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Original Research Article

How do politicians use Facebook?
An applied Social Observatory

Simon Caton1, Margeret Hall2 and Christof Weinhardt2

Abstract

In the age of the digital generation, written public data is ubiquitous and acts as an outlet for today’s society. Platforms like

Facebook, Twitter, Googleþ and LinkedIn have profoundly changed how we communicate and interact. They have

enabled the establishment of and participation in digital communities as well as the representation, documentation

and exploration of social behaviours, and had a disruptive effect on how we use the Internet. Such digital communications

present scholars with a novel way to detect, observe, analyse and understand online communities over time. This article

presents the formalization of a Social Observatory: a low latency method for the observation and measurement of social

indicators within an online community. Our framework facilitates interdisciplinary research methodologies via tools for

data acquisition and analysis in inductive and deductive settings. By focusing our Social Observatory on the public

Facebook profiles of 187 federal German politicians we illustrate how we can analyse and measure sentiment, public

opinion, and information discourse in advance of the federal elections. To this extent, we analysed 54,665 posts and

231,147 comments, creating a composite index of overall public sentiment and the underlying conceptual discussion

themes. Our case study demonstrates the observation of communities at various resolutions: ‘‘zooming’’ in on specific

subsets or communities as a whole. The results of the case study illustrate the ability to observe published sentiment and

public dialogue as well as the difficulties associated with established methods within the field of sentiment analysis within

short informal text.
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Social Observatory, Facebook, sentiment analysis, political discourse, text analytics, computational social science

Introduction

With social media, political parties can bring their message
to the public faster, positing on recent events before the
interaction and interpretation of local or national media
(Stieglitz and Dang-Xuan, 2012). Putting issues onto the
public stage they can directly interact with voters, sup-
porters or residents of their election districts, thereby
acting locally as well as nationwide. While this conversa-
tion is well-addressed on the micro-blog platform Twitter
(Böcking et al., 2014; Housley et al., 2014; Mckelvey,
2013; Pak and Paroubek, 2010; Tumasjan et al., 2010),
under-addressed are the characteristics of online political
sentiment on Facebook. We argue that a significant
entrance barrier to Facebook studies is a lack of easily
employed, valid measurement systems and tools suitable
for non-technically fluent users. Text from Facebook can
be spliced for context and content, compared, and

measured for sentiment and conceptual domains as a
means of community assessment. Sentiment-based arte-
facts using publicly available data promise unprecedented
access to the expectation of issues arising ex-ante, and the
totality of effect of incidents ex-post, therefore, enabling
researchers and decision makers to analyse, develop,
implement and tune policies.

To address this, we present a Social Observatory:
an unobtrusive, low latency1 multi-resolution framework
for the observation, analysis and modelling of digital
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societies in action (see ‘Big Data challenges in the social
sciences’ section). With a Social Observatory, we aim to
realize an automated framework that facilitates,
reviews, and assesses specific aspects of online commu-
nities via Facebook using qualitative and quantitative
methods (see ‘Related work’ section). Our research con-
tribution is a framework that empowers interdisciplin-
ary researchers with the tools to facilitate the
understanding of phenomena within Facebook, as well
as the communities they represent (see Appendix 1).

To validate our objective, we present a prototype
implementation and case study analysing public political
dialogue of German federal politicians (see
‘Application of a Social Observatory: Political senti-
ment in Germany’ and ‘Zooming in and out of a
social network’ sections). Our dataset comprises all pol-
iticians with a Facebook presence from the five German
federal parties:2 the Christian Democratic Union
(CDU/CSU), the Social Democrats (SPD), the Free
Democrats (FDP), the Green Party (Grüne), and The
Left Party (Die Linke). Using this data set, we evaluate
the following research questions: Is Facebook a valid
research medium for assessing political discourse
online? If so, what are the characteristics of discourse
and engagement with and of German politicians on
Facebook (see ‘Discussion’ and ‘Conclusion’ sections)?

Big Data challenges in the social
sciences

Our vision of a Social Observatory is a low latency
method for the observation and measurement of social
indicators. It is a computer-mediated research method at
the intersection of computer science and the social sci-
ences. The term Social Observatory is used in its original
context (Hackenberg, 1970; Lasswell, 1967); our frame-
work is the archetypal formalization of interdisciplinary
approaches in computational social science. The essence
of a Social Observatory is characterised by Lasswell
(1967: 49) as follows:

The computer revolution has suddenly removed age-

old limitations on the processing of information [. . .]

But the social sciences are data starved [. . .] One

reason for it is reluctance to commit funds to long-

term projects; another [. . .] is the hope for achieving

quick success by ‘new theoretical breakthroughs’ [. . .]

It is as though we were astronomers who were sup-

posed to draw celestial designs and to neglect our tele-

scopes. The social sciences have been denied social

observatories and told to get on with dreams.

This is also in line with the approach of the American
National Science Foundation’s call for a network of
Social Observatories.3 Today, the notion of a Social

Observatory lends itself to social media platforms, as digi-
tal mediators of social exchange, discourse and represen-
tation. This, as demonstrated by many researchers
(Böcking et al., 2014; Burnap et al., 2014; Newman
et al., 2003; Tumasjan et al., 2010; Xiang et al., 2010),
becomes especially valuable for assessing, modelling, or
predicting social phenomena. However, empowering
social scientists to access data from Facebook is non-tri-
vial (Burrows and Savage, 2014; Ruppert, 2013; Taylor
et al., 2014; Tinati et al. 2014), and tends to be under-
taken by scientists in cooperation with the Facebook
Research team (e.g. Das and Kramer, 2013; Kramer,
2010; Kramer et al., 2014).

In Figure 1, we illustrate a general architecture of a
modern Social Observatory entailing three processes;
namely 1) Data Acquisition; 2) Data Analysis; and 3)
Interpretation. Please see the Online Appendix for a dis-
cussion of the technical implementation. While it is appar-
ent that a Social Observatory captures multiple streams of
data, currently few scientific papers or services report this
ability in a way easily replicable. This is despite prevalent
availability of Application Programming Interfaces
(APIs), and an almost endless supply of papers and stu-
dies that focus on specific platforms (Atefeh and Khreich,
2013; Burnap et al., 2014; Pak and Paroubek, 2010;
Russell, 2013; Schwartz et al., 2013; Tanasescu et al.,
2013). Though this article concentrates on Facebook,
the architecture could be extended to other platforms.

