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Asynchronous Random Boolean Network Model with Variable

Number of Parents based on Elementary Cellular Automata Rule 126

Mihaela T. Matache

Department of Mathematics

University of Nebraska at Omaha

Omaha, NE 68182-0243, USA

dmatache@mail.unomaha.edu

Abstract A Boolean network with N nodes, each node’s state at time t being determined by a certain

number of parent nodes, which can vary from one node to another is considered. This is a generalization of

previous results obtained for a constant number of parent nodes, by Matache and Heidel in Asynchronous

random Boolean network model based on elementary cellular automata rule 126, Phys. Rev. E 71, 026232,

2005. The nodes, with randomly assigned neighborhoods, are updated based on various asynchronous

schemes. The Boolean rule is a generalization of rule 126 of elementary cellular automata, and is assumed

to be the same for all the nodes. We provide a model for the probability of finding a node in state 1 at a

time t for the class of generalized asynchronous random Boolean networks (GARBN) in which a random

number of nodes can be updated at each time point. We generate consecutive states of the network for

both the real system and the models under the various schemes, and use simulation algorithms to show

that the results match well. We use the model to study the dynamics of the system through sensitivity of

the orbits to initial values, bifurcation diagrams, and fixed point analysis. We show that the GARBN’s

dynamics range from order to chaos depending on the type of random variable generating the asynchrony

and the parameter combinations.

1. Introduction

Boolean network models have been used extensively in modelling networks in which the node activity

can be described by two states, ON and OFF, ”active and nonactive”, ”responsive and nonresponsive”,

”upregulated and downregulated”, and in which each node is updated based on logical relationships

with other nodes, called parents. Although the Boolean network models may simplify the reality, they

retain meaningful information regarding the dynamics of the system. Moreover, these models are easy to

understand and use.

Applications of Boolean networks have started with the work of Kauffman ( [1] - [3]). The dynamics

of ”spin-glasses” have been influential in the formulation of Kauffman’s N/K models used in his random
1
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Boolean networks and other complex, adaptive systems [3]. Such models have applications in solid-

state physics and condensed matter, where it is important to study the dynamics of interactive systems

through the changing of connectivity rules and analysis of the resulting phenomena, with the goal of

understanding how the system can be moved into and out of equilibrium states. At the same time, in

statistical mechanics, it is important to understand the dynamics of large interacting systems where the

nodes are randomly connected to other nodes and have various functions [4].

Other applications of Boolean and random Boolean networks include biochemical and genetic networks

( [5] - [17]) where identifying a possible steady-state behavior of a tumor can give insight into how

therapists may develop treatments to alter and cure it, or models for random interaction between two-

state neurons in a neural network [18].

Recently, Matache and Heidel [19] have considered a simple asynchronous Boolean network with N

nodes, each node being influenced by exactly k other nodes (parents). The number of parents is considered

fixed for all nodes. The Boolean rule is a generalization of rule 126 of elementary cellular automata (ECA).

They use various updating schemes to generate the asynchrony in the network. In particular they consider

the case of Asynchronous Random Boolean Networks (ARBN) in which only one node is updated at every

time step, and the class of Generalized ARBNs (GARBN) in which a random number of nodes can be

updated at each time point. We note that this classification of asynchronous Boolean networks is due

to Gershenson [20]. The asynchrony for GARBNs is generated using various random variables. They

show, both theoretically and by example, that the ARBNs generate an ordered behavior regardless of

the particular updating order used, whereas the GARBNs have behaviors that range from order to chaos

depending on the type of random variable used to determine the number of nodes to be updated and

the parameter combinations. However, high connectivity swamps out chaos and periodicity and leaves

only stable fixed points. This regularity is shown to be quite general with exceptions occurring only for

a small number of neighborhood distributions.

In this paper we extend that work by allowing a nonconstant number of parents for the nodes of the

network, and assume the same generalization of ECA rule 126. In [21] the same authors have provided

such an extension for a synchronous random Boolean network governed by the same generalization of

rule 126 of cellular automata, showing that the route to chaos is due to a cascade of period doubling

bifurcations which turn into reversed bifurcations for various combinations of the parameters. It is shown

that high connectivity leads to order.

