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Abstract 
Correlation networks are emerging as a 

powerful tool for modeling temporal mechanisms 
within the cell. Particularly useful in examining co-
expression within microarray data, studies have 
determined that correlation networks follow a power 
law degree distribution and thus manifest properties 
such as the existence of “hub” nodes and semi-
cliques that potentially correspond to critical cellular 
structures. Difficulty lies in filtering coincidental 
relationships from causative structures in these large, 
noise-heavy networks. As such, computational 
expenses and algorithm availability limit accurate 
comparison, making it difficult to identify changes 
between networks. In this vein, we present our work 
identifying temporal relationships from microarray 
data obtained from mice in three stages of life. We 
examine the characteristics of mouse networks, 
including correlation and node degree distributions. 
Further, we identify high degree nodes (“hubs”) 
within networks and define their essentiality. Finally, 
we associate Gene Ontology annotations to network 
structures to deduce relationships between structure 
and cellular functions. 

1. Introduction

The advent of high-throughput “omics”
technologies has allowed for surveillance of cellular 
mechanisms on the genome-wide scale. With the 
development of these approaches comes the need for 
thorough systems biology analysis. In 2006, 
Bruggeman et al. highlighted three main 
requirements for a characterizing a biological system 
that can be applied on the cellular level. These steps 
include developing a knowledge-base of all 
interactions and interactors within the system, the 
mechanisms of those interactions in various 
experimental conditions, and responses to both 
internal and external stimuli. This complete analysis 
combined with appropriate system modeling will 
allow for the prediction of cellular response, the 

identification of unknown regulatory mechanisms, 
and eventually the ability to guide the treatment of 
cellular system to a desired response [3]. While the 
technology required to orchestrate and model such a 
thorough analysis may not yet exist in entirety, the 
study of systems biology continues to mature and 
realize novel insights about cellular systems.  
 There are many approaches to systems biology; 
indeed, the integration of network models in the 
creation and analysis of biological relationships has 
become a powerful took for representing spatio-
temporal changes on a whole-genome scale. In 
particular, the correlation network stands out as a tool 
for measuring linear relationships such as gene 
expression and protein concentration. Threshold-
filtered correlation networks created from gene 
expression data have been found in S. cerevisiae [6, 
13], A. thaliana [10, 11], D. melanogaster [14], and 
M. musculus [7]. All of these networks fall within a
broad network structure described as a ‘scale-free’
network topology that has certain defining
characteristics such as adherences to a power-law
node degree distribution, a lower than average
clustering co-efficient, and lower than average path-
length [2, 3]. This scale-free definition has been
found to apply not only to other biological networks
(interactome, metabolome) but also in a wide range
of applications such as social networks and citation
databases [1].

1.1. Network Construction  

 In a network drawn from microarray expression 
data, genes are represented as nodes, with an edge 
drawn between two nodes if some relationship exists 
between them. One of the most straightforward 
relationships to identify between two genes is 
correlation of linear expression, commonly measured 
by Pearson correlation. The resulting network is a 
graph of all genes and their correlations to all other 
genes in the dataset; in graph theory this is known as 
the complete or Kn network, where n is equal to the 
number of genes. The nodes and edges in this 
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network must then be weighted or directed for the 
user to be able to discern critical patterns; this can be 
done by imposing weights on the edges (where the 
weight is determined by the level of correlation 
between two genes) or by removing edges outside of 
some threshold t as shown in Figure 1. Either method 
is suitable for the correlation network in theory, but 
for large networks representing genome-wide 
transcripts, the method of removing edges creates a 
more computationally manageable network. For 
example, in a complete graph Kn, the number of 
edges is known to be equal to n*(n-1)/2. The K1000 
graph will contain some 499,500 edges, a number 
that is relatively manageable by current analysis and 
visualization methods (but likely requiring the 
availability of multiple processing cores). When one 
investigates the entire set of genes for an organism, 
volume becomes a problem once edges are created. 
For example, one microarray analysis for a BalbC 
mouse contains over 41,000 gene probes resulting in 
the creation of a complete network with ~840 million 
edges. While construction and storage of this network 
is relatively simple, the analytic complexity far 
exceeds current computational resources for 
laboratories without access to supercomputing 
resources. Thus, for large networks, it is prudent to 
use the method of edge removal over edge weighting 
for network management.  