Data Acquisition is well supported by most social
media platforms via REST or streaming APIs, which
are underpinned by lightweight data interchange for-
mats like JSON, and authentication with technologies
such as OAuth. The challenges instead lie in data
volume, velocity, and variety, access rights, and cross-
platform differences in curating data. The Big Data
aspects of social media data are well known and do
not need to be repeated here. With respect to access
rights for data, however, we first need to distinguish
between public data (like a Tweet or Facebook page)
and personal data (like a Facebook profile). The
authorisation rights for these types are significantly dif-
ferent. Although it has been shown that gamified set-
tings can enable access to personal data (Hall et al.,
2013a, 2013b), we expect a Social Observatory to rely
mainly on public data, as opposed to studies like
Kramer et al. (2014) and Schwartz et al. (2013).

Lastly, the method of data curation is not without its
ambivalence. For example Twitter data curation tends
to be forward-facing; accessing future Tweets that fulfil
a specific set of attributes starting at a given time point.
Facebook is retrospective; given a Facebook entity (e.g.
a person, or page) researchers access current and his-
torical posts, profiles, likes etc. From the perspective of
analysing social data, this subtle difference significantly
alters the effort and planning needed to curate a data

2 Big Data & Society
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set and the implicit biases associated with the method
(González-Bailón et al., 2014; Ruths and Pfeffer,
2014). The technical challenges also differ significantly
from receiving a continuous stream of data (i.e. tweets)
vs. Facebook’s paginated results. The latter incites large
numbers of API calls, which are not limitless.

(Mixed Method) Analysis as illustrated in Figure 1 is
inherently iterative and interdisciplinary. Foreseeable is
repeated interaction with social media adapters and
apps. While approaches from computer science and
computational social science are becoming more preva-
lent, the question of research methodology is often a
poignant discussion point and challenge that cannot be
overlooked; computer and social scientists leverage
diverse and often non-overlapping research methodolo-
gies. Therefore, a Social Observatory needs to accommo-
date a vast array of (interdisciplinary) methodological
approaches.

Irrespective of methodology, an important feature of a
Social Observatory is the ability to view a community at a
variety of resolutions; starting from an individual micro
layer, and progressively zooming out via ego-centric net-
works, social groups, communities, and demographic
(sub)groups, up to the macro layer: community. This abil-
ity is of significant importance for understanding a com-
munity as a whole.

Interpretation is domain specific in nature, and
should be decided according to the proposed research
questions. Our architecture supports inductive and
deductive research.

Related work

A new approach in the area of information-driven
decision support is found in computational social

science (Cioffi-Revilla, 2014, 2010), where the inter-
action of technology, online communities and individ-
uals’ perceptions are investigated at a previously
unmanaged scale (Burrows and Savage, 2014; Savage
& Burrows, 2007; Taylor et al., 2014; Tinati et al.,
2014). In an exhaustive survey, Wilson et al. (2012)
constructed five supra-categories for Facebook-based
research: descriptive analysis of users, motivations for
using Facebook, identity presentation, the role of
Facebook in social interactions, and privacy and infor-
mation disclosure. In terms of a Social Observatory, all
five categories could be addressed, whereas this paper
concentrates on descriptive user analysis and social
interactions in an unobtrusive manner. Recognizable
is that the usage of Facebook’s API by non-Facebook
staff or partners to support unobtrusive studies is low.

Many of the commonly applied methods in commu-
nity analysis like judging communal sentiment, assess-
ing tie strength, or participation and/or exchange in
given contexts are often done qualitatively. Human-
centric approaches have a long history and are well
applied in varied domains (Hsieh and Shannon, 2005;
Kassarjian, 1977), but lack scalability. When dealing
with the volume required by Big Data analyses, either
crowdwork (e.g. Hall and Caton, 2014; Paolacci et al.,
2010) or automated programs are generally required.
Crowdwork for the analysis of items like status updates
and tweets however poses ethical issues (Markham and
Buchanan, 2012), and can run afoul of platforms’ terms
and conditions.

The (social) scientist needs the necessary systems,
and tools to leverage computational approaches.
Text analysis, as a mechanism for measuring social
impact, is becoming increasingly validated as a
proxy for social phenomena (Böcking et al., 2014;

Figure 1. A general architecture for a Social Observatory.
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Chung and Pennebaker, 2014; Housley et al., 2014;
Mckelvey, 2013). Twitter-based studies are common
in the social media space and address a variety of
social science-oriented research questions. It has, how-
ever, been established that sentiment and conversation
styles differ across platforms (Davenport et al., 2014;
Lin and Qiu, 2013), though the available tools do not
match this research need. Facebook tools tend to rely
either on crawling techniques, which cannot fully
acquire paginated Facebook data and are disallowed
in the terms and conditions, or data extraction via the
Graph API but either focus on the logged-in user4 or do
not return data in full.5

Several authors have addressed the creation of
frameworks for supporting Twitter studies (Burnap
et al., 2014; Housley et al., 2014; Stieglitz and Dang-
Xuan, 2012; Pak and Paroubek, 2010). These lack the
corresponding technical infrastructure that allows
researchers to create new, build on, or replicate the
studies.6 The closest in reach to a Social Observatory
are those where the infrastructure is both open-source
and requires minimal knowledge of computational
infrastructure in order to be accessed (Housley et al.,
2014), or the tools are of a plug and play nature (Kivelä
and Lyytinen, 2004; McCallum, 2002).7

Key contribution differences are the observation
viewpoint and elicitation of points of reference. Many
studies observe the Twitter landscape at a macro level,
whereas our interest is to facilitate micro, meso and
macro observations. For example, Calvo and D’Mello
(2010), Hampton et al. (2011) and O’Connor et al.
(2010) demonstrated the predictive power of self-
reported interests in social profiles and the observation
of social practices. While the scientific value of such
work is significant, their isolated investigations only
give us insights into well-grounded research processes
rather than assisting in the construction of a general
approach. Similarly, Mitchell et al. (2013) investigate
a macro-scale dataset of happiness, urbanization and
obesity correlates, but do not create a generalizable
model for wide-scale usage. Allen et al. (2014) and
Jaho et al. (2011) investigated how content traversed
social graphs, and explored opportunistic mechanisms
for the dissemination of content via social structures. A
focus of their work was mechanisms for community
detection, and subsequent analysis of social structures
for observing information paths through social net-
works. However, the emphasis is not on analysing the
communities themselves.

