller the image is the better. A common
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syntactic restriction that grounders pose on input programs is “safety”. A program � is
safe if every variable occurring in a rule of � also occurs in positive body of that rule.
For instance, programs (20) and (21) are safe. The safety requirement suggests that positive
body of a rule must contain information on the values that should be substituted for a vari-
able in the process of grounding. Safety is instrumental in designing grounding techniques
that utilize knowledge about the structure of a program for constructing smaller images [9].
The GRINGO grounder and the grounder of the DLV system expect programs to be safe.
For programs with function symbols, to guarantee that the grounding process terminates,
grounders pose additional syntactic restrictions (in other words, to guarantee that a grounder
is able to construct a finite image). For example, grounder LPARSE expects given programs
to belong to a so-called ω-restricted class [73]. Calautti et al. [8] defined a class of pro-
grams that is more general than ω-restricted class and for which bottom-up approaches for
grounding implemented in DLV and GRINGO are guaranteed to terminate.

Often a set of propositional rules that follow a simple pattern can be represented con-
cisely by means of logic programs with variables. We support this statement by an example.
Recall program (12). We now capture atoms of the form cvi by expressions c(v, i), where c

is a predicate symbol and v, i are object constants denoting a vertex v and color i respec-
tively. Atom of the form vtx(v), intuitively, states that an object constant v is a vertex, while
atom e(v,w) states that there is an edge from vertex v to vertex w in a given graph. Atom
color(i) states that an object constant i represents a color. Recall graph coloring problem
GC for an input graph (V ,E). We now present a program with variables that encodes a
solution to this problem. First, this program consists of facts that encode graph (V ,E):

vtx(v) (v ∈ V )

e(v,w) ({v, w} ∈ E)
(22)

Second, facts

color(c) (c ∈ 1, 2, 3) (23)

enumerate three colors of the problem. The following rules conclude the description of the
program:

{c(V, I )} ← vtx(V ), color(I ) (24)

← c(V, I ), c(V , J ), I < J, vtx(V ), color(I ), color(J ) (25)

← c(V, I ), c(W, I), vtx(V ), vtx(W), color(I ), e(V ,W) (26)

← notc(V, 1), notc(V, 2), notc(V, 3), vtx(V ) (27)

These rules are the counterparts of groups of rules in propositional program (12). Indeed,
rule (24) states that every vertex may be assigned some colors; rule (25) says that it is
impossible that a vertex is assigned two colors; rule (26) says that it is impossible that any
two adjacent vertexes are assigned the same color; and the last rule (27) states that it is
impossible that a vertex is not assigned a color.

Programs with variables permit for a concise encoding of an instance of a search prob-
lem. Indeed, size of a program composed of rules (22–27) is almost identical to the size of a
given graph (V ,E). There are |V |+|E|+7 rules in this program. On the other hand, the line

← cvi, cwi ({v, w} ∈ E, 1 ≤ i ≤ 3)

of program (12) alone encapsulates 3|E| rules.
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6 Modeling of search problems in ASP

Answer set programming provides a general purpose modeling language that supports elab-
oration tolerant solutions for search problems. We follow the lines of [7] in defining a
search problem abstractly. A search problem P consists of a set of instances with each
instance I assigned a finite set SP (I ) of solutions. In answer set programming to solve a
search problem P , we construct a program �P that captures problem specifications so that
when extended with facts DI representing an instance I of the problem, the answer sets of
�P ∪ DI are in one to one correspondence with members in SP (I ). In other words, answer
sets describe all solutions of problem P for the instance I . Thus solving of a search problem
is reduced to finding a uniform encoding of its specifications by means of a logic program
with variables.

For example, an instance of the graph coloring search problem GC is a graph. All 3-
colorings for a given graph form its solutions set. Consider any graph (V ,E). By D(V,E) we
denote facts in (22) that encode graph (V ,E). By �gc we denote a program composed of
rules in (23–27). This program captures specifications of 3-coloring problem so that answer
sets of �gc ∪ D(V,E) correspond to solutions to instance graph (V ,E) of a problem. Recall
graphs G1 and G2 presented in Fig. 1. Facts DG1 representing G1 follow

vtx(a) vtx(b) vtx(c) vtx(d) e(a, b) e(b, c) e(c, d) e(d, a) e(b, d).

Program �gc ∪ DG1 has six answer sets, including

{vtx(a) vtx(b) vtx(c) vtx(d)

e(a, b) e(b, c) e(c, d) e(d, a) e(b, d)

color(1) color(2) color(3)
c(a, 1) c(b, 2) c(c, 1) c(d, 3)},

which captures solution SG1 . Similarly, we can use encoding �gc to establish whether 3-
colorings exist for graph G2. Facts DG2 representing G2 consists of facts in DG1 and an
additional fact e(a, c). Program�gc∪DG2 has no answer sets suggesting that no 3-colorings
exist for graph G2.

It is important to mention that the languages supported by ASP grounders and solvers go
beyond rules presented here. For instance, GRINGO versions 4.5+ support such constructs
as aggregates, cardinality expressions, intervals, pools [20, 22]. It is beyond the scope of
this paper to formally discuss these constructs, but it is worth mentioning that they gener-
ally allow us more concise, intuitive, and elaboration tolerant encodings of problems. Also,
they often permit to utilize more sophisticated and efficient procedures in solving [24].
It is interesting to mention pseudo-Boolean solvers [68] – systems closely related to SAT
solvers. These systems implement specialized solving techniques for processing an exten-
sion of propositional CNF logic that supports expressions in spirit of cardinality constructs.
Thus, it is well recognized that these constructs bring modeling and solving advances into
formalisms.

