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2 Department of Mathematics, University of Nebraska at Omaha, Omaha, NE 68182-0243, USA
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Abstract An asynchronous Boolean network with N nodes whose states at each time point

are determined by certain parent nodes is considered. We make use of the models developed by

Matache and Heidel (M.T. Matache, J. Heidel, “Asynchronous random Boolean network model

based on elementary cellular automata rule 126”, Phys. Rev. E 71, 026232 (2005)) for a constant

number of parents, and Matache (Matache M.T., “Asynchronous Random Boolean Network

Model with Variable Number of Parents based on Elementary Cellular Automata Rule 126”,

IJMPB, Vol. 20, 8 (2006), p. 897-923) for a varying number of parents. In both these papers the

authors consider an asynchronous updating of all nodes, with asynchrony generated by various

random distributions. We supplement those results by using various stochastic processes as

generators for the number of nodes to be updated at each time point. In this paper we use

the following stochastic processes: Poisson process, random walk, birth and death process,

Brownian motion, and fractional Brownian motion. We study the dynamics of the model through

sensitivity of the orbits to initial values, bifurcation diagrams, and fixed-point analysis. The

dynamics of the system show that the number of nodes to be updated at each time point is of

great importance, especially for the random walk, the birth and death, and the Brownian motion

processes. Small or moderate values for the number of updated nodes generate order, while

large values may generate chaos depending on the underlying parameters. The Poisson process

generates order. With fractional Brownian motion, as the values of the Hurst parameter increase,

the system exhibits order for a wider range of combinations of the underlying parameters.

1. Introduction

A large class of biological networks, cellular automata, or artificial neural networks have been

modelled as Boolean networks in recent years (Aldana et al., 2003), (Andrecut and Ali, 2001),
1
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(Anthony, to appear), (De Garis et al., 2002), (Fox and Hill, 2001), (Heidel et al., 2003), (Huang,

2001), (Huepe and Aldana, 2002), (Kürten, 1988), (Matache and Heidel, 2004), (Matache and

Heidel, 2005), (Matache, 2006), (Silvescu and Honavar, 2001), (Shmulevich et al., 2002). The

Boolean models are easy to understand and relatively easy to handle. General interest in Boolean

networks and their applications in biology and automata networks started much earlier (Boccara

et al., 1994), (Flyvbjerg and Kjaer, 1988), (Fogelman-Soulie et al., 1982), (Fogelman-Soulie,

1984), (Kauffman, 1993), (Sherlock, 1979), (Stauffer, 1988), with publications such as the one

by Kauffman (1993), whose work on the self-organization and adaptation in complex systems

has inspired many other research studies. It is important to understand and study the dynamics

of Boolean networks in order to use them for simulation and prediction of the real networks they

model.

The present work is an extension of previous work by Matache and Heidel (2004) and Matache

(2006). Those papers generalize rule 126 of elementary cellular automata (ECA) (Wolfram, 2002)

and provide models for the probability of finding a node in state 1 (or ON) at time t. Rule 126

can be very simply described in terms of cell evolution as follows: complete crowding of live,

ON, cells causes death, OFF, in the next generation, while complete isolation of a cell prevents

birth in the next generation (Matache and Heidel, 2004) . In other words if a node and each of

its parents are all ON or all OFF then the node turns OFF at the next time step; otherwise it

turns ON.

Various authors have observed that for many biological phenomena or cellular automata,

asynchronous versions are more plausible models than synchronous ones. For example, individual

ants display aperiodic patterns of active and resting periods, while the colony as a whole may

exhibit synchronized activity; asynchronous activity of the neurons in the brain could lead to

some global patterns (Cornforth et al., 2002). At the same time, “Type A” spiking neurons

with “binary encoding” in which the neurons have “active” and “non-active” periods (Anthony,

to appear) generate asynchronous dynamics in a neural network. In (Stark and Hughes, 2000)

the authors show that asynchrony in cellular automata is a realistic approach to modelling

biological information processing. They note that “in the absence of human intervention and

invention, nature is asynchronous”. At the same time it has been observed that asynchronous

random Boolean networks can be a good choice for modelling both rhythmic and non-rhythmic

phenomena, while using an updating scheme that generates uniform average time delays and

independent updating for all nodes (Di Paolo, 2001). The topology of rhythm in such networks is
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further studied in (Rohlfshagen and Di Paolo, 2004). Asynchrony in cellular automata has also

been studied in (Schönfisch and De Roos, 1999). In the paper (Matache and Heidel, 2005) the

authors consider an asynchronous Boolean network with N nodes, each node having a number of

parents that is fixed for all nodes. In (Matache, 2006) the author allows for a varying number of

parents, generalizing results in (Matache and Heidel, 2005); in both these papers the asynchrony

is generated using some classical random variables, including the uniform, binomial, Poisson,

power law, and hypergeometric distributions. These distributions represent a more general

updating scheme than the ones used so far in the literature, e.g. the clock scheme (DiPaolo,

2001), (Low and Lapsley, 1999), (Thomas, 1979), the cyclic scheme (Kanada, 1994), the random

independent scheme (Harvey and Bossomaier, 1997), and the random order scheme (Harvey and

Bossomaier, 1997). It has been shown in (Cornforth et al., 2002) that properties of the models

are changed by the particular update scheme chosen. In this paper we go one step further

with the generalization and assume that the updating of the nodes is done according to certain

stochastic processes so that the distributions generating the number of nodes to be updated

can change with time. Thus we provide further insights into the dynamics of the Generalized

Asynchronous Random Boolean Networks (GARBN) (Gershenson, 2002), which can update any

number of nodes, chosen at random, at each time step.

We make use of the Boolean rule mentioned above, namely if a node of the network and each

of its parents have the same value (0 or 1) at time t, then the value of the node at the next time

step t + 1 is 0; otherwise it is 1. We discuss the formulae for the probability of finding a node

in state 1 at time t in Section 2. The most general formula for the probability p(t + 1) that a

node is in state 1 at time t + 1 given p(t) is

p(t + 1) =
J∑

j=1

Mj

N

[
pj(t)
Mj

N

(
1− xt

N

(
1− (1− p(t))kj + p(t)kj

))
+

xt

N

(
1− (1− p(t))kj

)]

where N is the size of the network, xt is the number of nodes updated at time t, k1, k2, . . . , kJ

are the distinct values for the number of parents of the nodes, Mj is the number of nodes

with kj parents, and pj(t) is the probability of finding a node having kj parents in state 1 at

time t. In Section 3 we provide an overview of the stochastic processes used for generating

asynchrony, and we use simulation methods to generate consecutive states of the network for

both the real system and the model using these processes. The results from the model match

the results from the system very well. In Section 4 we study the dynamics of the model through

the analysis of the sensitivity of the orbits to the initial values and bifurcation diagrams. In the
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first three subsections of Section 4 we use Poisson, random walk, and certain birth and death

processes as the random number generators for the number xt of nodes to be updated at each

time point t. We show that the system exhibits ordered behavior mostly for small and medium

values of xt, while for large values it might exhibit chaos for certain parameter combinations.