Two mechanisms are widely used to support the
automated recognition of written sentiment: corpus-
based approaches and dictionary-based approaches
(Turney and Pantel, 2010). The corpus-based approach
is based on the co-occurrence of words, relying on the
latent relation hypothesis, stating that words with

similar meaning or sentiment co-occur more frequently
(Turney and Pantel, 2010). Given a set of known and
evaluated words, this methodology identifies words with
similar orientation. This can be especially useful when
searching for instances of sarcasm or irony, otherwise
lost in the dictionary-based approach (Liu, 2010).
Dictionary-based approaches use predefined word lists
containing sentiment-loaded words. By scanning the
considered text, sums of positive and negative affect
can be derived, usually normalized regarding the length
of the overall text. Kramer subtracts said sums to get a
one-dimensional measure of sentiment (Kramer, 2010;
Kramer et al., 2004), whereas Golder and Macy argue
the independence of both dimensions by measuring them
separately (Golder and Macy, 2012). The dictionary-
based approach, however, is unable to find domain spe-
cific orientations and context oriented sentiment (Dodds
et al., 2011; Thelwall et al., 2010).

Notable dictionary-based tools are Linguistic Inquiry
and Word Count (LIWC) (Pennebaker et al., 2007;
Tausczik and Pennebaker, 2010), Text Analysis and
Word Count (TAWC) (built upon the LIWC 2007 dic-
tionary), SentiWordNet (Baccianella et al., 2010) and
OpinionFinder (Wilson et al., 2005). SentiWordNet
sums up possible positive and negative sentiment and
the third term of ‘‘neutrality’’ (Baccianella et al.,
2010), OpinionFinder classifies subjectivity and objectiv-
ity within sentences (Wilson et al., 2005). To date, both
lack linguistic localization, a feature making LIWC’s 13
languages favourable.

Using short informal text as the foundation of sen-
timent measurement is challenging (Thelwall et al.,
2010) due to length restrictions, the usage of abbrevi-
ations and emotional tokens, slang in various forms
and styles and truncated sentences (Wang et al.,
2014). Yet, the existence of items like emoticons can
help to understand the intended sentiment. The use of
positive and negative, or positive, negative, and neutral
classifications of social media texts as opposed to more
contextual sentiment is a common method (Burnap and
Williams, 2014; Pak and Paroubek, 2010). A founda-
tional paper from Go et al. (2009) looked at the clas-
sification of Twitter sentiment from the commercial
perspective, identifying positive and negative tweets
based on query terms of emoticons. Kouloumpis
et al. (2011) found that intensifiers are most useful in
the automated detection of sentiment in tweets. This
study found that part-of-speech features are not neces-
sarily useful in automated sentiment detection. A study
by O’Connor et al. (2010) applied positive and negative
sentiment scoring to the 2008 US presidential elections
and found the method can be used to supplement con-
sumer confidence polls.

Notable studies from Facebook Research also
look at public sentiment. Kramer (2010) used status
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updates based in the United States to create a composite
well-being index. This has since been criticised in Wang
et al. (2014), who state that Facebook status messages
are not appropriate for well-being assessment, but rather
mood regulation. Another series of studies by Kramer
(2012; Kramer et al., 2014) reviews emotional contagion
on Facebook. These findings support that short informal
text like Facebook status updates can be used to meas-
ure sentiment online.

LIWC originally was not intended to be used on
short informal text, but to analyse text of expressive
and therapeutic writing (Pennebaker et al., 2007;
Wang et al., 2014). However, its expansive psychomet-
ric dictionary offers a unique opportunity to reveal the
latent emotional context of text-based data. LIWC has
been shown to possess excellent precision and recall
abilities with high but not overfitting correlations in
the analysis of latent sentiment (Mahmud, 2014;
Salas-Zárate et al., 2014), but machine learning
approaches often perform better for prediction tasks
(Balahur and Hermida, 2012; Komisin and Guinn,
2012). LIWC returns the percentage of words across
the categories of social processes, affective processes,
cognitive processes, perceptual processes, biological
processes, work and achievement, as well as punctu-
ation and structural details (Pennebaker et al., 2007;
Tausczik and Pennebaker, 2010). Per cent based infor-
mation shows the latent context and relative worth of
categories in speech. This facilitates measuring change,
looking for group-based patterns, monitoring individ-
ual trends and identifying psycholinguistic profiles.

We note the study of Tumasjan et al. (2010), which
concentrates on the application of LIWC to text gained
from German politicians’ Twitter handles in advance of
the 2009 elections. Our analysis has several distinct dif-
ferences. We used the German dictionary (Wolf et al.,
2008), rather than translating text content to English
for analysis to retain the original intention of the writer
as closely as possible. Whereas Tumasjan and col-
leagues review selected LIWC categories, we consider
all German dictionary categories and established psy-
cholinguistic profiles. Finally, the aim of our study is a
descriptive analysis of political messaging on
Facebook. It is not a prediction task.