For instance, a single rule

← not1{c(V, I ) : color(I )}1, vtx(V ). (28)

can replace two rules (25) and (27) in program �gc. This shorter program will result in
smaller groundings for instances of the GC problem paving the way to more efficient solv-
ing. Cardinality construct 1{c(V, I ) : color(I )}1 intuitively suggests us to count, for a given
value of V the atoms of the form c(V, I ) that belong to the answer set. Number 1 to the
right and to the left of this aggregate expression tells us a specific condition on the count,
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in particular, that it has to be exactly 1. Cardinality expressions form only one example
of multitude of constructs that GRINGO language offers for effective modeling of problem
specifications.

In this section, we illustrated one essential difference between ASP and SAT. Proposi-
tional SAT language does not allow variables and thus for each considered graph a separate
complete SAT encoding must be formulated. In case of ASP, it is possible to formulate a
logic program in a way that to solve graph coloring problem it is sufficient to only spec-
ify details of a new graph in question. In introduction, we mentioned that typically to use a
SAT solver to compute solutions for an instance of a search problem a specialized program
in imperative language is written to generate specific propositional formula that encodes
given instance as a CNF formula. Answer set programming provides another way to utilize
SAT technology. For example, constructed logic program �gc with variables for solving
graph coloring problem GC can be used to invoke a SAT solver for solving GC as follows.
Consider some instance graph (V ,E) encoded by means of the facts D(V,E). Applying a
grounder on the union �gc ∪ D(V,E) results in a tight propositional program. Applying a
SAT solver on a clausified completion of this propositional program allows us to enumerate
the solutions to graph coloring problem for graph (V ,E). In Section 8, we present details
behind several modern answer set solvers. It is remarkable that several systems including
CMODELS6 [31] and CLASP compute answer sets of tight programs in a described fashion.
In particular, for a tight program these systems start by computing a clausified completion.
System CMODELS then invokes a SAT solver (e.g., SAT solver MINISAT [15]) to find mod-
els of a computed formula. System CLASP has an internal implementation of a SAT solver
that is invoked on computed completion.

7 The generate-define-and-test modeling methodology of ASP

Section 3 presented how the GENERATE and TEST methodology is applicable within answer
set programming. Yet, an essential feature of logic programs is their ability to elegantly
and concisely “define” predicates. Denecker [12] argues that normal logic programs pro-
vide a convenient language for expressing inductive definitions. He considers normal logic
programs under parametrized well-founded semantics. Truszczyński [76] illustrates that for
practical subset of logic programs answer set semantics and parametrized well-founded
semantics coincide. Thus, logic programs under answer set semantics can be seen as a for-
malism that allows one to combine classical logic (recall our discussion about denials) with
inductive definitions. Denecker et al. [13] elaborate on this subject and provide a detailed
account on intuitive readings of connectives in logic programs. We direct interested read-
ers to Denecker et al. work for the presentation of Tarskian informal semantics of logic
programs.

The GENERATE, DEFINE, and TEST is a typical methodology used by ASP practition-
ers in designing programs. Lifschitz [44] coined this term. It generalizes the GENERATE

and TEST methodology discussed earlier. The roles of the GENERATE and TEST parts of a
program stay the same so that, informally, GENERATE defines a large collection of answer
sets that could be seen as potential solutions, while TEST consists of rules that eliminate the
answer sets of the GENERATE part that do not correspond to solutions. The DEFINE section
expresses additional, auxiliary concepts and connects the GENERATE and TEST parts.

6http://www.cs.utexas.edu/users/tag/cmodels.html.

http://www.cs.utexas.edu/users/tag/cmodels.html
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To illustrate the essence of DEFINE, consider a Hamiltonian cycle search problem:

Given a directed graph (V ,E), the goal is to find a Hamiltonian cycle — a set of
edges that induce in (V ,E) a directed cycle going through each vertex exactly once.

This is an important combinatorial search problem related to Traveling Salesperson
problem.

We now formalize the specifications of Hamiltonian cycle problem by means of
GENERATE, DEFINE, and TEST methodology. As in the encoding �gc of the graph col-
oring problem, we use expressions of the form vtx(v) and e(v, w) to encode an input
graph. To formulate the GENERATE part, we introduce a predicate symbol in so that the
expression in(v, w) states that edge (v, w) is part of found Hamiltonian cycle. Choice rule

{in(X, Y )} ← e(X, Y ) (29)

forms the GENERATE part of the problem. This rule states that any subset of edges of a given
graph may form a Hamiltonian cycle. Answer sets of a program composed of this rule and a
set of facts encoding an input graph will correspond to all subsets of edges of the graph. For
instance, program composed of facts DG1 that encode directed graph G1 introduced in Fig. 1
extended by rule (29) has 32 answer sets each representing a different subset of its edges.

In order to state the TEST part, an auxiliary concept of reachable is required so that we
can capture the restriction that a found subset of edges of the graph is also a cycle. The
DEFINE part follows

reachable(V, V ) ← vtx(V )

reachable(U, W) ← in(U, V ), reachable(V ,W),

vtx(U), vtx(V ), vtx(W)

(30)

These rules define transitive closure of the predicate in: all pairs of vertexes (u, v) such
that v can be reached from u by following zero or more edges that are in. The in edges form
a Hamiltonian cycle if and only if every pair of vertexes is in the transitive closure.