In the synchronous case we show that the system’s behavior matches the previous findings

of (Matache and Heidel, 2004). In 4.4 we extend our analysis to asynchrony generated by

the Brownian motion and fractional Brownian motion processes to understand the dynamics

of the system when the number of nodes to be updated has special properties, such as long-

range dependence and self-similarity. We show that the values of xt together with the Hurst

parameter are important in the dynamics of the system. Section 5 is dedicated to conclusions

and possibilities for future work.

2. The Random Boolean Network Model

In this section we describe the Boolean model. Significant results from (Matache and Heidel,

2005) and (Matache, 2006) are recalled.

Consider a network with N nodes. Each node cn, n = 1, 2, . . . , N , can have only two values,

1 or 0. Often this is interpreted as a system in which each node can be either ON or OFF. At

each time point t the system can be in one of the 2N possible states. We assume the network is

asynchronous; that is, not all nodes are necessarily updated at each time point. The evolution

of the nodes from time t to time t+1 is given by a Boolean rule which is considered the same for

all nodes. Each node cn is assigned a random “neighborhood” of parents, whose values at time

t influence the value of cn at time t + 1 through the following Boolean rule. If cn and each of

its parents have the same value at time t (that is they are all either 0 or 1), then cn(t + 1) = 0,

otherwise cn(t + 1) = 1. This generalizes rule 126 of cellular automata (Matache and Heidel,

2004, 2005), (Wolfram, 2002). The parents of a node are chosen randomly from the remaining

N − 1 nodes and do not change thereafter. More precisely, if a node has k parents, then a set

of k nodes is chosen from the remaining N − 1 nodes with probability 1

(N−1
k ) . We are interested

in the probability p(t + 1) that a node is in state 1 at time t + 1, given p(t).

In (Matache and Heidel, 2005) the authors show that p(t + 1) is given by

(1) p(t + 1) = p(t) +
1
N

[
1− p(t)− p(t)k+1 − (1− p(t))k+1

]
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for the asynchronous random Boolean networks (ARBN) case when only one node is updated

at each time point, and

(2) p(t + 1) = p(t) +
xt

N

(
1− p(t)− (1− p(t))k+1 − p(t)k+1

)

for the GARBNs case when a random number of nodes is updated at each time point. In these

formulae k is the number of parents of each node (considered fixed), and xt is the number of

nodes to be updated at time t (randomly generated).

In (Matache, 2006) the formula above is generalized for an arbitrary number of parents for

each node. It is shown that the probability that a node is in state 1 at time t + 1 is given by

(3) p(t + 1) =
J∑

j=1

Mj

N

[
pj(t)
Mj

N

(
1− xt

N

(
1− (1− p(t))kj + p(t)kj

))
+

xt

N

(
1− (1− p(t))kj

)]

where Mj is the number of nodes that have kj parents, with j = 1, 2, . . . , J , and k1, k2, . . . , kJ

are the distinct number of parents the N nodes have. Also, xt is again the number of nodes

to be updated at time t, and is randomly generated. We can observe the similarities with the

model in (Matache and Heidel, 2005) if we collect together the terms involving xt
N .

The following simulation algorithm is proposed for the Boolean network under consideration.

The algorithm provides the computation of p(t) for all t = 0, 1, 2, . . . .

• For t = 0 choose arbitrary numbers pj(0) ∈ [0, Mj

N ], j = 1, 2, . . . , J , and let

p(0) =
J∑

j=1

pj(0).

• For each t = 0, 1, 2, . . . compute

(4) pj(t + 1) =
Mj

N

[
pj(t)
Mj

N

(
1− xt

N

(
1− (1− p(t))kj + p(t)kj

))
+

xt

N

(
1− (1− p(t))kj

)]

where j = 1, 2, . . . , J , and

p(t + 1) =
J∑

j=1

pj(t + 1).

The formula for pj(t) in (4) is similar to the summands of pj(t) in (3).

We use this simulation algorithm to see how well the model matches the real system in the case

when xt is generated by a stochastic process. We will be using integer-valued processes including

certain Poisson, random walk, and birth and death processes (as special Markov processes), to

illustrate how the iterations of the model match the iterations of the system. In studying the

dynamics of the system through the model analysis, we will expand our interest also to the
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Brownian motion and the fractional Brownian motion processes, which are not integer-valued.

Thus we provide a deeper understanding of how the maps of the models behave considering a

wider variety of processes with various properties.

The fixed points of the multidimensional map (3) are obtained by solving the system

pj =
Mj

N


 pj

Mj

N


1− xt

N


1−

(
1−

J∑

i=1

pi

)kj

+

(
J∑

i=1

pi

)kj




 +

xt

N


1−

(
1−

J∑

i=1

pi

)kj






where j = 1, 2, . . . , J . By direct computations, the equivalent system

(5) pj =

Mj

N

(
1−

(
1−∑J

i=1 pi

)kj
)

1−
(
1−∑J

i=1 pi

)kj

+
(∑J

i=1 pi

)kj
, j = 1, 2, . . . , J

indicates that if kj → ∞ for a fixed j, then pj converges to Mj

N . Also, pj = 0, j = 1, 2, . . . , J is

obviously a fixed point of the J-dimensional map. If for a given j = 1, 2, . . . , J we set kj = 1

then pj = 1
2

Mj

N . On the other hand, if none of the k’s are equal to 1, then since pj → Mj

N as

kj → ∞ the sum
∑J

j=1 pj → 1 as the values kj increase. The fixed points are independent of

the choice of xt.

3. Review of some Stochastic Processes and Simulations

Given the variety of stochastic processes that one could consider, we narrow our study to

several examples of processes that generalize the distributions used in (Matache and Heidel,

2005) and (Matache, 2006) or represent natural choices for applications to biology, genetics,

physics, chemistry or sociology. We focus first on integer-valued processes, and later apply also

some non integer-valued processes for studying the dynamics of the system.

Definition 1 A counting process {N(t), t ≥ 0} is called a Poisson process with rate λ > 0

if the process starts at 0, i.e. N(0) = 0, and has independent increments, and the number of

events in a time interval of length t is Poisson distributed with mean λt.

If the arrival rate λ is a constant the process is said to be homogeneous, while if λ is a function

of time t it is said to be nonhomogeneous. We will explore examples from each of these types

of Poisson processes. For more on the Poisson process one can check any introductory book on

stochastic processes (e.g. (Ross, 1983) or (Taylor and Karlin, 1998)).