Application of a Social Observatory:
Political sentiment in Germany

Still unknown and an open challenge for social
researchers is the actual impact and relationship
between politicians on Facebook and their followers.
Does some relationship exist, and if so, what are the
important parameters thereof? This study reviews
54,655 posts and 231,147 comments by 257,305
unique users at three granularity levels (all posts and

comments per party; monthly posts and comments per
party; individuals’ posts and comments per party) in
the year preceding and one month after the 2013 federal
elections. We establish macro trends, leading to discus-
sions on the difference between politicians and constitu-
ents, then concentrate on discourse related to
campaigning and individual discourse patterns. Each
‘zoom’ of the Social Observatory reveals telling yet
sometimes-contradictory indicators.

On the 2013 German federal elections8

Germany’s multi-cameral Parliament tends to be com-
posed of five different political parties. Centre of right
and right parties are the former governing coalition of
the CDU/CSU and the FDP, and centre of left and left
are the Grüne, SPD, and Linke. The CDU/CSU is the
largest party of both the 17th and 18th federal
Parliament, and SPD is the largest of the opposition
parties from the 17th and 18th Parliaments. The FDP
did not obtain enough votes in total to maintain their
representation and is not a member of the 18th
Parliament. While the CDU/CSU came near to an
absolute majority (which in and of itself signifies a lar-
gely stable political culture and election series), they did
not have enough votes to form a government without a
partner. Without the FDP in Parliament, the CDU/
CSU was forced to find a new coalition partner. This
was the SPD, which obtained the second highest
amount of votes in the election.

Descriptive aspects of German Parliament
members on Facebook

From the 620 members of the 17th German Parliament
we established a convenience sample considering
whether theyhave apublicly availableFacebookaccount
or not, finding 187 politician presences9 with an open
profile or pageonFacebook, representing approximately
30% of Parliament. Post refers to text pushed by polit-
icians; comments refer to responses by constituents and
politicians themselves. Users who only liked a polit-
ician’s Facebookpage are disregarded.Table 1 illustrates
some representative aspects of our dataset.

Facebook is used mainly as a medium for promoting
individual (political) agendas. Interactions between polit-
icians are relatively low: 3,883 occurrences (0.23%) across
all profiles. Figure 2 visualises interactions between polit-
icians and their audience, capturing 85,679 bi-directional
edges considering only text-based interactions, 345,704
considering only likes and 385,936 when considering
both. On average, politicians and individual audience
members interacted 2.70 times via comments, with a max-
imum of 1,503; 4.30 and 998 respectively for likes, and
4.45 and 1554 considering both.

Caton et al. 5

by guest on October 14, 2016Downloaded from 



Politicians posted on average 292 times (just over a post
a day). The average profile contains 29,301 words, from
which 25% were six letters or more (a measure of linguistic
complexity). The average post length was 40.8 words, dif-
fering from the findings of Kramer (2010), who found that
the average length of a Facebook post is nine words. This
finding and its discrepancy compared to Kramer’s results
likely has its origin in the language of this sample.

Timing of posts and comments as well as daily patterns
suggests that politicians see their positions as jobs, while
constituents act as if their elected officials should be con-
stantly available. Figure 3 depicts the continuum of
hourly posting behaviour, with politicians posting in the
morning and at lunchtime, and constituents responding in
the afternoon. Politicians also tend to post on working
days, whereas constituent volume shows no significant
difference between weekdays and weekends (Figure 4).

Public conversation maps temporally and in interest-
based ways to the realistic and real-time public events
in Germany. The monthly distribution of posts and
comments depicted in Figure 4 show an increase in

activity leading to the elections with two exceptions:
December 2012, also observed in 2009–2012, and July
2013 during Parliament’s summer recess. December is
also a ‘‘slow’’ period for comments. Posting activity
significantly dropped in October 2013, directly after
the elections. This drop is not reflected in the com-
ments, nor is the recess drop in July. Comments show
spikes in November 2012 and March 2013, correspond-
ing to interest in the various public scandals of the
former German President Christian Wulff (Figure 5).11

Negative emotions, anger and money discussions are
positively related (rs(331)¼ .137, p< .0005; rs(331)¼ .184,
p< .0005), reflecting on-going public sentiments at finan-
cial bailouts to neighbouring countries across the
European Union. The most commonly repeated post
was ‘‘STOPPT die Massentötung in Rumänien! STOPPT
die Tatenlosigkeit aller Verantwortlichen in der EU!
JETZT!’’ (Stop the mass murders in Romania! Stop the
inaction of EU stakeholders! Now!), referring to wildly
unpopular policy inaction over Romanian ‘fur farming’.
117 unique users repeated this single post 234 times.

Table 1. Descriptive attributes of dataset (numbers are rounded for representation purposes).

Party

Proportion of

17th German

Bundestag

Proportion of

Facebook dataset Posts Comments Likes Audience10

Grüne 11 11 6,586 41,744 194,528 38,665

CDU/CSU 38 40 20,006 68,667 493,891 119,212

FDP 15 11 4,835 26,703 118,215 21,046

Die Linke 12 13 8,886 26,471 178,816 24,986

SPD 23 25 14,342 67,562 501,483 80,300

Total 100 100 54,655 231,147 1,486,933 257,305

Figure 2. The extracted social interaction graph with all and weightiest edges.
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Zooming in and out of a social network

Macro-level assessment

Table 2 is a rather unintuitive matrix of the nearest
neighbours of each party’s posts and comments,

indicating that the platforms of the politicians are not
responding well to the interests of their Facebook audi-
ences – in fact, the audiences are in some cases nearest
to the platforms of rival parties. Constituents and pol-
iticians are distinct groups: all comments are nearest to
other comments and all posts are closest to other posts.

Figure 3. Distributions of hourly posting behaviours, posts and comments.

Figure 4. Weekday and weekend post and comment activity (logarithmic scale).

Caton et al. 7
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Comments are more similar to each other (2.017–4.665)
than posts are similar to other posts (4.140–6.645).
Distance is revealing: e.g. politicians from the govern-
ing party (CDU/CSU and FDP) and SPD are expected
to be dissimilar but rather are one another’s nearest
neighbours, while governing and opposition block
members largely do not occupy the same space. Only
the SPD and Grüne have party and constituent
closeness at k¼ 5, but this is not the case for the
Linke, CDU/CSU, or FDP. In no case is a same
party-constituent pairing closer than k¼ 5.