When looking at the correlation distribution of the 
complete Kn network, previous studies have shown 
that correlations in the complete network tend toward 
a normal distribution, with the majority of edges 
having an undiscernable or random expression 
correlation around 0.00, and distribution of 
correlations becomes increasingly smaller as the 
extreme correlations (±1.00) are approached. With 
the non-linear distribution of correlations in a 
complete network, the threshold filtering removal of 
edges cuts the network down considerably. 

1.2. Hubs, Clusters and Pathways 

 When examining the filtered correlation network, 
one of the most interesting and readily identifiable 
structures are the network “hubs,” or nodes with a 
high degree (number of edges) compared to the rest 
of the network. This is apparent when examining the 
degree distribution in networks that follow a power 
law distribution, meaning that there are many nodes 
that are poorly connected and a few nodes that are 
very well connected [1]. Studies have shown that 
nodes identified as hubs are critical for network 
structure, and their removal results in the breakdown 
of passage of signals and network robustness [2]. In 
protein-protein interaction networks, the hubs noted 
as proteins are encoded by genes that are known as 

‘essential’. When such genes are knocked-out or 
knocked-down, lethality of the organism results [8, 
12]. Similar observations have been reported with 
gene correlation networks in 2010 by Mutwil et al., 

where 20 essential hub genes were identified in A. 
thaliana and the resulting tDNA knock-out mutation 
of those genes resulted in a lethal phenotype in 5 
cases, and a reduction of major system functions 
(size, coloring) in one case.   

1.3. Proposed Approach 

 In this work we provide a pipeline for network 
characterization with a proof of concept using 
temporal microarray expression data from the aging 
mouse. We highlight four steps for identifying some 
critical structures within large networks (>40,000 
nodes) that have a high likelihood for corresponding 
to real biological function.  These steps, shown in 
Figure 2, correspond to increasingly complex 
processes that are currently being investigated and 
applied in systems biology research. The first 
filtering step involves examining size and density of 
large networks to determine an appropriate threshold 
for reducing the size of the network. Second, we 
suggest a characterization step to verify that the 
resulting filtered networks indeed adhere to a power 
law distribution and are sized appropriately for 
current visualization and analysis programs. Third, 
we suggest a sweep of the network to identify basic 
structures that are known to correspond with 
potentially critical genes and gene modules. Finally, 
we address the need for integration of graph theory 
and current systems biology techniques to filter noise 
from causative structures, and align those structures 
under different spatio-temporal conditions.  

To illustrate this pipeline we propose a proof of 
concept using hypothalamic gene expression data 
from mice from three different age groups: young, 
middle-aged, and aged.  Through the application of 

Figure 1. Correlations in the complete network
(left) have been removed for clarity. Green edges 
in the filtered network (right) correspond to 
negatively correlated nodes, and red edges 
correspond to positively correlated nodes. 



this pipeline we are able to highlight the results for 
each step and propose a putative target gene list for 
further study in aging based solely on network 
analysis. The datasets used in this study are 
highlighted in Table 1 (right). We created and filtered 
complete correlation networks for each dataset by 
performing a Pearson correlation between each 
possible pair of gene expression vectors in the 
dataset. We then decide upon a network correlation 
threshold of ±0.95-1.00 by examining the correlation 
distribution for a random 10,000 node sample from 
each network. By filtering networks to solely the very 
correlated and very anti-correlated edges, we observe 
a power-law node degree distribution typical of the 
scale-free network [1]. We then rank nodes according 
to their degree, and are then able to identify the top 
‘hub’ nodes most likely to be involved in essential 
interactions for that particular temporal state. Finally, 
we use the publicly available network analysis 
software NetworkBLAST to identify clusters of 
nodes and provide an example of a cluster that 
exhibits a common function. The availability of 
temporal whole-genome expression data allows us to 
exploit and observe the evolution of hub nodes from 
the young to the middle aged to the aged mouse. 

1.4. Correlation vs. causation 

It is important to note that correlation networks 
can reveal direct correlations between two genes or 
interactors, but indirect interactions can be and are 
often lost [11]. For example, in a regulation cascade, 
the first gene in the pathway may be expressed at low 
levels, but that gene’s products may go on to regulate 
transcription of a second gene which will be 
expressed at exponentially higher levels or the third 
gene that may be expressed at a exponentially lower 
levels. These relationships are unlikely to be captured 
by the application of the correlation network, and 
other means are needed to measure these non-linear 
relationships (such as the Spearman Rank 
correlation). 