We are now ready to state the TEST part composed of three rules

← in(U, V ), in(U, W), V �= W, vtx(U), vtx(V ), vtx(W)

← in(U, V ), in(W, V ), U �= W, vtx(U), vtx(V ), vtx(W)

← not reachable(U, V ), vtx(U), vtx(V ).

(31)

The former two rules state that no two selected edges start or end in the same vertex,
respectively. The last rule states that it is impossible for a pair of vertexes not to belong to
a transitive closure of the predicate in. In other words, a cycle formed by in-edges must
include every vertex. Rules (29), (30), and (31) form a program �hc that captures spec-
ifications of Hamiltonian cycle search problem. Extending �hc with facts representing a
directed graph results in a program whose answer sets describe all Hamiltonian cycles of
this graph. For example, program �hc ∪ DG1 has only one answer set. Set

{in(a, b) in(b, c) in(c, d) in(d, a)}
contains all in-edges of that answer set stating that edges (a, b), (b, c), (c, d), and (d, a)

form the only Hamiltonian cycle for graph G1.
Concise encoding of transitive closure is a feature of answer set programming that con-

stitutes an essential difference between ASP and SAT or effectively propositional logic
— first-oder generalization of pure propositional satisfiability (discussed in more detail in
Section 9). For instance, to solve Hamiltonian cycle problem, known encodings of reach-
ability lead to propositional logic representations of larger size than these of respective
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propositional logic programs. East and Truszczyński [14] demonstrated that the perfor-
mance of SAT solvers on propositional encodings of the Hamiltonian cycle problem lags
dramatically behind that of the answer set solver ASPPS. Lierler and Lifschitz [41] say that
effectively propositional logic reasoning can be described as the common part of classical
first-order logic and logic programming under the answer set semantics. Transitive closure
is not expressible by first-order formulas. Thus any subset of first-order logic taken as the
language with variables for modeling search problems declaratively will fail at defining
(directly) concepts that rely on transitive closure.

8 Satisfiability and answer set solving

Most modern answer set solvers are close relatives to SAT solvers based on the CDCL

algorithm [51]. The CDCL algorithm can be seen as an enhancement of classical DPLL

procedure [11]. Clause learning and backjumping are features that distinguish CDCL from
DPLL. These techniques proved to be truly essential in building effective solvers. Yet, here
we avoid describing these features and instead direct interested readers to [51, 61] for more
details on learning and backjumping in SAT and to [27, 40] for more details on learning
and backjumping in ASP. In practice, key ideas in learning and backjuming are identi-
cal for both SAT and ASP solvers. Thus, for our purposes it is sufficient to present DPLL

and then extend DPLL to a procedure that can be used for finding answer sets of a pro-
gram. We call this procedure ASET. An ASET algorithm is in the same relation to modern
answer set solving algorithms as DPLL to CDCL. By contrasting and comparing the DPLL

and ASET algorithms we are able to point out key difference between SAT and ASP solving
methods.

Answer set solvers, such as SMODELS [60], SMODELScc [78], and DLV [38], are so-
called native systems. They are based on specialized search procedures in spirit of the DPLL

algorithm. The core of DPLL consists of performing three basic operations: decision, unit
propagate, and backtrack. Unit propagate operation is based on a simple inference rule in
propositional logic that given a CNF formula F allows to utilize knowledge about unit
clauses (clauses that consist of a single literal) occurring in F or being inferred so far by the
DPLL procedure, in order to conclude new inferences. Native answer set solvers replace (or
augment) unit propagate of DPLL by specialized operations based on inference rules suitable
in the context of logic programs. For example, SMODELS implements four propagators Unit
Propagate , All Rules Cancelled , Backchain True , and Unfounded that we discuss in detail
later in this section. Solver SMODELScc extends the algorithm of SMODELS by backjumping
and learning. Clause learning is an advanced solving technique that originated in SAT [51,
56] and proved to be extremely powerful in practice. The distinguishing feature about the
answer set solver DLV is its ability to handle disjunctive answer set programs. In rules of
such programs a disjunction of atoms in place of a single atom is allowed in heads. The
problem of deciding whether a disjunctive program has an answer set is �P

2 -complete [16].
Native answer set solvers form one core group of ASP systems. Another group is formed

by so-called SAT-based answer set solvers. To explain intuitions behind the latter we present
some auxiliary terminology.

In this section we use terms an atom, a literal, and a clause to refer to ground instances
of these objects. For a set M of literals, by M+ we denote atoms that occur positively in M .
For example, {¬a, b}+ = {b}. For set σ of atoms and set M of literals, by M|σ we denote
the maximal subset of M over σ . For example, {a, ¬b, c}|{a,b} = {a,¬b}. For a program �,
by σ� we denote the set of all atoms occurring in � or, in other words, the signature of �.
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There exists a number of transformations from logic programs under answer set seman-
tics to SAT. Given a propositional logic program �, there are two kinds of transformations:

• transformations that form a formula F�, which may contain “new atoms” so that

(i) {M+
|σ�

| Mis a model of F�} = {M | M is an answer set of �}, and
(ii) there are no distinct models M and M ′ of F� such that M+

|σ�
= M ′+|σ�

.

• transformations that preserve the vocabulary of � and form a formula F� so that M is
a model of F� if and only if M+ is an answer set of �.