As the space is small but not equal with an absolute
range from 2.017 (Linke comments and SPD com-
ments), to 10.523 (Grüne posts and SPD comments)
(Table 2), high dimensionality does not unexpectedly
compress the data. As there are no ‘‘popular’’ hubs,

we can also reject that hubness is driving the results
(Radovanovic et al., 2010).

As the above matrix occupies a relatively small
space, a paired sample t test was employed (Table 3)
to review if the patterns of speech are statistically the
same. The results find that overall the five parties have
significant differences in feed patterns as represented by
their respective LIWC categorizations. A hyperplane of
64 LIWC sentiment categories are assessed for 45
unique party-constituent permutations. There are stat-
istically significant differences in 35 political party and
audience pairings out of the possible 45.

While some results are not unanticipated, other pair-
ings are unusual. There is no significant difference
between the posts or comments of the two centre-
right parties CDU/CSU and FDP (t(63) �1.788,

Figure 5. Monthly post and comment activity.

Table 2. Nearest neighbours, politicians and constituents where k¼ 5.

k¼ 1 k¼ 2 k¼ 3 k¼ 4 k¼ 5

CDU/CSU comments Grüne (4.082) SPD (4.209) 4.303 (FDP) Linke (4.655) Grünep (10.487)

Linke comments SPD (2.017) Grüne (3.170) FDP (3.413) CDU/CSU (4.665) FDPp (10.156)

FDP comments Grüne (3.050) Linke (3.413) SPD (3.461) CDU/CSU (4.303) Grünep (10.156)

Grüne comments FDP (3.050) Linke (3.170) SPD (3.210) CDU/CSU (4.082) Grünep (9.872)

SPD comments Linke (2.017) Grüne (3.210) FDP (3.461) CDU/CSU (4.209) FDPp (9.982)

CDU/CSU posts SPD (4.140) Linke (5.201) FDP (5.507) Grüne (6.041) SPDc (10.523)

Linke posts SPD (4.386) FDP (4.645) CDU/CSU (5.201) Grüne (6.089) SPDc (10.523)

FDP posts Linke (6.645) SPD (4.730) CDU/CSU (5.507) Grüne (5.870) SPDc (9.982)

Grüne posts FDP (5.870) SPD (5.898) CDU/CSU (6.041) Linke (6.089) Grünec (9.872)

SPD posts CDU/CSU (4.140) Linke (4.386) FDP (4.730) Grüne (5.898) SPDc (10.184)
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Table 3. Paired Sample t-Tests.

Paired Differences

Std. Std. Error
95% Confidence Interval

Mean Deviation Mean Lower Upper t df

Sig.

(2-tailed)

Pair 1 CDUCSU_comments - CDUCSU_posts .37750 .87798 .10975 .15819 .59681 3.440 63 .001

Pair 2 CDUCSU_comments - DIE_Linke_comments �.02328 .20852 .02606 �.07537 .02880 �.893 63 .375

Pair 3 CDUCSU_comments - DIE_Linke_posts .33047 .86925 .10866 .11334 .54760 3.041 63 .003

Pair 4 CDUCSU_comments - FDP_comments .01953 .18108 .02263 �.02570 .06476 .863 63 .391

Pair 5 CDUCSU_comments - FDP_posts .31187 .83760 .10470 .10265 .52110 2.979 63 .004

Pair 6 CDUCSU_comments - Grüne_comments .04047 .15789 .01974 .00103 .07991 2.051 63 .044

Pair 7 CDUCSU_comments - Grüne_posts .40281 .82997 .10375 .19549 .61013 3.883 63 .000

Pair 8 CDUCSU_comments - SPD_comments �.02422 .17064 .02133 �.06684 .01840 �1,135 63 .260

Pair 9 CDUCSU_comments - SPD_posts .32328 .79619 .09952 .12440 .52216 3.248 63 .002

Pair 10 CDUCSU_posts - DIE_Linke_comments �.40078 .86726 .10841 �.61742 �.18415 �3,697 63 .000

Pair 11 CDUCSU_posts - DIE_Linke_posts �.04703 .27204 .03400 �.11498 .02092 �1,383 63 .172

Pair 12 CDUCSU_posts - FDP_comments �.35797 .85170 .10646 �.57072 �.14522 �3,362 63 .001

Pair 13 CDUCSU_posts - FDP_posts �.06563 .29366 .03671 �.13898 .00773 �1,788 63 .079

Pair 14 CDUCSU_posts - Grüne_comments �.33703 .82788 .10348 �.54383 �.13023 �3,257 63 .002

Pair 15 CDUCSU_posts - Grüne_posts .02531 .25991 .03249 �.03961 .09024 .779 63 .439

Pair 16 CDUCSU_posts - SPD_comments �.40172 .88207 .11026 �.62205 �.18139 �3,643 63 .001

Pair 17 CDUCSU_posts - SPD_posts �.05422 .15282 .01910 �.09239 �.01604 �2,838 63 .006

Pair 18 DIE_Linke_comments - DIE_Linke_posts .35375 .82152 .10269 .14854 .55896 3.445 63 .001

Pair 19 DIE_Linke_comments - FDP_comments .04281 .13607 .01701 .00882 .07680 2.517 63 .014

Pair 20 DIE_Linke_comments - FDP_posts .33516 .79225 .09903 .13726 .53306 3.384 63 .001

Pair 21 DIE_Linke_comments - Grüne_comments .06375 .15537 .01942 .02494 .10256 3.282 63 .002

Pair 22 DIE_Linke_comments - Grüne_posts .42609 .82469 .10309 .22009 .63209 4.133 63 .000

Pair 23 DIE_Linke_comments - SPD_comments �.00094 .10574 .01322 �.02735 .02547 �.071 63 .944

Pair 24 DIE_Linke_comments - SPD_posts .34656 .77837 .09730 .15213 .54099 3.562 63 .001

Pair 25 DIE_Linke_posts - FDP_comments �.31094 .80137 .10017 �.51111 �.11076 �3,104 63 .003