Dataset Age Type Probes 

MB_Young 2-3 months Balb/C 41,174 
MB_Midage 12-13 months Balb/C 41,174 
MB_Aged 13-24 months Balb/C 41,174 
MC_Young 2-3 months CBA 43,675 
MC_Midage 12-13 months CBA 43,675 
MC_Aged 13-24 months CBA 43,675 

2. Methods

2.1. Data & Pearson correlation 

 Complete microarray expression data for 6 sets of 
mice at various stages in their lives, denoted as 
young, middle aged, and aged mice (see Table 1) was 
obtained from the Bonasera lab. Each gene in each 
dataset had at least n = 5 sample expression values; 
gene comparisons with uneven sample numbers or n 
< 5 samples were thrown out. Each microarray is 
represented in our network creation pipeline as a set 
of gene expression vector objects, genei, where genei 
contains a gene identifier idi and a set of expression 
values for each sample expi , expi+1, and so on. The 
Pearson correlation coefficient was then determined 
for each gene expression vector versus all other gene 
expression vectors in the dataset, using Equation 1: 

Where x = the set of expression values for genex and 
y = the set of expression values for geney.  

Figure 2. Pipeline for identifying important
network structures with real biological function
within correlation networks 

Table 1. Age and type of hypothalamus 
gene expression data used for male mice 



2.2. Network creation, threshold filtering, and 
densities 

For each network, we took a random 10,000 node 
sample and created a complete network, K~41k, from 
each to determine their respective correlation 
distribution. Based on the distribution we chose to 
examine only those extremely correlated values 
where -1.00 ≤ ρ ≤ -0.95 and 0.95 ≤ ρ ≤ 1.00 to create 
manageable networks containing very tightly 
correlated genes. This pairwise correlation was 
calculated for all genes under the previously specified 
positive (0.95 ≤ ρ ≤ 1.00) and negative (-1.00 ≤ ρ ≤ -
0.95) thresholds to create filtered networks. We note 
that not all important edges will be captured by this 
choice of threshold and likewise that not all edges 
captured will be important; indeed the filtering of 
noise from causative relationships remains an issue 
with the correlation network model. 

2.3. Structure identification 

One of the most easily 
recognizable characteristics about a 
network is the node degree 
distribution. At this point there is no 
true thresholding method for 
differentiating between hub and non-
hub nodes. A  study in network 
robustness performed by Giaver et al. 
in 2002 determined that the disruption 
of 73% of randomly chosen genes in 
the yeast network does not cause 
organism lethality (by means of 
network structural collapse), however 
a targeted attack of hub nodes will 
likely result in network failure [6]. We 
confirmed the adherence of the 
networks to a power law node degree 

distribution and identified hub nodes for each 
network by ranking nodes in descending order by 
degree. The top 20% of nodes per network (8,236 
nodes in Balb/c; 8,735 nodes in CBA) were labeled 
as “hub” nodes, with the 20% arbitrarily chosen 
(there is no current definition or threshold for what 
distinguishes hub versus non-hub nodes). In addition, 
the essentiality of the top 20 hubs was examined 
using publicly available databases.  The theory of 
centrality-essentiality states that hub nodes have a 
higher likelihood to be lethal when disrupted, 
highlighting the vulnerability of the scale-free 
network. The disruption of a non-hub node has less 
potential for affecting organism survival, but an 
intelligent attack, or disruption of a hub, could 
potentially cause the death of the cell and in turn the 
organism if it is a critical point in development [8, 
12]. To test the essentiality of hubs, we integrated 
data from the Mouse Genome Informatics (MGI) 
database, and defined gene essentiality by the 
following criteria: (1) the gene had been tested by an 
in vivo knockout and (2) the resulting phenotype 
from knockout was lethal or severely affected a 
major body system (growth, reproduction, etc). 
Lethal or system-affecting phenotypes resulting from 
mutations that could not be directly attributed to a 
disruption only in the gene of interest were not 
considered essential or system-affecting. 