Answer set solver LP2SAT7 [34, 35] is an example of a system that relies on a transfor-
mation of the former kind. It starts its computation by producing a SAT instance based on
a given normal logic program. The length of the SAT instance as well as the transforma-
tion time are of order ||�|| × log2|σ�|, where ||�|| is the length of the program �. System
LP2SAT then invokes a SAT solver to compute models’ of the SAT instance that are in one
to one correspondence with the answer sets of a given program.

Completion [10] is a remarkable transformation of the later kind for the large class of
tight programs. As mentioned earlier, for these programs the models of program’s com-
pletion coincide with the stable models of a program. This fact is exploited in several
state-of-the-art answer set solvers including CLASP [27], CMODELS [31], IDP8 [80]. For
tight programs these solvers apply off-the-shelve SAT-solvers “as is” to clausified pro-
gram’s completion.9 Nontight logic programs can be translated into propositional formulas
preserving their vocabulary only with exponential blow up in general case [45] (assuming
P � NC1/poly, a conjecture from the theory of computational complexity that is widely
believed to be true). One such transformation relies on extending program’s completion with
so-called loop formulas [48]. Loop formulas play essential role in many modern answer
set solvers, including CLASP, CMODELS, and IDP, in case of non-tight programs. They are
directly related to the concept of unfounded sets presented later [37].

The major benefit of the first approach exemplified by LP2SAT is in the fact that it imme-
diately benefits from any advances in SAT technology as it considers any SAT solver as a
”black box”. In other words, it communicates with a SAT solver via its input-output inter-
face without interacting with any internal components of the system. Thus any new SAT
solver can easily be integrated into the LP2SAT framework. The second approach exem-
plified by CLASP, CMODELS, and IDP requires development of specialized procedures.
Systems CMODELS and IDP are implemented as extensions of the SAT solver MINISAT [15].
Although, these systems are able to utilize the sophisticated features of MINISAT, an appear-
ance of any novel SAT solver does not translate into immediate advances for them. Yet,
the inference related to loop formulas (or unfounded sets) implemented in these solvers
proved to play an essential role in the success of the second approach. The answer set
solver ASSAT [47] is a proponent of a third intermediate approach. Similarly to the LP2SAT
framework, ASSAT utilizes a SAT solver as a black box. Similarly to CLASP and its peers,
ASSAT utilizes the concepts of completion and loop formula in its search. An execution of
ASSAT can be visualized as a sequence of calls to a SAT solver so that at each call comple-
tion of a program is extended with additional loop formulas, which permits a more precise

7http://www.tcs.hut.fi/Software/lp2sat/.
8http://dtai.cs.kuleuven.be/krr/software/idp.
9System CLASP is both a SAT solver and an answer set solver. SAT solver MINISAT [15] forms a backbone
of systems CMODELS and IDP.

http://www.tcs.hut.fi/Software/lp2sat/
http://dtai.cs.kuleuven.be/krr/software/idp
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description of the original problem. In the worst case scenario, it is possible that exponential
number of loop formulas have to be added in this process and, respectively, a SAT solver
must be called an exponential number of times.

In the rest of this section we present the DPLL algorithm [11], a classical SAT procedure.
We then provide an extension of this algorithm that captures the basis of modern answer
set solvers including such solvers as SMODELS, CMODELS, and CLASP. We conclude by
drawing a parallel between SAT and answer set solvers.

DPLL Nieuwenhuis et al. [61] described DPLL by means of a transition system that can be
viewed as an abstract representation of the underlying DPLL computation. This transition
system captures what “states of computation” are, and what transitions between states are
allowed. In this way, a transition system defines a directed graph such that every execution
of the DPLL procedure corresponds to a path in this graph. Some edges may correspond to
unit propagation steps, some to decision, some to backtracking. We follow this approach for
describing search algorithms. We now review the abstract DPLL in the form convenient for
our purposes.

For a set σ of atoms, a record relative to σ is a sequence M of distinct literals over σ ,
some possibly annotated by �, which marks them as decision literals. A state relative to σ

is either a distinguished state FailState or a record relative to σ . For instance, the states
relative to a singleton set {p} are

FailState, ∅, p, ¬p, p�, ¬p�, p ¬p, p� ¬p,

p ¬p�, p� ¬p�, ¬p p, ¬p� p, ¬p p�, ¬p� p�.

Note how a sequence of literals such as p p or p p� does not form a record. Frequently,
we consider M as a set of literals, ignoring both the annotations and the order among its
elements. If neither a literal l nor its complement, written l, occurs inM , then l is unassigned
by M . We say that M is inconsistent if both an atom a and its negation ¬a occur in it. For
instance, states p� ¬p and p q ¬p are inconsistent. Also both q and ¬q are unassigned by
state p� ¬p, whereas both of them are assigned by p q ¬p.

If C is a disjunction (conjunction) of literals then by C we understand the conjunction
(disjunction) of the complements of the literals occurring in C. In some situations, we will
identify disjunctions and conjunctions of literals with the sets of these literals.

Each CNF formula F determines its DPLL graph DPF . The set of nodes of DPF consists
of the states relative to the signature of F . The edges of the graph DPF are specified by four
transition rules:

UnitPropagate : M ⇒ M l if

⎧
⎨

⎩

C ∈ F, l ∈ C, and for every
literal l′ ∈ C so that l′ �= l,

l′ ∈ M

Decide : M ⇒ M l� if l is unassigned by M

Fail : M ⇒ FailState if

{
M is inconsistent, and
M contains no decision literals

Backtrack : P l� Q ⇒ P l if

{
P l� Q is inconsistent, and
Q contains no decision literals.