We note that although most of the Boolean network models in the literature assume a synchronous

updating of the nodes, asynchronous models are more plausible for many biological phenomena or cellular

automata. For example, in [22], Cornforth observes that individual ants display aperiodic patterns of

active and resting periods, while the colony as a whole may exhibit synchronized activity. At the same

time asynchronous activity of the neurons in the brain could lead to some global patterns.
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Rule 126 of elementary cellular automata can be described as follows
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where black is ON and white is OFF. Rule 126 is a ”legalistic” and ”totalistic” ECA rule ( [21], [23]),

which exhibits a complex behavior despite its simplicity. It provides a good model for cell growth and

for chemical catalytic processes where the central site survives (or is born) unless the neighborhood is

completely non-populated or completely crowded, in which case it dies [19]. Cellular automata provide

good models in biological and physical systems generating patterns ( [24], [25]). To see how rule 126 can

generate complex patterns we present below the pattern formed when starting with only one black (ON)

node in an elementary cellular automaton of 200 nodes, and iterating the system 250 time steps (the time

increases downward in the figure).

In Section 2 we show that the formula for the probability of finding a node in state 1 for the case of

GARBNs with variable number of parent nodes, and Boolean rule given by the ECA rule 126, is

p(t + 1) =
J∑

j=1

Mj

N

{
N

kj

1 (t)
Mj

[
1− xt

N

(
1− (1− p(t))kj + p(t)kj

)]
+

xt

N
(1− (1− p(t))kj

}

where N is the size of the network, k1, k2, . . . , kJ the distinct values for the number of parents of the

nodes, Mj the number of nodes with kj parents, N
kj

1 (t) the number of nodes with kj parents that are in

state 1 at time t for j = 1, 2, . . . , J , and xt the number of nodes to be updated at time t. We provide

a simulation algorithm that allows us to generate consecutive states of the model and match the results

with iterations of the real system.

In Section 3 we study the dynamics of the system through the analysis of the sensitivity of the

orbits to the initial values, bifurcation diagrams, and fixed points. We use various random distributions

to generate the number xt. We show that the system may exhibit order or chaos, depending on the

underlying parameters, the distributions used, and the number of nodes to be updated at each time

point. The route to chaos is due to period-doubling bifurcations which turn into reversed bifurcations

for certain combinations of parameter values. The findings are explained in more detail together with a

thorough analysis of the two and three dimensional cases in Section 4 which focuses on bifurcations. We
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show that in general, when few nodes are updated at the same time, the system exhibits order, while for

the case when a large number of nodes are updated at each time point, the system could exhibit chaos

which may be reversed for high values of the connectivity parameters.

Section 5 is dedicated to conclusions and further directions of investigation.

2. The Random Boolean Network Model

In this section we describe the proposed model for the Boolean network under consideration. We show

how this model compares to those in [19] and [21].

We consider a network with N nodes, c1, c2, . . . cN , that can take on two values, 1 or 0. At each time

point t the system can be in one of the 2N possible states. The nodes are updated in an asynchronous

fashion from time t to time t + 1 according to a generalized ECA rule 126. Each node cn is assigned a

random ”neighborhood” of parents, which may vary in size from one node to another. If a node has a

”neighborhood” of size k, then the k parents are selected randomly from the remaining N−1 nodes (with

probability 1/
(
N−1

k

)
). The Boolean rule can be described as follows: if a node cn and all its parents have

the same value at time t (that is they are all either 0 or 1), then cn(t + 1) = 0, otherwise cn(t + 1) = 1.

This generalizes rule 126 of cellular automata ( [21], [23]).

The system is basically described by the number of parents of each node. The quantity N1(t) :=
∑N

n=1 cn(t) gives the number of cells that are in state 1 at time t. The concentration of nodes in state 1

is given by 1
N

∑N
n=1 cn(t), and will be used to estimate the probability p(t + 1) that a node is in state 1

at time t+1, given p(t). The formula we obtain will help us study the dynamics of the system in Section

3.

In the paper [19] the authors show that p(t + 1) is given by

(1) p(t + 1) = p(t) +
1
N

[
1− p(t)− p(t)k+1 − (1− p(t))k+1

]
.

for the ARBN case when only one node is updated at each time point, and

(2) p(t + 1) = p(t) +
xt

N

(
1− p(t)− (1− p(t))k+1 − p(t)k+1

)
.

for the GARBN case when a random number of nodes is updated at each time point. In these formulae

k ≥ 1 is the number of parents of each node (considered fixed), and xt is the number of nodes to be

updated at time t (randomly generated).