Finally, we considered the clusters of nodes in the 
network for their possibility in corresponding to gene 
modules. It is possible for complete or “almost 
complete” Kn networks to exist within large 
correlation network, and it has been proposed that 
these networks can correspond to a set of genes 
working toward some function, for example, in a 
regulatory manner or as a protein complex. In graph 
theory, these complete or almost complete 
subnetworks are be referred to as cliques and semi-

Figure 4. Correlation distribution for random 10,000
node samples per dataset 

Figure 3. Log/log node degree distribution for each dataset. Degree
counts are grouped for clarity. Linear regression lines are included.
Node degree is grouped for clarity; however, note that this skews the
linear nature of the distribution in log/log format. 



cliques, and many algorithms exist to find them 
within larger graph models. However, the size of 
correlation network produced by our initial filter was 
still too large for current methods to handle. We 
chose, then, to filter our networks to only edges with 
positive correlations of value 1, producing networks 
with only a few thousand edges. Then we executed 
the NetworkBLAST software developed by Kalaev et 
al. in 2009 [9] under default parameters for one 
species to identify top clusters within our twice-
filtered network. The top resulting clusters were 
analyzed by Gene Ontology term enrichment to 
determine if any functional annotation was common 
among nodes [5]. 

3. Results

The following results are for correlation networks
created from hypothalamic gene expression data from 
two types of male mice, Balb\C and CBA, at three 
stages of life: young, middle-aged, and aged.  

3.1. Correlation Distribution 

 We created complete K10,000 networks for each 
dataset using a random 10,000 node sample and we 
present the resulting correlation distribution in Figure 
3. In all networks described, the majority of
correlations fall at or near 0.00, indicating there is
little to no correlation between linear expression
patterns. Thus we present that for the size of network,
choosing a tight threshold for correlation at the very
extreme values will allow for the creation of a
manageable complete network.

3.2. Power-law degree distribution 

Figure 4 describes the log/log node degree 
distribution for all datasets and indeed follows a 
power-law distribution (which is a straight line in 
log/log form). The hub nodes are identified as the top 
20% of nodes in a ranked list according to degree. 
One point worth mentioning observed from Figure 4 

is that the maximum node degree rises and then falls 
again from young to middle-aged to aged mice. Until 
further testing is performed an explanation is 
speculation at best, but this could be due to 
compensatory efforts of cells as mechanisms die out 
over time. The cell is designed to maintain a state of 
homeostasis and will attempt to return to a state of 
homeostasis after perturbation. It is known that over 
time with the accumulation of damages to nuclear 
DNA that some mechanisms are bound to become 
irreversibly damaged; evolution has designed a 
robust system such that these disruptions will not 
cause the death of the organism. The cell is designed 
to adapt and compensate for these losses – as such, if 
one gene were to become mutated, the cell might 
signal to other genes to compensate for the loss. This 
is one possible explanation for the above 
phenomenon that may be of interest in future studies. 

3.3. Centrality-essentiality  

The centrality-essentiality concept states that 
those genes identified as hubs within a network are 
more likely to be known as essential genes [8]. To 
verify this hypothesis within our data, we identified 
the top 20 hubs for each datasets and turned to the 
Mouse Genome Informatics database (MGI). For 
each hub node (gene) we identified two factors from 
the MGI database: (1) Has a knock-out, knock-down, 
or knock-in mutation had been performed for that 
gene in vivo? and (2) if the mutation had been 

Dataset in vivo 
KO/KD Essential System-

affecting 
No 

Phenotype 
MB Young 6 0.50 0.33 0.17 

MB Midage 5 0.40 0.60 0.20 

MB Aged 3 0.67 0.33 0.00

MC Young 1 0.00 1.00 0.00 

MC Midage 7 0.43 0.43 0.14 

MC Aged 7 0.14 0.86 0.00

Figure 5. Hub genes per dataset identified in the 
MGI database as having an in vivo knock-
down/out/in mutation and the resulting 
phenotype. 

Table 2. Essentiality descriptions for known in 
vivo mutations of hub nodes 



performed, is it detrimental to some system or result 
in lethality of the mouse pre- to post-natally? Table 2 
defines how many genes had been mutated in vivo 
and classifies those mutations as “essential” (pre-
postnatal lethality), “system-affecting” (detrimental 
to a major system), or “no phenotype” (no observable 
phenotype observed with gene mutation). We also 
present the genes identified in Table 2 with their gene 
name, description, and characterization (Figure 5). 
The system descriptions accompanying essential 
mutations are as they are described in the MGI 
database. This reaffirms the idea that hub nodes are 
likely to be essential for life or for “normal” system 
functions, this also provides a list of targets for future 
experimental validation. In addition, the remainder of 
untested genes are candidates for essential genes in 
the aging process. 