For the nonhomogeneous Poisson process we look at a power function for the intensity pa-

rameter

λ(t) = αt−β
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where α and β are positive constants. The larger the β, the steeper the decrease in the values

of xt, which approach a rather stable range in which these values fluctuate as t increases. This

would correspond to a situation in which there is an initial burst of activity of the nodes, followed

by a diminishing trend that reaches a more or less stable behavior.

Definition 2 If X1, X2, X3, . . . are independent and identically distributed random variables

with P(Xi = j) = aj , j = . . . ,−1, 0, 1, . . . , and if we define S0 = 0 and Sn =
∑n

i=1 Xi, then the

process {Sn, n ≥ 1} is a Markov chain with Pij = aj−i and is called the general random walk

process.

We will employ the one-step symmetric random walks, that is, if we regard the state of the

system as the position of a moving particle, then the particle can move from state i only to

states i− 1 and i + 1 with equal probability. More information on random walks can be found

in (Ross, 1983) or (Taylor and Karlin, 1998).

Definition 3 A birth and death process {X(t), t ≥ 0} is a Markov process on the states

0, 1, 2, . . . , with stationary transition probabilities Pij(t) = P(X(t + s) = j|X(s) = i) for all

s ≥ 0, having the following properties:

(i) Pi,i+1(h) = λih + o(h) as h → 0, i ≥ 0;

(ii) Pi,i−1(h) = µih + o(h) as h → 0, i ≥ 1;

(iii) Pi,i(h) = 1− (λi + µi)h + o(h) as h → 0, i ≥ 0;

(iv) Pij(0) = δij ;

(v) µ0 = 0, λ0 > 0, µi, λi > 0, i = 1, 2, . . . .

The process X(t) represents the size at time t of a population with birth rates λi and death

rates µi. We will focus on one example of such processes described in (Taylor and Karlin, 1998).

Example 1 The logistic process assumes that the size of the population X(t) ranges between

two fixed bounds L1 < L2 for all time points t. The members of the population act independently

of each other and the birth and death rates for the population are λn = αn(L2 − n) and

µn = βn(n− L1). The stationary distribution is given by

πL1+m =
c

L1 + m

(
L2 − L1

m

)(
α

β

)m

, m = 0, 1, 2, . . . , L2 − L1

where c is a constant such that π is a probability distribution.

Definition 4 A process {BH(t), t ∈ R} is called a standard fractional Brownian motion

(FBM) with Hurst parameter H ∈ (0, 1) if it is a Gaussian process such that

E[BH(t)] = 0
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and

Cov[BH(t), BH(s)] =
1
2

[|t|2H + |s|2H − |t− s|2H
]

where s, t ∈ R.

If H = 1
2 the resulting process is the classical Brownian motion (BM). The FBM process has

some important properties as stated below.

Properties Let {BH(t), t ∈ R} be a standard FBM. Then:

(i) BH(t) is standard normal with mean 0 and variance |t|2H .

(ii) The process has stationary increments, i.e. ∀s, t > 0 the increments BH(t + s) − BH(t)

and BH(s) have the same distribution.

(iii) FBM is a self-similar process with parameter H, i.e. the processes {BH(at), t ≥ 0} and

{aHBH(t), t ≥ 0} have the same probability law for each a greater than 0. This property is also

known as the fractal behavior of the process, since it provides probability law invariance to time

scale changes.

(iv) The autocorrelation function R(k) = E[Y (1)Y (k)] of the fractional Gaussian noise pro-

cess, which is the increment of FBM, {Y (k) := BH(k)−BH(k − 1), k = 1, 2, 3, . . . }, behaves as

a power function for large k. More precisely, R(k) ∼ H(2H−1)k2H−2, as k →∞. If H ∈ (1
2 , 1),

R(k) tends to zero slowly, so that
∑

kR(k) diverges. Thus the system exhibits the property of

long-range dependence.

The last two properties make FBM a natural choice for modeling systems that exhibit both

fractal behavior and long-range dependence. Although the FBM is not integer-valued, it helps

analyze what happens to our system under the assumption that the number of nodes to be

updated at each time point depends on the long-term history of the process xt. At the same

time we make use of the assumption that if we change the time scale, the number of updated

nodes follows the same type of distribution. We are interested in seeing if the parameter H

makes a difference, and also if there is a significant difference with the BM process which does

not exhibit long-range dependence. For more on the BM process see (Ross, 1983) or (Taylor

and Karlin, 1998). The FBM process has been studied extensively in the last 15 years, with

applications to telecommunications, finance, and queuing systems in general (Beran, 1994),

(Duncan et al., 2000), (Leland et al., 1994), (Matache and Matache, 2005), (Willinger et al.,

1998), (Yin, 1996). To simulate the FBM process we use the method developed in (Yin, 1996).
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Let us start the simulations of the real system and the model to see if there is a good match

between them. For the case of a nonconstant number of parents, we provide visual output

only for two possible number of parents for each node. The simulations that follow have been

obtained using Matlab programs. Although we present only a few graphs, the conclusions have

been drawn from numerous simulations. In general we present only typical graphs. We discuss

the case of a fixed number of parents separately for a more clear description of the behavior of

the system.

The graphs in Figure 1 are typical for the 2-dimensional case. We iterate the system and the

model a number of times (specified in the graphs), and plot p(t+iteration) versus p1(t) and p2(t).

The points represent the real system, while the mesh represents the iterations of the model. In

this figure xt is generated by a symmetric random walk starting at 3N/4 where N = 128. Thus

the values of xt are sufficiently large. The parameters are as follows: k1 = 4, k2 = 64,M1 = 120,

and M2 = 8. The random walk, the birth and death, and the Poisson process with various

parameter combinations generate similar graphs, with slight variations in terms of the shape

of the mesh and the rate at which the model becomes a very good match for the real system.

For some parameter combinations it takes a number of iterations before the model matches well

with the real system. However, in the long run the model is a very good approximation of

the Boolean network under consideration. We note here that for the nonhomogeneous Poisson

process with a power function for the intensity parameter, namely λ(t) = αt−β, the model is

a good approximation of the real system for α ∈ [0, N ] and β > 1. For lower values of β the

system may become synchronous and we observe that the model is not a very good match in this

case. However, if the values of α and β are such that the xt values are small or moderate, the

model is a very good match for the system (in the long run), especially for small and moderate

connectivity parameters.

In the case of the logistic birth and death process, the model is a good approximation for

most situations, except for very large values of xt.