Pair 26 DIE_Linke_posts - FDP_posts �.01859 .17153 .02144 �.06144 .02425 �.867 63 .389

Pair 27 DIE_Linke_posts - Grüne_comments �.29000 .79408 .09926 �.48836 �.09164 �2,922 63 .005

Pair 28 DIE_Linke_posts - Grüne_posts .07234 .28742 .03593 .00055 .14414 2.014 63 .048

Pair 29 DIE_Linke_posts - SPD_comments �.35469 .84619 .10577 �.56606 �.14332 �3,353 63 .001

Pair 30 DIE_Linke_posts - SPD_posts �.00719 .19851 .02481 �.05677 .04240 �.290 63 .773

Pair 31 FDP_comments - FDP_posts .29234 .77422 .09678 .09895 .48574 3.021 63 .004

Pair 32 FDP_comments - Grüne_comments .02094 .09772 .01221 �.00347 .04535 1.714 63 .091

Pair 33 FDP_comments - Grüne_posts .38328 .79445 .09931 .18483 .58173 3.860 63 .000

Pair 34 FDP_comments - SPD_comments �.04375 .11730 .01466 �.07305 �.01445 �2,984 63 .004

Pair 35 FDP_comments - SPD_posts .30375 .75652 .09456 .11478 .49272 3.212 63 .002

Pair 36 FDP_posts - Grüne_comments �.27141 .77293 .09662 �.46448 �.07833 �2,809 63 .007

Pair 37 FDP_posts - Grüne_posts .09094 .29145 .03643 .01813 .16374 2.496 63 .015

Pair 38 FDP_posts - SPD_comments �.33609 .81996 .10249 �.54091 �.13127 �3,279 63 .002

Pair 39 FDP_posts - SPD_posts .01141 .22669 .02834 �.04522 .06803 .403 63 .689

Pair 40 Grüne_comments - Grüne_posts .36234 .76808 .09601 .17048 .55420 3.774 63 .000

Pair 41 Grüne_comments - SPD_comments �.06469 .12972 .01622 �.09709 �.03228 �3,989 63 .000

Pair 42 Grüne_comments - SPD_posts .28281 .73739 .09217 .09862 .46701 3.068 63 .003

Pair 43 Grüne_posts - SPD_comments �.42703 .84078 .10510 �.63705 �.21701 �4,063 63 .000

Pair 44 Grüne_posts - SPD_posts �.07953 .24361 .03045 �.14038 �.01868 �2,612 63 .011

Pair 45 SPD_comments - SPD_posts .34750 .79106 .09888 .14990 .54510 3.514 63 .001
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p< .05), or between the leftist parties SDP and Linke
(t(63)¼�.290, p< .05). Unexpectedly, no significant
differences between the posts and comments of either
the right-oriented parties CDU/CSU or FDP, and the
socialist party Linke (t(63)¼�.893, p< .05); (t(63)¼
�.867, p< .05) are found. Interestingly, the only non-
significant difference of the Grüne was between that of
the posts of the CDU (t(63)¼ .799, p< .05). All other
pairings with the Grüne were significantly different. All
post-comment combinations have significant differ-
ences, which is supported by the results of the nearest
neighbour test.

These differences between relationships as found in
the nearest neighbours and t-tests are interesting, as it
suggests that politicians and their audiences on
Facebook often concentrate on different points, giving
importance to different topics across their general dis-
cussions. When considering only the posts, this finding
supports the assumption that there is a diversity of pol-
itical conversation amongst Facebook users. As the
parties are platform based, this is a positive finding.
The results defy the thesis of linguistic accommodation
of Niederhoffer and Pennebaker (2002); a reason for
the lack of coalescence here could be that conversation
partners change too rapidly to adapt to one another.
It is worth noting that the overall corpus follows the
pattern of polite discussion put forth in Brown and
Levinson (1987) and Pennebaker et al. (2003).

Meso-level assessment

There is a distinct propensity to discuss in present tense,
which suggests that politicians on Facebook are not
‘campaigning’ in the traditional sense, but are rather
discussing their daily activities. Considering the popu-
lation, this is an unexpected finding. Whereas it may
not be unusual for politicians and political discourse to
focus on the present rather than the past, the absence of
future references, especially in the face of national elec-
tions, is unanticipated (Figure 6). Manifestos have 3.19
times more references to the present than the past and
3.05 times more references to the present than the
future, with the exception of the Grüne manifesto
that has an inverse present–future relationship. Posts
are slightly more balanced with present/past references
having a 1.57 difference and present/future discrepan-
cies at 2.73. Comments are the most present-focused,
with audiences referring to the present 3.23 times more
than the past and 4.46 times more than the future. The
findings reported in Tausczik and Pennebaker (2010) of
a political discourse study by Gunsch et al. (2000) state
that this could also be related to positive campaigning
rather than ‘dirty’ campaigning.

Reviewing this further, no significant correlation
exists between positivity, negativity, use of first or
third person, and tense and thereby does not replicate
(Gunsch et al., 2000). The authors also state that first
person references are related to positive campaigns and

Figure 6. Social references in party manifestos, posts and comments.
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third person campaigns are related to negative cam-
paigning. This is again a positive finding. Also rejected
is that the social aspects reflect an ‘‘Us-Them’’ mental-
ity, when taking the relative frequency of inclusivity
and exclusivity into consideration (Figure 7).
Especially manifestos and posts orient towards inclu-
sive discourse. Comments, while having spikes of exclu-
sionary sentiment, are also overarchingly inclusive.

Political discourse does seem to be communal dis-
course as displayed by the manifestos and Facebook
activity. Social references rank well above references
to the self; first person plural and the second person
‘‘you’’ come before first person singular (Figure 8).
There is no cause to believe that the politicians or con-
stituents are using the ‘‘Royal We,’’ in which ‘‘we’’ is
used to imply cohesion but indicates commands
(Tausczik and Pennebaker, 2010).