3.4. Cluster analysis and Gene Ontology 
enrichment 

 For each network we filtered the top 20% of 
nodes from the original network to create a smaller 
subnetwork (8,236 nodes in MB and 8,735 nodes in 
MC) and applied a correlation filter to only see those
genes that had a correlation near 1.00 to hasten
runtime (as the version used had not been
implemented in parallel). In the MC Young dataset
we identified a cluster (or semi-clique) of genes with
15 nodes and 60 edges existing out of a possible 105.
This cluster had 10 nodes with known Gene
Ontology annotation, and of those, four were
significantly related by ontology. Those were nodes
for Olfr570, Olfr544, Dand5, and Olfr8, which play
roles in the following common functionalities based
on GO annotation: cell surface receptor linked
signaling pathway, signal transduction, sensory

perception, cognition, signal transmission, signaling 
process, and G-protein coupled receptor protein 
signaling pathway. 
One method for filtering noise from causation in a 
network is to use Gene Ontology enrichment. A study 
in D. melanogaster in 2006 by Xia et al. provided a 
list of Gene Ontology annotations grouped according 
to their general cellular function (proliferation, 
differentiation, proteolysis, and immunity) that were 
found to be enriched when studying differential 
expression of clusters in the proteome. To determine 
if this differential expression occurred within our 
networks, we annotated nodes in the MB Young and 
MB Aged networks with all known Gene Ontology 
(GO) annotations, downloaded in October 2009 from 
http://www.geneontology.org. We then colored the 
nodes according to their GO classification 
(proteolysis, differentiation, proliferation, or 
immunity) and examined the results (Figure 7).  

Figure 6.  A portion of the MC Young correlation network at 1.00 only filter, where node size and color
correspond to degree. Insert: The top cluster identified from the MC Young network (right, inset) with nodes
annotated with Entrez Gene names where applicable. 

Figure 7. Young and aged BalbC networks filtered at 
0.99 correlation and by Gene Ontology for 
differentiation (red), proliferation (green), proteolysis
(blue), immunity (yellow), and unknown genes (gray). 



What we observe is that while we know the overall 
edge density of the original filtered aged mouse 
network to be relatively close to the edge density of 
the original filtered young network, the young mouse 
network is actually more enriched in the GO 
annotations listed, and thus denser. This could further 
reinforce the idea of compensation – while some 
interactions are strong and tightly correlated in the 
young mouse, as disruptions and mutations occur 
these signals must find other avenues or stop 
altogether, resulting in the loss of the tight gene 
correlation seen in the young. 

To ensure that this apparent loss of edges was not 
occurring due to thresholding (i.e. genes were highly 
correlated around 0.90 but missed by the 0.95-1.00 
threshold) we examined subgraphs from the MB 
Young and MB Aged networks to determine what 
was happening. For the MB Young subgraph in 
Figure 8, all of the edges exist with a correlation 
value of 0.99. The correlations in the MB Aged 
subgraph with the same nodes have correlations 
occurring across all values possible from -1.00 to 
1.00, suggesting that the tight correlations observed 
in the MB Young subnetwork were coincidental and 
therefore are likely noise. Further investigation 
revealed that this structure had little common Gene 
Ontology enrichment. This subnetwork is one of 
many from the original filtered network, but 
highlights the high “noise” component of correlation 
network analysis and the need for further tools to 
discern coincidental relationships from true 
biological modules. 

4. Discussion

We have provided a proof of concept and
approach for examining temporal gene 
expression data using the correlation 
network. It was observed that correlations 
follow a distribution that resembles a 
standard normal distribution, and as such a 
threshold for large networks can be chosen 
according to this distribution. It should be 
emphasized that for large networks (>40,000 
nodes) that are difficult to visualize these 
types of characterizations and analyses are 
needed to know what the network “looks” 
like, and to ensure that the network has been 
constructed and filtered appropriately. We 
have verified the scale-free nature of the 
filtered gene correlation network over several 
datasets and used that distribution to identify 
resulting hub structures within each network, 
in addition to the essentiality of those hub 
structures where applicable. Finally, we 

present an example of how one might use current 
network analysis tools on a smaller network to 
identify modular structures that potentially 
correspond to true biological complexes. This work 
only briefly touches on graph theoretic approaches 
that can be employed to identify causative structures 
within the noisy correlation network; indeed there are 
a number of more complex analyses that can be 
performed on a network, including graph matching, 
network alignment, pathway searches, etc.. Since the 
field of interaction networks is relatively new, there 
is opportunity for novel methodologies and 
discoveries to be made for a variety of types of 
interaction networks. 
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