In Figure 2 we present the one-dimensional case (k is fixed for all nodes). We graph p(t+iteration)

versus p(t) where the number of iterations is specified in the graphs. The parameters are

N = 256, k = 4 and the values of xt are obtained from a symmetric random walk starting at

3N/4. We observe the good match of the system and the model. We note that again this graph

is typical for xt generated by a random walk, a birth and death, or a Poisson process with

various parameters. Variations of the graphs occur in terms of the rate at which the model
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Figure 1. Iterations of the system and the model for ARBN, with N = 128, M1 =

120,M2 = 8, k1 = 4, k2 = 64, and xt from a symmetric random walk process starting at

3N/4. The values of xt are sufficiently large. We plot some of the first 512 iterations of

the system and the model as specified in the labels. We observe the good match of the

system and the model. After 256 iterations, the model and the system reach a somewhat

steady behavior.

reaches the steady-state behavior. For example, the rate increases as the parameter λ of the

Poisson process increases. Also, the steady-state behavior of the model gets closer to 1 as the

parameter k increases. The shape of the transient graphs prior to the steady-state behavior may

vary from one case to another but overall we observe a very good match of the model and the

system, in numerous cases even a perfect match. Comments regarding the parameters of the

nonhomogeneous Poisson process and the logistic process yielding a good match of the model

and the system are valid also in this case.

Next we study the dynamics of the system when the asynchrony is generated by the various

stochastic processes mentioned above. We discuss each of the processes separately for a better

understanding.

4. System Dynamics

4.1. Asynchrony Generated by a Random Walk Process. We start our study with the

analysis of the sensitivity of the orbits to the initial values. First we consider the case of two

distinct values for the number of parents. We fix the parameters M1
N , M2

N , k1, k2, and choose two

initial pairs (p1(0), p2(0)) and (q1(0), q2(0)) as starting points for the orbits. We iterate many
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Figure 2. Iterations of the system and the model for ARBN, with N = 256, k = 4 and

xt from a symmetric random walk process with starting point at 3N/4. We plot some of

the first 256 iterations of the system and the model as specified in the labels. We observe

the good match of the system and the model. After 256 iterations, the model and the

system reach a more or less steady behavior.

times the equations of the model and compute p(t) = p1(t) + p2(t) and q(t) = q1(t) + q2(t) for

each time point t. Then we plot the error E(t) = |p(t)− q(t)| versus t.

In most cases, the error converges to zero. When the values of xt are large, and especially

when they reach the upper bound N , meaning that the system is actually synchronous, the error

might not converge to zero.

In Figure 3, N = 256,M1 = N
16 ,M2 = 15N

16 , k1 = 4, and k2 = 8. Here xt is generated by a

symmetric random walk starting at 15N/16. The two initial values are very close. The upper

graph shows the sample path of xt. We see that for most time points t the value of xt is N , which

means that the system is synchronous. For large values of t however, the system is asynchronous.

The lower graph is the error plot. We see that the error converges to zero eventually, but it is

nonzero while the system is synchronous.

In general, if the values of xt are small, the error converges very quickly to zero. If the values

of xt are large, then a large connectivity k may wipe out any variation in the error, which

converges to zero. However, if the connectivity is small for large values xt, the error may or

may not converge to zero. Even for very similar initial values, the error may fluctuate without

settling to zero. If the system is synchronous the error is not converging to zero in most cases.
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Figure 3. Sensitivity of the orbits to the initial values with N = 256, M1 = N
16 ,M2 =

15N
16 , k1 = 4, and k2 = 8. Here xt is generated by a symmetric random walk starting at

15N/16. The upper graph is the sample path of xt. For most time points t the value

of xt is N , which means that the system is synchronous. For large values of t however,

the system is asynchronous. Two initial pairs (p1(0), p2(0)) and (q1(0), q2(0)) are chosen

as starting points for the orbits. The equations of the model are iterated and the values

p(t) = p1(t) + p2(t) and q(t) = q1(t) + q2(t) are computed for each time point t. Then

the error E(t) = |p(t)− q(t)| is plotted versus t in the lower graph. We see that the error

converges to zero eventually, but it is nonzero while the system is synchronous.

For the one-dimensional case, when the number of parents is fixed for all nodes, the error

converges to zero for small values of xt. For medium or large values of xt it converges to zero

if k is small enough, and it may or may not converge to zero for larger values of k. In general,

we make the observation that for larger values of xt, the error may converge to zero for small k

values, then be nonconvergent for larger values of k, and then again converge to zero for even

larger values of k. This suggests that we may expect period-doubling bifurcations and chaos

which may be reversed or might exhibit periodic windows in the bifurcation diagrams to follow.

We will see that this is indeed the case. Finally, when the system is synchronous, the error

converges to zero mainly for large values of k, suggesting that the system may exhibit chaos for

small values of k.

The study of the sensitivity of the orbits to the initial values is complemented with a bi-

furcation diagram analysis. First we consider the two-dimensional case and fix the parameters
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M1,M2 and N . In Figure 4 we graph bifurcation diagrams of p(t) versus k2 for several values

of k1 for N = 512,M1 = N
16 ,M2 = 15N

16 .
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Figure 4. Bifurcation diagrams for N = 512,M1 = N
16 , M2 = 15N

16 , and xt from a

symmetric random walk starting at N/4. The equations of the model are iterated 2000

times to eliminate any transient behavior. We plot the bifurcation diagram of p(t) versus

k2 for several values of k1. We can see that the system exhibits stable fixed points.

The values xt are from a symmetric random walk starting at N/4, so they are rather small.

The system exhibits an ordered behavior with stable fixed points. This situation is typical for

most combinations. However, if the values of xt are very large, the system may exhibit order

or chaos, and this agrees with the observations for the error plot. For example in Figure 5,

N = 512, M1 = N
16 ,M2 = 15N

16 as before, and xt is generated by a symmetric random walk

starting at 15N/16, which means that the xt values are large.

The diagrams show that the system exhibits chaos, with reversed bifurcations and periodic

windows. For values of k1 larger than 250 (not shown in Figure 5), the diagrams are similar to

the one for k1 = 250. Thus, large values of k2 wipe out any instability in the system as long

as k1 is large enough. If one of the parameters is small, the system exhibits chaos in general.

However, for very small connectivity values, the system exhibits stable fixed points as seen in

the first left slice of the figure.

If the system is synchronous, meaning that xt = N for all time points t, then the bifurcation

diagrams agree with the findings of (Matache and Heidel, 2004) which indicate that chaos occurs

for rather small connectivity parameters through cascades of period-doubling bifurcations, which

are reversed through period-halving bifurcations as one of the connectivity parameters increases
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Figure 5. Bifurcation diagram for N = 512,M1 = N
16 ,M2 = 15N

16 , and xt from a

symmetric random walk starting at 15N/16. The equations of the model are iterated

2000 times to eliminate any transient behavior. We plot the bifurcation diagram of p(t)

versus k2 for several values of k1. The diagrams show that the system exhibits chaos,

with reversed bifurcations and periodic windows. For values of k1 larger than 250 (not

shown in the figure), the diagrams are similar to the one for k1 = 250. Thus, large values

of k2 wipe out any instability in the system as long as k1 is large enough. If one of

the parameters is small, the system exhibits chaos in general. However, for very small

connectivity values, the system exhibits stable fixed points as seen in the first left slice

of the graph.

freely. High connectivity leads to order. We include one bifurcation diagram as a sample in

Figure 6.