A node (state) in the graph is terminal if no edge originates in it.
The following proposition gathers key properties of the graph DPF .
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Proposition 1 For any CNF formula F ,

(a) graph DPF is finite and acyclic,
(b) any terminal state of DPF other than FailState is a model of F ,
(c) FailState is reachable from ∅ in DPF if and only if F is unsatisfiable.

Thus, to decide the satisfiability of a CNF formula F it is enough to find a path leading
from node ∅ to a terminal node M . If M = FailState, F is unsatisfiable. Otherwise, F is
satisfiable and M is a model of F .

For instance, let F1 = {p ∨ q,¬p ∨ r}. Below we show a path in DPF1 with every edge
annotated by the name of the transition rule that gives rise to this edge in the graph:

∅ Decide⇒ p� UnitPropagate⇒ p� r
Decide⇒ p� r q�. (32)

The state p� r q� is terminal. Thus, Proposition 1(b) asserts that F1 is satisfiable
and {p, r, q} is a model of F1. Another path in DPF1 that leads us to concluding that set
{p, r, q} is a model of F1 follows

∅ Decide⇒ p� Decide⇒ p� r� Decide⇒ p� r� q�. (33)

We can view a path in the graph DPF as a description of a process of search for a model
of a formula F by applying transition rules of the graph. Therefore, we can characterize an
algorithm of a SAT solver that utilizes the inference rules of DPF by describing a strategy
for choosing a path in DPF . A strategy can be based, in particular, on assigning priorities to
some or all transition rules of DPF , so that a solver will never apply a transition rule in a
state if a rule with higher priority is applicable to the same state. The DPLL algorithm can
be captured by the following priorities:

Backtrack,Fail >> Unit Propagate >> Decide.

Note how path (32) in the graph DPF1 respects priorities above, while path (33) does not.
Thus DPLL will never explore the latter search trajectory given input F1.

Answer set solving We are now ready to present an extension to the DPLL algorithm that
captures a family of backtrack search procedures for finding answer sets of a propositional
logic program.

For a program �, we call an interpretation M over σ� a classical model of � if it is a
model of the set of rules in � seen as clauses. For example, program (6) has three classical
models {p,¬q, ¬r}, {p, ¬q, r}, and {p, q, r}.

By Bodies(�, a) we denote the set of the bodies of all rules of program � with the
head a (including the empty body). A setU of atoms occurring in a propositional program�

is unfounded on a consistent set M of literals with respect to � if for every a ∈ U and every
B ∈ Bodies(�, a), M ∩ B �= ∅ or U ∩ Bpos �= ∅, where Bpos denotes positive part of the
body B. For instance, set {r} is unfounded on set {p, ¬q, r} with respect to program (6),
while set {q} is unfounded on {p, q, r} with respect to program (6).

We are now ready to restate the result from [39, Theorem 4.6] that relates the notions of
unfounded set and stable models.10 This result is crucial for understanding key inference
rules used in propagators of modern answer set solvers.

10Here we present the result from [39] applicable to programs with doubly negated atoms. Lee [37] illustrated
the soundness of this generalization.
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Proposition 2 For a program� and an interpretationM over σ�,M is a stable model of�
if and only if M is a classical model of � and no non-empty subset of M+ is an unfounded
set on M with respect to �.

This proposition gives an alternative characterization of stable models. For example, it
asserts that (i) classical models of program (6) are the only interpretations that may be
stable models of (6) and (ii) classical models {p, ¬q, r} and {p, q, r} are not stable mod-
els of the program due to unfounded sets {r} and {q} respectively, while classical model
{p, ¬q, ¬r} is a stable model (since {p} is not an unfounded set on {p, ¬q, ¬r}with respect
to program (6)).

By f : � → F we denote a function from a propositional logic program � to a CNF
formula F . We say that function f approximates program � when

• for any stable model N of � there is a model M of f (�) such that N = M|σ� ,• any model M of f (�) is such that M|σ� is a classical model of �.

The following proposition follows immediately from Proposition 2 and the definition of an
approximating function.

Proposition 3 For a program �, a function f that approximates �, and an interpretation
N over σ�, N is a stable model of � if and only if (i) there is a model M of f (�) such
that N = M|σ� and no non-empty subset of N+ is an unfounded set on N with respect to �.

We define the transition graph ASETf,� for a program � and a function f that approxi-
mates � as follows. The set of nodes of the graph ASETf,� consists of the states relative to
atoms occurring in f (�) and �. There are five transition rules that characterize the edges
of ASETf,�. The transition rules Unit Propagate , Decide , Fail , Backtrack of the graph
DPf (�), and the transition rule

Unfounded : M ⇒ M ¬a if

{
a ∈ U for a set U unfounded on M

with respect to �.

The graph ASETf,� can be used for deciding whether a logic program has answer sets:

Proposition 4 For any program � and a function f that approximates �,

(a) graph ASETf,� is finite and acyclic,
(b) for any terminal state M of ASETf,� other than FailState, M+

|σ�
is an answer set of �,

(c) FailState is reachable from ∅ in ASETf,� if and only if � has no answer sets.