Micro-level sentiment

While warning scholars to proceed with caution,
Pennebaker et al. (2003) identified sentiment analysis
as an area of future research in their 2003 article. As
expected, emotion words are relatively low, accounting
for 1.5–4% of the party’s corpus (Figure 9). Gathering
all posts and analysing for monthly changes, we cumu-
lated all posts and comments, resulting in the graph
depicted in Figure 9. A bump in positive sentiment

for both posts and comments is visible coinciding
with the lead-up to the federal elections, along with a
minor drop in negatively intoned posts. The rise in
positive sentiment within the last month of 2012 is
due to increased use of holiday wishes analogous to
the finding of Dodds et al. (2011) and Kramer (2010).

As seen in Figure 10(a–d), the message that the par-
ties would like to display is not necessarily being fol-
lowed in day-to-day interactions of politicians and
their constituencies. Overall, manifestos have nearly
double the occurrence of positive emotion words as com-
pared to posts and comments, and are more negatively
intoned than posts in all cases. Positive sentiment within
the posts and comments often concerns congratulations
on birthdays, campaigning activities and self-promotion.

At this granularity level, there are almost no differ-
ences in the means of negative emotion usage, with
posts tending to contain slightly less negative emotion
words as compared to party manifestos and comments.
The greater use of words bearing positive sentiment
compared to words bearing negative sentiment is
noticeable, especially in light of 60% more words
within the LIWC dictionary being associated with
negative sentiment (Pennebaker et al., 2007; Wolf
et al., 2008). The highlights in negative sentiment typ-
ically detail posts about child abuse, angry discussion
on night flight operations, as well as reflections on situ-
ations in the Middle East and Greece. While criticism

Figure 7. Inclusive and exclusive references in manifestos, posts and comments.
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of opposing parties is present, the low negativity levels
suggest that ‘dirty’ campaigning on Facebook is kept to
a minimum, supporting our previous finding and diver-
ging from Gunsch et al. (2000) for this user sample.

Positive emotion aligns with electability. Seven of
the ten most positive commentaries are directed at
CDU/CSU politicians, and the remaining three are

directed at the SPD (Table 3). The incumbent CDU
went on to nearly outright win the election, and the
SPD is the second largest party, and went on to form
the coalition of the 18th German Federal Parliament.
Linke politicians, part of the opposition in the 17th and
18th Parliaments, have six of ten of the most negative
politicians. Another notable feature is that while posts

Figure 8. Language tense patterns of party manifestos, posts and comments.

Figure 9. Average sentiment per month, posts and comments.
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from Peer Steinbrück, the SPD contender for
Chancellor in 2013, are amongst the most positive,
Chancellor Angela Merkel appears neither in the
most positive nor negative posts and comments.
Without an existing benchmark in literature, this rela-
tionship between positive emotions, parties and polit-
icians is left for future work.

A further look at social discourse between individual
politicians to their constituents bears more interesting

features. At the politician level, there are no significant
differences in speech patterns based on gender, nor are
there gender differences found in constituents’ responses
to politicians. There are no indications of the psycholin-
guistic indicators common to deception (more negative
emotion, more motion words, fewer exclusion words,
and less first-person singular) (Newman et al., 2003).
Posts tend to be statements and comments tend to ask
questions, which is indicative of an implicit hierarchy in

Figure 10. Sentiment by (a) manifesto, (b) politicians, (c) constituents and (d) overview of all (error bars at 95% confidence interval).

Table 3. Most positive and negative posts and commentator groups by relative per cent.

Name of politician Party Positive Negative party Name of politician

Gero Storjohann comments CDU/CSU 9.9 3.85 Linke Andrej Hunko comments

Albert Rupprecht comments CDU/CSU 8.78 2.75 Linke Karin Binder comments

Peter Wichtel commenst CDU/CSU 8.64 2.04 SPD Sascha Raabe comments

Ewa Klamt comments CDU/CSU 8.47 1.97 Linke Dorothée Menzner comments

Sabine Weiss comments CDU/CSU 8.31 1.88 Linke Richard Pitterle comments

Günter Glose posts SPD 6.17 1.66 Grüne Marieluise Beck posts

Ingo Wellenreuther posts CDU/CSU 3.62 1.65 CDU/CSU Ernst-Reinhardt Beck posts

Hens Peter Friedrich posts CDU/CSU 3.61 1.54 Linke Ulla Jelpke posts

Peer Steinbrück posts SPD 3.59 1.54 Grüne Omid Nouripour posts

Franke Edgar posts SPD 3.53 1.40 CDU/CSU Guido Westerwelle posts
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politician discourse according to the finding that higher
status people ask less questions (Tausczik and
Pennebaker, 2010). Anecdotally, Chancellor Merkel’s
posts did not contain a single question mark for the 13
months of this analysis.

Discussion

German political discourse is a rich, dense network. A
major characteristic of German political discourse is that
it occupies a close space, though distinct patterns appear
at the correct resolution. Political discourse on Facebook
is polite yet hierarchical. Especially the two largest parties
(CDU/CSU and SPD) tend to use online speech in similar
ways, while the three smaller parties have attributes onto
themselves. Where the Grüne can be characterised as the
least similar and most future-oriented party, the Linke has
the highest concentration of negative commentators.
Distinct in its nondescriptness, the FDP showed no dis-
crete patterns. This lack of platform-based engagement is
quoted as a major reason why the FDP did not meet the
minimum criteria of to be re-elected into the 18th
Parliament in favour of its larger, less conservative partner
CDU/CSU.12 Having established that a signal was avail-
able in the data that the FDP was losing constituent
engagement, the next question is if and how this informa-
tion could have been utilised by campaign managers and
policy workers as a prediction tool.

Facebook offers an open, deliberative and participa-
tory civil society forum for exchange. This was illu-
strated in the lack of gendered discourse and gender-
directed responses in the face of a growing body of
literature stating that Internet anonymity can increase
sexist remarks.13

However, where politicians seek to be as inclusive as
possible, constituents are careful to make distinctions in
their viewpoints, thereby delimitating their own envir-
onments. Active campaigning is kept to a minimum, in
favour of daily updates of how the politician is serving
their community. One overarching fact of this study is
that posts and comments are oftentimes intransitive,
indicating that politicians and constituents are more
often than not talking past one another.