The bifurcation diagrams have been plotted after iterating the system 2000 times to eliminate

transient behavior. However, as noted in the error plots, there may be situations in which order

is attained only after many iterations.

In the one-dimensional case, when the value of k is fixed for all nodes, we observe that

large values of xt generate chaos through period-doubling bifurcations, with periodic windows

for larger values of the connectivity parameter. We observe that for lower values of xt the

bifurcation diagrams tend to become “thinner” while for small values of xt the system exhibits

order through stable fixed points of period one or period two. We can see this in Figure 7, where

the left column shows three different sample paths, with values of xt that decrease in general

from one graph to the next, and the corresponding bifurcation diagrams on the right column.

The system is iterated 5N times, with N = 512.
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Figure 6. Bifurcation diagram for N = 512,M1 = N
2 , and xt = N for all time points

t, that is a synchronous system. We observe the chaotic behavior for small values of

the second connectivity parameter k2 for k1 = 5. The route through chaos is through

period-doubling bifurcations which are reversed through period-halving bifurcations as

observed in (Matache and Heidel, 2004).

For the case of a synchronous network, the system exhibits chaos for small values of k which

is reversed, and hence the system exhibits order for large values of the connectivity parameter.

This is shown in Figure 8. Since in the case of synchrony xt = N for all time points t, this

result is valid in general, and it matches and supplements the observations in (Andrecut and

Ali, 2001) for a one-dimensional synchronous system. We will focus only on the asynchronous

systems in the remainder of this paper.

For other parameter combinations, the graphs are similar to the graphs presented here. Thus

the bifurcation diagrams emphasize the situation observed in the error plots.

In conclusion, large values of xt can generate chaos depending on the connectivity parameters,

while small values of xt generate order regardless of the connectivity parameters. These results

support the conclusion in (Matache, 2006). Namely, for a fixed probability distribution, by

replacing the term xt
N in the formula (3) by a constant α ∈ [0, 1], we can view α as the mean

value of the distribution generating xt divided by N . By studying the behavior of the new map

obtained this way, the following conclusion is reached: if a small or moderate number of nodes

update at the same time, the system is ordered in the long run, while for a large number of

nodes updated at the same time, the system can exhibit order or chaos, depending on the other

parameters.
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Figure 7. Bifurcation diagrams for the one-dimensional case, with a fixed number

of parents, with N = 512 and xt from a symmetric random walk starting at N, N/2

and N/4 respectively. The sample paths are on the left column of graphs. The right

column represents the corresponding bifurcation diagrams. The equations of the model

are iterated 5N times to eliminate any transient behavior. The diagrams show that the

system exhibits chaos through period-doubling bifurcations for larger values of xt, and

order for small values of xt.

In the synchronous case the results match the findings of (Andrecut and Ali, 2001) for the

one-dimensional case, and (Matache and Heidel, 2004) for the multidimensional case.
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Figure 8. Bifurcation diagrams for the one-dimensional case, with a fixed number

of parents, with N = 512 and xt from a symmetric random walk starting at N , which

makes the system synchronous for most time points. The diagrams show that the system

exhibits chaos for small values of k, and order for large values of k.
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4.2. Asynchrony Generated by Certain Birth and Death Processes. As specified in

Section 3, we consider one example of a birth and death process, namely the logistic process.

Let us recall that the logistic process assumes that the size of xt ranges between two fixed

bounds L1 < L2 for all time points t. The birth and death rates for the population are λn =

αn(L2 − n) and µn = βn(n − L1). The sample paths of this process are similar to the one in

Figure 9, where N = 64, L1 = 3N/4, L2 = N, α = 1, β = 1. We observe that the values fluctuate

between the two bounds.
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Figure 9. Sample path of xt from a logistic process with the parameters N = 64, L1 =

3N/4, L2 = N,α = 1, β = 1. We observe that the values fluctuate between the two

bounds L1 and L2.

In the analysis we will restrict our attention to values of xt that are not very large, since the

model is valid mainly for low or moderate values of xt.

First, the error analysis points out that if a sufficiently small number of nodes is to be

updated at each time point, the error converges to zero very quickly. On the other hand, as the

values of xt increase, the error may or may not converge to zero, depending on the connectivity

parameters. For example, if N = 64 we observe that if xt > N/2 in the two-dimensional

case, some combinations of the connectivity parameters generate errors that do not converge

to zero. In order to have a better understanding of how the connectivity parameters affect

the sensitivity to initial values, we employ three-dimensional graphs in which we plot the error

E(t) for t = 5000, against k1 and k2. In other words, we iterate the system 5000 times to

surpass the transient states, and we only consider E(5000). In Figure 10 the parameters are

N = 64,M1 = N/2, L1 = 3N/4, L2 = N, α = 1, β = 4, and the values of k1 and k2 range

between 1 and 63. The error is zero for many combinations of k1 and k2 but is nonzero for large
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values of both k1 and k2. We also observe that even for certain smaller values of k1 and k2 the

error is nonzero. Thus we may expect to see nontrivial bifurcation diagrams for values of the

connectivity which yield a nonzero error.

If the number of nodes increases, the three-dimensional graphs are similar, but the range of

connectivity values for which nonzero error plots occur becomes wider. At the same time, if all

the connectivity parameters have very large values, the error converges to zero again. We can

see this behavior in Figure 11 where N = 256,M1 = N/2, L1 = 3N/4, L2 = N, α = 1, β = 4, and

the connectivity parameters range between 1 and 255. We see that for connectivity parameters

between approximately 50 and 150 the error is nonzero, otherwise it is zero in most cases. The

graph has a symmetric shape since M1 = N/2.
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Figure 10. Error plot for the case of xt from a logistic process with the parameters

N = 64,M1 = N/2, L1 = 3N/4, L2 = N, α = 1, β = 4. We plot E(5000) (meaning the

error after 5000 iterations) against k1 and k2. The error is zero for many combinations

of k1 and k2, but is nonzero for large values of both k1 and k2. We also observe that

even for certain smaller values of k1 and k2 the error is still nonzero.

If M1 decreases, the values of k1 for which the system exhibits sensitivity to initial values

decrease too. If M1 increases, then the values increase too. So the three-dimensional error plots

are not as symmetric as in Figures 10 and 11. They are very similar in all other aspects.

This situation is similar in the one-dimensional case. In Figures 12 and 13 we present three-

dimensional graphs representing the plot of E(t) against t and k. The parameters are L1 =

3N/4, L2 = N,α = 1, β = 4, N = 64 and N = 256 respectively. The system is iterated

211 time points. We observe that the error is nonzero for large values of k in both figures.