Obviously, any program approximates itself (recall that we identify rules with clauses).
By f� we denote an identity function f�(�) = �. Extending graph ASETf�,� with
transition rules

AllRulesCancelled :M ⇒ M ¬a if B ∩ M �= ∅ for allB ∈ Bodies(�, a),

BackchainTrue :M ⇒ M l if

⎧
⎪⎪⎨

⎪⎪⎩

a ← B ∈ �,

a ∈ M,

B ′ ∩ M �= ∅ for allB ′ ∈ Bodies(�, a) \ {B},
l ∈ B

results in a graph that captures the computation procedure of answer set solver SMODELS.
We denote the resulting graph by SM�. Similar statement to Proposition 4 holds for the
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graph SM� [40]. The system SMODELS assigns priorities to the inference rules of SM� as
follows:

Backtrack,Fail >>

Unit Propagate,All Rules Cancelled,Backchain True >>

Unfounded >>

Decide.

We say that an edge M ⇒ M ′ in the graph SM� is singular if

• the only transition rule justifying this edge is Unfounded , and
• some edge M ⇒ M ′′ can be justified by a transition rule other than Unfounded .

For instance, let � be the program
p ← q

q ← r.

The edge
p� q� ¬r� ⇒ (Unfounded, U = {p, q})
p� q� ¬r� ¬p

in the graph SM� is singular, because the edge

p� q� ¬r� ⇒ (All Rules Cancelled)
p� q� ¬r� ¬q

belongs to SM� also.
From the point of view of actual execution of the SMODELS algorithm, singular edges of

the graph SM� are inessential: SMODELS never follows a singular edge. By SM−
� we denote

the graph obtained from SM� by removing all singular edges.
It is easy to see that the completion of program � can also be seen as a conjunction of

clauses in � and implications
a →

∨

a←B∈�

B (34)

for each atom a that occurs in �. Formulas (34) can be written as

¬a ∨
∨

a←B∈�

B (35)

for every atom a in �. CNF − Comp� is a function that maps program � into its com-
pletion converted to CNF using straightforward equivalent transformations. In other words,
CNF − Comp� consists of clauses of two kinds:

1. the rules of the program seen as clauses, and
2. formulas (35) converted to CNF using the distributivity of disjunction over conjunc-

tion.11

The following result from [40] illustrates that applying the SMODELS algorithm to
a tight program � essentially amounts to applying DPLL to its clausified completion
CNF − Comp�. A similar relationship, in terms of pseudocode representations of
SMODELS and DPLL, was also established in [32].

Proposition 5 For any tight program �, the graph SM−
� is equal to DPCNF−Comp�

.

11It is essential that repetitions are not removed in the process of clausification. For instance,
CNF − Compp←not p is the formula (p ∨ p) ∧ (¬p ∨ ¬p).



330 Constraints (2017) 22:307–337

For instance, let � be the program

p ← q, not r

q.

This program is tight. Its completion is

(p ↔ q ∧ ¬r) ∧ q ∧ ¬r,

and CNF − Comp� is

(p ∨ ¬q ∨ r) ∧ (¬p ∨ q) ∧ (¬p ∨ ¬r) ∧ q ∧ ¬r.

Proposition 5 asserts that, for this formula F , SM−
� coincides with DPF .

Proposition 5 conveys that combination of completion of a program and unit propagate
capture propagators All Rules Cancelled and Backchain True unique to the graph SM−

�. In
a sense, these propagators are present implicitly in DPCNF−Comp�

.
Truszczyński and Lierler [42] generalize Proposition 5 to the case of arbitrary programs:

Proposition 6 For any program �, the graph SM−
� is equal to ASETCNF−Comp,�.

As mentioned earlier several answer set solvers, including CMODELS and CLASP, start
their computation by forming program’s completion. It is clear that CNF − Comp� can
be exponentially larger than Comp(�). Systems CMODELS and CLASP define an ED-
transformation procedure that converts implications (34) into a CNF formula by means of
explicit definitions and avoids exponential growth. It is a special case of the Tseitin proce-
dure [77] that efficiently transforms any given propositional formula to CNF form by adding
new atoms corresponding to its subformulas. It does not produce a CNF equivalent to the
input formula, but it gives us its conservative extension. The ED-transformation procedure
adds explicit definitions for the disjunctive terms in (34) whenever they contain more than
one atom. In other words, it introduces auxiliary atoms as abbreviations for these disjunc-
tive terms. It then applies equivalent transformation to resulting formula and replaces these
disjunctive terms by their corresponding auxiliary atoms. At last, the ED-transformation
procedure converts this formula to CNF using straightforward equivalent transformations.

For instance, consider the program

p ← q1, r1
p ← q2, r2
p ← s.

For atom p, the implication (34) is

p → (q1 ∧ r1) ∨ (q2 ∧ r2) ∨ s. (36)

First, ED-transformation introduces following explicit definitions

aux1 ↔ q1 ∧ r1
aux2 ↔ q2 ∧ r2

(37)

Second, ED-transformation turns implication (36) into the formula

p → aux1 ∨ aux2 ∨ s (38)
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that contains two auxiliary atoms aux1, aux2. Third, ED-transformation clausifies these
formulas (37) and (38) as follows:

¬p ∨ aux1 ∨ aux2 ∨ s

¬aux1 ∨ q1
¬aux1 ∨ r1
¬q1 ∨ ¬r1 ∨ aux1
¬aux2 ∨ q2
¬aux2 ∨ r2
¬q2 ∨ ¬r2 ∨ aux2.