Our analysis of political sentiment mining indicates
that modern assessments of public opinion are largely
improperly scaled. Individual sentiment scoring is an
especially revealing method for community modelling.
Positive and negative sentiment display interesting char-
acteristics but show only limited potential as public opin-
ion gauges, in agreement with Chung and Mustafaraj
(2011), Jungherr et al. (2011) and Pennebaker et al.
(2003). Much more revealing is the meso-analysis, as
aggregating sentiment levels of users at the macro level
leads to an averaging value without distinct significance,
causing a blurred view. Accordingly, it is striking that

when observing at different levels, i.e. all, a party, or an
individual, we uncover subtleties otherwise lost in the
aggregation method.

Our Facebook-based Social Observatory facilitates
interdisciplinary mixed method research on aspects of
online communities. It adds to the toolbox of social
media researchers that is today predominantly occupied
by Twitter applications. Using a point and click style
interface (social science) researchers can avoid the tech-
nical challenges of extracting social media data. We have
also provided basic analytical capabilities that we will
extend as required by future use cases. Although we pre-
sent a case study in political science, our Social
Observatory can be leveraged for any case study requiring
Facebook data. Here, we envisage case studies in areas
such as business as well as competitive intelligence, mar-
keting and campaign management, and community detec-
tion and monitoring. Using our approach, researchers can
mitigate the research biases common to social media
research (see González-Bailón et al., 2014; Ruths and
Pfeffer, 2014) as we can extract complete timelines, not
samples thereof. We do, however, note that just because
Facebook data is made available in this manner, not all
research facilitated by a Social Observatory is ethical.
Researchers need to be aware of the ethical boundaries
of Facebook-based studies as the recent Facebook conta-
gion study (Kramer et al., 2014) painfully demonstrated.
Anecdotally, most users are completely unaware that
Facebook pages are publically accessible and conse-
quently do not provide informed consent to studies con-
ducted by third parties. Simply by clicking like on a page,
they conceivably become an entity in a dataset that a
Social Observatory can curate for a researcher to analyse.

Conclusion

The continuing integration of the offline and digital self
creates new requirements for social researchers and
stakeholders. Missing has been a generalisable, open-
source tool for accessing and analysing these phenom-
ena that is specific to Facebook. We have presented the
vision and architecture of a Social Observatory: a low
latency method for the observation and measurement
of social indicators within an online community. To
explore the usefulness and possibilities of a Social
Observatory for policy and decision makers, we imple-
mented a Facebook adapter that allowed us to focus
the Observatory on 187 German federal politicians and
257,305 lay constituents, as proxies to public opinion.
We were able to observe how users interacted, with
whom and at what volume. In addition, by leveraging
the LIWC text analysis toolkit, we were able to identify
different facets of communication processes and
observe significant differences in sentiment between
the politicians and their followers.
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The implications of this work are threefold; firstly,
we offer a framework to automatically extract public
data troves (even from Facebook profiles) for use in
studies related to online communities. Secondly, that
by providing a few generalizable tools quite complex
interdisciplinary research processes can be undertaken.
Finally, using only a small number of points of refer-
ence, i.e. the 187 politicians, our approach can discover
and analyse the actions of an entire (sub)community.
By employing similar techniques and extending the
analysis stages, we would be able to undertake the
same study on any online social community, shedding
light on specific social dynamics, and identifying key or
influential actors unobtrusively. This ability is of key
strategic use for public figures that wish to assess, for
example, their public standing, or the reactions to spe-
cific actions.

While we believe the results of our case study are
encouraging, the methods are not without fault.
Within our quality control of selected users we found
posts with incorrectly labelled sentiment scores. A mis-
interpretation by the word/word stem approach is
likely, as these methods are notoriously hard to apply
to cases of irony and sarcasm (Tsur and Rappoport,
2010). We will also revisit our post filtering approach;
we included only status updates without photos, videos
or links. Some politician profiles heavily use media con-
tent and are consequently largely omitted from our
analysis. Politicians have PR teams that may post on
their behalf; as such, we will extend our feature extrac-
tion and filtering methods to enable differentiated
author studies. We will also automate the text analytics
functionality currently provided by LIWC, making it
an invokable tool in the future iterations of the Social
Observatory workflow.
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Notes

1. Latency here means visibility, not timespan, as commonly
understood in Computer Science.

2. Thus excluding marginal, extremist and localized parties.

3. http://www.socialobservatories.org/vision

4. See for example: https://apps.facebook.com/namegen-

web/ (accessed May 2014).
5. See for example: Wandora, http://wandora.org/ (accessed

May 2014).
6. We note that Truthy (Mckelvey, 2013) states they aim to

open their API for queries but have to date not done so.
7. The Java-based tool Wandora (Kivelä and Lyytinen,

2004) has a Facebook plug-in, but a limited ability to

parse entire graph, leaving it with limited research

functionality.
8. This is a summary of information available on the federal

government’s website: http://www.bundestag.de/htdocs_e/
9. We note that 25 officials’ Facebook accounts were

deleted following the elections and thus not considered.
10. Audience relates to the number of unique Facebook IDs

that interacted with one or more politicians. Note: the

total audience is not the sum for each party, indicating

that Facebook users interact with more than one party.
11. For more information on this politician’s public mishaps

and scandals, please see: http://www.spiegel.de/inter-

national/topic/christian_wulff/archiv-2011235.html
12. http://wahl.tagesschau.de/wahlen/2013-09-22-BT-DE/

analyse-wanderung.shtml#11_Wanderung_UNION

(accessed November 2013, infographic in German).

13. For examples, please review: http://www.nationinstitu-

te.org/blog/nationbooks/3014/challenging_online_sex-

ism/; http://www.theguardian.com/commentisfree/2011/

nov/07/abusive-sexist-comments-online (accessed May

2014) or review the conversation surrounding #Aufschrei.
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