However in Figure 12 some nonzero plots are observed also for values of k between 5 and 15
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Figure 11. Error plot for the case of xt from a logistic process with the parameters

N = 256,M1 = N/2, L1 = 3N/4, L2 = N, α = 1, β = 4. We plot E(5000) (meaning

the error after 5000 iterations) against k1 and k2. For connectivity parameters between

approximately 50 and 150 the error is nonzero, otherwise it is zero in most cases. The

graph has a symmetric shape since M1 = N/2.

with approximation, while in Figure 13 we observe that very large values of k lead to zero error

in the long run. Thus the behavior is very similar to the two-dimensional case, suggesting that

as the number of nodes increases, the range of values for which the error is nonzero becomes

larger, and generally it contains larger values of the connectivity parameter. At the same time,

if N becomes large enough, the error plots converge to zero for very large values of k as seen in

Figure 13. In general, our simulations indicate that if the parameter combinations yield values

of xt that are at least N/2 with approximation, the error plots generate nonzero error for at

least some connectivity values. As xt increases, the range of k for which this phenomenon is

observed becomes wider as indicated in the previously mentioned figures.

We turn now to the analysis of the bifurcation diagrams for values of the connectivity param-

eter(s) that correspond to the error plots presented earlier. The bifurcation diagrams indicate

that for small or moderate values of xt the system is ordered exhibiting stable fixed points of or-

der one or two. For larger values of xt and values of the connectivity parameters that indicate a

nonzero error in the sensitivity analysis, the bifurcation diagrams indicate chaos through period-

doubling bifurcations for larger connectivity values, as seen in Figure 14. The parameters are:

N = 64,M1 = N/2, L1 = 3N/4, L2 = N, α = 1, β = 4 (as in Figure 10), while k1 = 4, 20 and 50

respectively. According to the error plot, k1 = 4 falls in the region where the error is zero, while

the other ones do not. For this value the diagram shows one period-doubling bifurcation which
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Figure 12. Error plot for the case of xt from a logistic process with the parameters

N = 64, L1 = 3N/4, L2 = N, α = 1, β = 4. We plot 2048 iterations for each value of k.

There is a wide range of values of k that generate the nonzero error plots. As the values

of xt increase this range becomes even wider.

Figure 13. Error plot for the case of xt from a logistic process with the parameters

N = 256, L1 = 3N/4, L2 = N,α = 1, β = 4. We plot 2048 iterations. There is a wide

range of values of k that generate the nonzero error plots. However, if the connectivity

values are very large, the error converges to zero again. As the values of xt increase the

range of k generating nonzero error becomes even wider. In general, error plots that do

not converge to zero are observed for values of xt ≥ N/2 with approximation, regardless

of the value of N .

is reversed. For k1 = 20 the bifurcation is not reversed anymore, while for k1 = 50 the system

exhibits chaos if k2 is large enough. We observe also the “gaps” in the bifurcation diagrams for

values of k2 between approximately 30 and 50 for k1 = 20, and 20 and 30 for k1 = 50. The
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gaps suggest a single fixed point (besides zero). This figure allows us to understand how the

bifurcation diagrams change as the connectivity parameter k1 increases.
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Figure 14. Bifurcation diagram for the case where xt is from a logistic process. The

parameters are set as follows: N = 64,M1 = N/2, L1 = 3N/4, L2 = N,α = 1, β = 4,

and k1 = 4, 20 and 50 respectively. According to the error plot, k1 = 4 falls in the

region where the error is zero, while the other two do not. For k1 = 4 the diagram

shows one period-doubling bifurcation which is reversed. For k1 = 20 the bifurcation

is not reversed anymore, while for k1 = 50 the system exhibits chaos when k2 is large

enough. We observe also the “gaps” in the bifurcation diagrams for values of k2 between

approximately 30 and 50 for k1 = 20, and 20 and 30 for k1 = 50. The gaps suggest a

stable fixed point.

In the one-dimensional case the situation is similar. For large enough values of xt the system

exhibits chaos if k is sufficiently large. Otherwise it exhibits stable fixed points or period-two

stable orbits. As N increases, the chaos is reversed for large values of k, which corresponds to

the zero error plots observed in Figure 13. We provide an example in Figure 15, where the three

bifurcation diagrams correspond to N = 64, 128, and 256 respectively. The other parameters

are the same in all three graphs, namely L1 = 3N/4, L2 = N,α = 1, and β = 4. We iterate the

system 3000 times before plotting the diagrams.

In conclusion, the values of xt are again very important in the behavior of the system. If

the values are small or medium, the system has an ordered behavior. If the values of xt are

larger, the system may exhibit chaos which may or may not be reversed depending on the other

parameters of the system. In general, small connectivity generates order. Again, these results

support the conclusions of (Matache, 2006) for the case of asynchrony generated by a fixed
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Figure 15. Bifurcation diagrams for the case where xt is from a logistic process. The

parameters are set as follows: L1 = 3N/4, L2 = N, α = 1, β = 4, and N = 64, 128

and 256 respectively. We observe the ordered behavior for small values of k in all the

graphs, and that the system exhibits chaos for large values of k which may be reversed

if N is large. These diagrams correspond to the error plots presented earlier for the

one-dimensional case.

distribution, rather than a stochastic process. If N is large enough then a very small or very

large connectivity also generates order.

4.3. Asynchrony Generated by a Poisson Process. To analyze the dynamics of the system

when the asynchrony is generated by a Poisson process, we start by considering the homogeneous

process where the parameter λ is a constant. The first observation is that since at each time point

t the value of xt is a Poisson random variable with parameter λt, there is an increasing trend in

the number of nodes to be updated as time goes by. In other words, the system will eventually

reach synchrony and will not switch back to asynchrony. Thus, for practical purposes, we will

consider mainly small values for λ to understand the asynchronous behavior of the system, and

large values of λ to see what features we encounter for a synchronous system.

However, to make things more flexible, we will later expand the study to nonhomogeneous

Poisson processes.

Now let us discuss the sensitivity of the orbits to initial values for a homogeneous Poisson

process. Numerous simulations in the multidimensional case (with a varying number of parents)

suggest that regardless of the values of xt or the number of parents, the error usually converges

to zero. The rate at which the error converges to zero may vary depending on the underlying

parameters.
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The situation is similar for the one-dimensional case (with a fixed number of parents for all

nodes); the error is convergent to zero in most cases. This suggests that the system is in general

not sensitive to changes in initial values and we may expect the bifurcation diagrams to exhibit

stable fixed points.

Indeed, the bifurcation diagrams indicate that the system exhibits an ordered behavior for

the multidimensional case. Figure 4 is typical for homogeneous Poisson processes as well.

In the one-dimensional case, we provide an example in Figure 16 where we graph a sample

path for xt with parameter λ = 0.05, together with two levels of the bifurcation diagrams.