We now define for a program �, a function ED − Comp� that maps � into a CNF
formula that is the completion Comp(�) converted to CNF using the ED-transformation:
It consists of clauses of two kinds

1. the rules of the program seen as clauses, and
2. formulas (34) converted to CNF using the ED-transformation.

The graph ASETED−Comp,� can be used to capture basic ideas behind such answer set
solvers as CMODELS and CLASP. These solvers also implement backjumping and learning
that are not captured by the graph ASETED−Comp,�. Yet, Nieuwenhuis et al. [61] and Lierler
and Truszczyński [42] demonstrate how transition systems DP and ASET, respectively can
be extended to capture these features. Here we focus on basic variants of CMODELS and
CLASP based on backtracking. Basic CMODELS is modeled by the graph ASETED−Comp,�

and the priorities:

Backtrack,Fail >> Unit Propagate >> Decide >> Unfounded.

Basic CLASP is captured by ASETED−Comp,� and the priorities:

Backtrack,Fail >> Unit Propagate >> Unfounded >> Decide.

Proposition 6 asserts that systems SMODELS is characterized by the graph
ASETCNF−Comp,�. Furthermore, its priorities coincide with these of CLASP. In this sense,
system CLASP is closer than CMODELS to answer set solver SMODELS as CLASP and
SMODELS both apply inference rule Unfounded eagerly (unlike CMODELS that uses this
rule only on states that correspond to interpretations). Despite the similar look of graphs
ASETCNF−Comp,� and ASETED−Comp,� (indeed, ED − Comp and CNF − Comp serve a
similar purpose), they are substantially different. Anger et al. [3] illustrated theoretically
and experimentally that DPLL applied to ED − Comp� is superior to DPLL applied to
CNF − Comp�.

Lierler and Truszczyński [42] provide a comprehensive account of major answer set
solvers by means of transition systems. (Proposition 4 follows immediately from their
work.) They use transition systems to contrast and compare various solvers in detail and
include an account on such techniques as learning. Here we present a glimpse to these
results that is sufficient to illustrates key differences between DP-based SAT solvers and
ASET-based ASP solvers, in particular, presence of additional propagators in answer set
solvers:

• presence of a propagator Unfounded is unique to ASP technology. Propagator
Unfounded is responsible for taming recursive definitions, such as transitive closure,
in solving.



332 Constraints (2017) 22:307–337

• explicit or implicit presence of propagators All Rules Cancelled and Backchain True
in answer set solvers is a mechanism for effective processing of inductive definitions
encoded in programs.

9 Effectively propositional logic (or direct first-order extension of SAT)
for modeling search problems

Effectively propositional logic [70], also known as Bernays-Schönfinkel class and EPR,
provides a generalization of pure propositional satisfiability. An EPR formula is the uni-
versal closure of a conjunction of clauses. The EPR language can be seen as an alternative
to the language of logic programs with variables for developing concise formulations of
search problems. For example, recall SAT representation (3). The EPR language allows us
to generalize (3) as a set of the EPR clauses as follows. Consider any graph (V ,E). Ground
clauses consisting of single literals presented in (22) and a collection of ground clauses

¬e(v,w) ({v, w} /∈E; v, w ∈ V ) (39)

encode the graph (V ,E). We denote the collection of clauses in (22) and (39) by DEPR
(V ,E).

Three ground clauses (23) enumerate three colors of the problem. The following EPR
clauses conclude the description of the EPR encoding of GC problem:

c(V, 1) ∨ c(V, 2) ∨ c(V, 3) ∨ ¬vtx(V ) (40)

¬c(V, I ) ∨ ¬c(V, J ) ∨ ¬color(I ) ∨ ¬color(J ) ∨ ¬vtx(V ) ∨ I ≥ J (41)

¬c(V, I ) ∨ ¬c(W, I) ∨ ¬vtx(V ) ∨ ¬vtx(W) ∨ ¬color(I ) ∨ ¬e(V,W). (42)

¬color(V ) ∨ ¬vtx(V ) (43)

¬e(V,W) ∨ vtx(V ) (44)

¬e(V,W) ∨ vtx(W) (45)

By �gc, we denote the EPR formula composed of clauses (23,40–45). EPR formula �gc cap-
tures specifications of graph coloring problem GC so that given a graph (V ,E), Herbrand
models of �gc ∪ DEPR

(V ,E) correspond to 3-colorings of (V ,E). The three clauses (40–42)
of the EPR encoding �gc are the counterparts of groups of clauses in propositional for-
mula (3). Clause (40) says that each vertex is assigned some colors. Clause (41) states that
it is impossible that a vertex is assigned two colors. Clause (42) says that it is impossible
that any two adjacent vertexes are assigned the same color. The clauses (43–45) in �gc intu-
itively say that (i) a set of object constants representing colors is disjoint from a set of object
constants representing vertexes and (ii) edges are only possible between object constants
that stand for vertexes. These clauses together with clauses (39) in DEPR

(V ,E) explicitly encode
close world assumption for predicates color , vtx and e. Note how logic programming
encoding �gc ∪ D(V,E) of graph coloring problem incorporated this assumption implicitly.