More precisely, we iterate the system N/2 times and N times respectively before plotting the

bifurcation diagrams, to indicate more precisely the stages of the system before reaching a

steady state. We also include a zoom-in on the diagram corresponding to N/2 iterations for

more clarity. We observe that the system is ordered and converges to a stable fixed point in the

long run. After N/2 iterations the system exhibits higher order fixed points.

Thus we can conclude that for the homogeneous Poisson process, the system is ordered re-

gardless of the underlying parameters as long as it is mostly asynchronous.
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Figure 16. Bifurcation diagrams for the case of xt from a Poisson process with λ =

0.05 and N = 512. The upper left graph is the sample path of xt, the upper right is

the bifurcation diagram graphed after N/2 iterations of the system, the lower left is a

zoom in on the upper right graph, and the lower right is the bifurcation diagram after

N iterations. We observe the ordered behavior, with higher order fixed points after N/2

iterations and one stable fixed point after N iterations. We include the case of N/2

iterations for a more complete view of the stages that the system passes before reaching

a steady state.
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If the intensity parameter is a power function of t, namely λ(t) = αt−β, with α ∈ [0, N ] and

β > 1 as specified earlier, the error converges to zero in all cases. If β is close to 1 the rate of

convergence is slower and it could take a few thousand iterations before the error settles to zero.

Therefore, in the bifurcation diagrams we iterate the system at least 3000 times before plotting

the diagrams. We present an error plot together with a typical sample path in Figure 17. The

parameters are as follows: N = 512,M1 = N/2, k1 = 320, k2 = 384, α = N, β = 1.1. This graph

is typical. We observe the slow convergence to zero of the error plot. If β is larger, the error

converges to zero very quickly.
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Figure 17. Error plot for the case of a nonhomogeneous Poisson process with a power

function for the intensity parameter, namely λ(t) = αt−β , with α = N and β = 1.1. The

upper graph is the sample path, and the lower graph represents the corresponding error

plot. Here N = 512,M1 = N/2, k1 = 320 and k2 = 384. We observe that for values of β

close to 1, the error converges to zero slowly, as seen in this graph.

The bifurcation diagrams for this case are similar to Figure 4. These results hold in both the

one-dimensional and the multidimensional cases.

In conclusion, when the asynchrony is generated by a Poisson process, the asynchronous

system has an ordered behavior regardless of the values of xt. This result emphasizes that other

parameters can have an important impact on the behavior of the system. Thus, when stochastic

processes are employed, the level of asynchrony may not be the one that influences the most the

long-term behavior of the system.

4.4. Asynchrony Generated by the Fractional Brownian Motion Process. In this sec-

tion we analyze the system dynamics with asynchrony generated by a FBM process with Hurst
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parameter 1/2 ≤ H < 1. For H = 1/2 becomes the classical BM process. We include the BM

process in this discussion as a special case of the FBM.

In the multidimensional case, the analysis of the sensitivity to initial values leads to the

conclusion that in the case of the BM process, the error converges to zero in most cases. For

large values of xt and sufficiently small values of the connectivity parameters, the error may not

settle, suggesting the possibility of chaos. The bifurcation diagrams support this conclusion.

When the values of xt are small or medium, then the graph of Figure 4 is valid also for the

BM process. On the other hand, if the values of xt are large, the system may exhibit chaos

for smaller values of the connectivity parameters and order for larger values of the connectivity

parameters, as seen in Figure 18 for N = 512, M1 = N/2.

Figure 18. Bifurcation diagram for N = 512,M1 = N
2 ,M2 = N

2 , and xt from a BM

process. The equations of the model are iterated 2000 times to eliminate any transient

behavior. We plot the bifurcation diagrams of p(t) versus k2 for several values of k1.

The diagrams show that the system exhibits chaos for sufficiently small values of the

connectivity parameters k1 and k2, and order for large connectivity parameters. In this

figure we only show a few “slices” for various k1 values that range between 100 and 300.

For larger values the graphs are similar to the one for k1 = 300 approximately, while for

smaller values they exhibit stable fixed points.

In the one-dimensional case we observe again that the values of xt are the most important

factor in determining the dynamics of the system. The error converges to zero for small values

of xt and may or may not converge to zero for medium or large values of xt depending on the

connectivity parameter. The bifurcation diagrams clarify this. For small values of xt the system

exhibits stable fixed points, while for medium and large values of xt it exhibits chaos through
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period-doubling bifurcations and periodic windows. We include Figure 19 that corresponds to

medium values of xt as seen in the upper left graph representing the sample path of BM. We

graph the bifurcation diagrams after N/4, N and 10N iterations respectively. We can see that

the diagrams exhibit chaos. On the other hand, in Figure 20, the system is mostly synchronous,

and we can see that after 10N iterations the chaos occurs for only very small values of k, which

is expected in a synchronous system as explained earlier in Section 4.1.
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Figure 19. Bifurcation diagram for N = 512 and xt from a BM process starting at

3N/4. The sample path of xt in the upper left graph shows that the values of xt are

medium. The diagrams show that the system exhibits chaos through period-doubling

bifurcations and periodic windows. The system is iterated N/4, N and 10N times re-

spectively before plotting the diagrams to understand how the behavior changes with

time.

Next we turn our attention to the FBM process with Hurst parameter 1/2 < H < 1. Here we

observe that the system exhibits sensitivity to initial values only for large values of xt. Basically,

as the Hurst parameter increases, the system exhibits ordered behavior for a wider range of xt

values. When H is close to 1/2, the system exhibits chaos for larger values of xt as seen in

Figure 21, where N = 512,M1 = N/2, and H = 0.6. Chaos is observed for all “slices” for

different k1 values, with periodic windows of various lengths, although in some cases chaos is

observed only for small values of k2. The diagrams may also exhibit reversed bifurcations.

When H approaches 1 the system is mostly ordered. Chaos may occur for small values of the

connectivity parameters and large values of xt, and the graphs are similar to those for BM as

in Figure 20.
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Figure 20. Bifurcation diagram for N = 512 and xt from a BM process starting at

15N/16. The sample path of xt in the upper left graph shows that the values of xt are

very large, so the system is mostly synchronous. The bifurcation diagrams show that

the system exhibits chaos through period-doubling bifurcations, which is reversed for

higher values of k if the system is iterated N/4 or N times respectively before plotting

the diagrams. However, in the long run, the chaos is observed only for very small

connectivity, the system exhibiting order for most connectivity values.

Figure 21. Bifurcation diagram for the case of N = 512,M1 = N/2, and H = 0.6.

Chaos is observed for all k1 “slices” with periodic windows of various lengths, although

in some cases chaos is observed only for small values of k2. The diagrams may exhibit

also reversed bifurcations.