Software systems called EPR solvers or model builders can be used for finding models of
EPR theories. The annual CADE ATP System Competition [72] contains the EPR division
track promoting advances in such systems. Navaro-Perez and Voronkov [57, 58] illustrate
how EPR theories can be used for modeling search problems in various domains includ-
ing planning. Many of the EPR systems rely on two computational stages: grounding and
solving by means of SAT.
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10 Conclusions and related work

In this paper we illustrate how answer set programming can be seen as a convenient declar-
ative programming language for utilizing SAT and SAT-like technology. It can be used to
declaratively model problem’s specifications and allows for elaboration tolerant solutions
that follow the GENERATE, DEFINE, and TEST modeling methodology. We paid attention
to essential component of answer set programming tool-set, namely, grounding. We also
presented key accounts in design of answer set solvers and draw a parallel to the DPLL pro-
cedure of SAT solvers. We believe that this comprehensive account on ASP versus SAT
helps to understand the similarities and differences between these research directions and
research concerns that fields pose. For instance, since answer set programming provides a
programming language to their users, large body of research in the field concerns language
features that go beyond logic programs discussed here. Such concerns are nonexistent in
SAT.

Logic programs under answer set semantics is not the only formalism that serves a
role of declarative programming front-end for SAT-like technology. For instance, East and
Truszczyński [14], Ternovska and Mitchell [55, 75], Wittocx, Mariën, and Denecker [79,
80] introduce other formalisms. The aim of the efforts by Ternovska and Mitchell is to
devise a declarative constraint programming framework that (i) takes the problem specifica-
tion of a search problem formulated in classical first-order logic, (ii) performs the grounding
and then (iii) uses a SAT solver to solve the ground formula. This framework implements
model-expansion task introduced in [55]. Efforts by East and Truszczyński were inspired by
answer set programming. They introduce a language that syntactically is closer to classical
first-order logic than the language of logic programs. They then show how theories in this
language can be (i) grounded, (ii) transformed into a propositional formula, and (iii) solved
by means of SAT solvers. Systems by Wittocx, Maarten, and Denecker support the lan-
guage called FO(ID) that extends classical first-order logic with inductive definitions [12].
Truszczyński [76] illustrates that despite syntactic and semantic differences between logic
FO(ID) and logic programs under answer set semantics these frameworks are closely related
and can be seen as different dialects of the same formalism. One property that all these
languages share in common: they implement close world assumption – presumption that
what is not currently known to be true is false. This observation hints that close world
assumption is essential in design of logic-based declarative programming formalisms, in
particular it allows effective grounding techniques. Also, Gebser et al. [21] propose another
declarative approach, where the intended SAT clauses are specified in terms of logic rules
with variables. This allows the user to write first-order specifications for intended clauses
in a schematic way by exploiting term variables. They define the semantics of such spec-
ifications and provide an implementation harnessing ASP grounders to accomplish the
grounding step of clauses. As we have seen grounding is an essential component of so
far mentioned formalisms. Metodi and Codish [54] argue for another alternative declara-
tive front-end for utilizing SAT technology. They propose to, first, use a general purpose
constraint programming language BEE for formulating a problem. Second, these BEE spec-
ifications are translated into propositional CNF formulas so that SAT solvers are used to
find solutions to a given problem.

The relation between propositional logic programs and propositional formulas in terms
of expressiveness has been studied earlier in [35, 45, 69]. For example, Janhunen shows that
translations from logic programs under answer set semantics to propositional formulas in
classical logic cannot be done modularly. This is further underpinned by a complexity result
given in [45]. In contrast, this paper focuses on key features of answer set programming
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that go beyond propositional logic programs. It highlights aspects of ASP, which form the
basis for this prominent declarative programming paradigm. In particular, we note how
the presence of first-order language enriched with numerous constructs enables effective
modeling of search problem specifications. Also, an ability to express transitive closure by
means of logic programs further enriches this modeling tool. Then, the language of logic
programs is supported by two distinct processing tools: one responsible for grounding and
another responsible for solving. Last but not least, we highlight the crucial role of a built-in
closed world assumption that proved to be crucial not only in concise and intuitive modeling
of problems, but also in the development of effective grounding and solving procedures.
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80. Wittocx, J., Mariën, M., & Denecker, M. (2008). The IDP system: a model expansion system for an
extension of classical logic. In: Proceedings of workshop on logic and search, computation of structures
from declarative descriptions (LaSh). electronic (pp. 153–165), available at https://lirias.kuleuven.be/
bitstream/123456789/229814/1/lash08.pdf.

81. Zhang, L., Madigan, C.F., Moskewicz, M.W., & Malik, S. (2001). Efficient conflict driven learning in a
boolean satisfiability solver. In Proceedings ICCAD-01 (pp. 279–285).

http://www.sciencedirect.com/science/article/pii/S0022000085710537
http://www.tcs.hut.fi/Software/smodels/lparse.ps.gz
https://lirias.kuleuven.be/handle/123456789/197022
https://lirias.kuleuven.be/bitstream/123456789/229814/1/lash08.pdf
https://lirias.kuleuven.be/bitstream/123456789/229814/1/lash08.pdf

	What is Answer Set Programming to Propositional Satisfiability
	Recommended Citation

	What is answer set programming to propositional satisfiability
	Abstract
	Introduction
	Satisfiability and test modeling methodology
	Propositional logic programs and generate-and-test methodology
	Completion
	Programs with variables
	Modeling of search problems in ASP
	The generate-define-and-test modeling methodology of ASP
	Satisfiability and answer set solving
	DPLL
	Answer set solving


	Effectively propositional logic (or direct first-order extension of SAT) for modeling search problems
	Conclusions and related work
	Acknowledgments
	Open Access
	References