In the one-dimensional case we observe again that as the Hurst parameter increases, the

system exhibits order for a larger range of xt values. For H = 0.5, which is the classical BM, the

system exhibits chaos when the values of xt are medium or large. When H = 0.7, for example,
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the system exhibits chaos mainly for large values of xt, while when H = 0.9 the system exhibits

order for any values of xt. Therefore the Hurst parameter is important in the dynamics of

the system, as in the multidimensional case. For example, when H = 0.7 the system exhibits

chaos for small values of k when xt is large, and order otherwise. Figure 20 is valid again for

large values of xt, with possible differences in the width and length of the bifurcation diagram

corresponding to chaos. For small or medium values of xt the system exhibits stable fixed points.

When H = 0.9 the system has only stable fixed points.

We have presented only the cases of the three H values as specified above (H = 0.5, 0.7, 0.9),

but the system exhibits similar behavior for other values.

In conclusion, the values of xt are again of importance in the BM case, generating mostly

order and possibly chaos for very large values of xt. In the FBM case, the Hurst parameter is

also very important. If H is small (close to 1/2), the system exhibits chaos for moderate or large

values of xt. As H increases the range of values of xt that generate chaotic behavior reduces

step by step. For very large values of H (close to 1), the system is ordered for any values of xt

(we exclude the synchronous case which was discussed in Section 4.1). These results show that

although the values of xt are important to a certain extent, the other parameters have also a

great impact on the behavior of the system.

5. Conclusions

This paper provides a generalization and extension of the work proposed in (Matache and

Heidel, 2005) and (Matache, 2006) where the authors study asynchronous random Boolean

networks governed by the elementary cellular automata rule 126 under the assumption of asyn-

chrony generated by given random variables. In this paper we extend those results by allowing

a variety of stochastic processes as generators for the number of parents to be updated at each

time point. Stochastic processes such as Poisson, random walk, birth and death and fractional

Brownian motion are employed as the random number generator. The dynamics of the system

show that the number of nodes to be updated at each time point is of great importance espe-

cially for the random walk, the birth and death, and the Brownian motion processes. Small or

moderate values for the number of updated nodes generate order, while large values may gen-

erate chaos depending on the underlying parameters. This is agreement with previous results

for the case when asynchrony is generated by a fixed random variable (Matache, 2006). The

Poisson process generates order for any parameter combinations. In the case of the fractional
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Brownian motion, the values of the Hurst parameter are very important. As the values of the

Hurst parameter increase the system exhibits order for more combinations of the underlying

parameters. In the synchronous case the results match the findings of (Andrecut and Ali, 2001)

for the one-dimensional case, and (Matache and Heidel, 2004) for the multidimensional case.

Thus, when dealing with stochastic processes, the level of asynchrony is important to a certain

extent, but the other parameters may have a great impact on the behavior of the system.

It would be of interest to expand even further the analysis of dynamics of asynchronous

random Boolean networks under other stochastic processes. For example, genetic models that

allow for mutation of genes would be of interest in genetics and applications.

It has been observed that many processes in natural or artificial networks, could be both

asynchronous and ordered or rhythmic (Cornforth et al., 2001), (Di Paolo, 2001). Asynchrony

can happen at a local level, but the global system exhibits modularity. The authors of (Cornforth

et al., 2001) propose the spotlight model in which the Boolean network is divided into modules,

each module being associated to a regulator node which controls the updates of the module,

depending on its own state. The amount of asynchrony is obtained by altering the number of

modules used. Applying the spotlight model to the work described in this paper could generate

some interesting results. On the other hand, considering the issue of analyzing the rhythmic or

non-rhythmic attractors would be of interest and would extend recent studies (Di Paolo, 2001),

(Rohlfshagen and Di Paolo, 2004).

Future work will focus on introducing “noise” in the system to study the stability of the

system to perturbations. Robustness or sensitivity of networks to the variation of some internal

parameters and to perturbations of the states of the system have been studied recently by

various authors, e.g. (Aldana and Cluzel, 2003), (Bilke and Sjunnesson, 2001), (Shmulevich and

Kauffman, 2004). In scale-free networks perturbing a very highly connected node is expected

to have a much bigger impact than perturbing a node with low connectivity. Thus allowing

also a power law distribution for the connectivity k could be of further interest for the study of

the dynamical properties of scale-free networks in light of recent studies (Albert and Barabasi,

2000), (Aldana and Cluzel, 2003), (Barabasi et al., 1999).

Considering the issue of synchronization of networks is of interest based on works that point

out the importance of the behavior of two or more elements with complex dynamics engaged

into a synchronized state which generates a complex evolution itself (Morelli and Zanette, 1998),

(Morelli and Zanette, 2001), (Zanette and Morelli, 2003). This feature has been observed in
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biology, chemistry, neural networks, or social networks, where complex systems have been shown

to evolve based on synchronization of coupled elements (Abarbanel et al., 1996), (Neda et al.,

2000), (Winfree, 1980), (Zhigulin et al., 2003). Allowing the synchronization process to have

random features, as well as considering variability in the initial states of the networks to be

synchronized, are topics for future research.

Given the intrinsic connection between Boolean networks or cellular automata and neural

networks (Aldana et al., 2003), (Anthony, to appear), (Kürten, 1988), a natural step would be

to identify the dynamics generated using the approach of this paper in the case of a (linear or

non-linear) Boolean threshold rule which is related to the functions computed by a linear or non-

linear threshold neuron when its inputs are restricted to binary values. When the weighted sum

of the inputs corresponding to a neuron is at least the threshold value, then the neuron fires, or is

turned ON; otherwise it does not, or is OFF. Moreover, the usage of asynchrony in the evolution

of the Boolean network allows one to understand the evolution of the so-called “Type A” spiking

neurons with “binary encoding” in which the neurons have “active” and “non-active” periods

(Anthony, to appear). At the same time in (Huepe and Aldana, 2002) the authors provide a

study on the dynamical organization in the presence of noise of a Boolean neural network with

random connections. A further direction would be to generate a similar study in the context of

the network described in this paper, and to further extend the study to other Boolean threshold

rules.

Another question related to neural networks is how to make evolvable (neural) networks

that are reversible? The topic is of critical future importance for the field of brain building in

particular and for computer science in general. A Boolean model is proposed in (De Garis et

al., 2002). The authors impose several constraints on the Boolean rules: the number of parents

equals the number of children for each node; there is a one-to-one correspondence between the

input state and the output state of the network so that the steps can be reversed; the network

is assumed synchronous. Studying the dynamics of a network under similar rule constraints but

allowing a potential asynchrony could deepen the understanding of how to construct artificial

brains by evolving neural networks with applications in areas such as electronics.

It would also be of interest to go one step further in this paper’s generalization and allow for

multiple Boolean rules to be used in the iterations of the system, thus surpassing the case of

cellular automata. On the other hand, only changing the unique Boolean rule to be used based
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on other cellular automata rules, especially the class of totalistic and legalistic rules (Wolfram,

2002), could lead to interesting new models and dynamic behaviors.
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