In the paper [21] the formula for the probability p(t + 1) that a node is in state 1 at time t + 1 given

p(t) is

p(t + 1) =
J∑

j=1

Mj

N

[
1− N

kj

0 (t)
Mj

(1− p(t))kj − N
kj

1 (t)
Mj

p(t)kj

]

where N is the size of the network, k1, k2, . . . , kJ the distinct values for the number of parents of the

nodes, Mj the number of nodes with kj parents, N
kj

0 (t) the number of nodes with kj parents that are
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in state 0 at time t, and N
kj

1 (t) the number of nodes with kj parents that are in state 1 at time t. The

network is considered synchronous.

Our goal is to provide a similar formula when dealing with nonconstant number of parents and asyn-

chronous updating at the same time. We follow the notations used in [21]. Let k1, k2, . . . , kJ be the

distinct values for the number of parents the nodes c1, c2, . . . , cN can have. Also let Cj be the collection

of all nodes having kj parents, and Mj be the number of nodes in each class Cj , j = 1, 2, . . . , J . Also, let

N
kj

0 (t) be number of nodes of class Cj in state 0 at time t, and N
kj

1 (t) the number of nodes of class Cj

in state 1 at time t, j = 1, 2, . . . , J . It follows that
∑J

j=1(N
kj

0 (t) + N
kj

1 (t)) = N , and N
kj

0 + N
kj

1 = Mj ,

j = 1, 2, . . . , J . The probability that a node is in state 1 at time t is given by p(t) = 1
N

∑J
j=1 N

kj

1 (t). We

want to compute the conditional probability that a node is in state 1 at t+1, given the known probability

p(t). Observe that this is determined by the number of nodes that change from state 0 at time t to state

1 at time t + 1 and the number of nodes that remain in state 1 from time t to t + 1.

If xt is the number of nodes to be updated at time t, denote by xj
t the number of nodes in class Cj

that are updated at time t. It follows that
∑J

j=1 xj
t = xt. Also, let Nx

kj

0 and Nx
kj

1 be the number of

nodes of class Cj that are 0 and 1, respectively, and are updated at time t. Thus Nx
kj

0 + Nx
kj

1 = xj
t .

We will start with the derivation of N
kj

0→1(t) which will denote the number of nodes of class Cj that

are 0 at time t and become 1 at time t + 1. We use the notation P for the probability of an event and

p(t) for the probability of a node being in state 1 at time t. If cn(t) = 0 and the node has k parents, then

P(cn(t + 1) = 1|cn(t) = 0) = P(at least one of the parents of node cn is 1 at time t) =

= 1− P(all parents of node cn are 0 at time t) = 1− (1− p(t))k.

Here k denotes the number of parents of the node cn and could be any of the numbers k1, k2, . . . , kJ .

We assume that the parents can be in state 0 or 1 independently of each other. At time t + 1 we could

have 0, 1, 2, . . . , or Nx
kj

0 (t) nodes going from state 0 at time t to state 1 at t + 1. We define the discrete

random variable X given by the probability distribution function

P(X = l) = P(l nodes of class Cj go from state 0 at time t to state 1 at time t + 1) =

=
(

Nx
kj

0 (t)
l

) [
1− (1− p(t))kj

]l [
(1− p(t))kj

]Nx
kj
0 (t)−l

, l = 0, 1, 2, . . . , Nx
kj

0 (t).

One can check by a straightforward computation that
∑Nx

kj
0 (t)

l=0 P(X = l) = 1. Then N
kj

0→1(t) will be

the expected value of X, that is

N
kj

0→1(t) =
Nx

kj
0 (t)∑

l=0

lP(X = l) = Nx
kj

0 (t)
[
1− (1− p(t))kj

]
.
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Note that if the number of parents is the same for all nodes, say k, then kj = k, for all j = 1, 2, . . . , J

and the total number of nodes going from state 0 at time t to state 1 at time t + 1 is given by

N0→1(t) = Nx0(t)
(
1− (1− p(t))k

)
, Nx0(t) =

J∑

j=1

Nx
kj

0 (t).

This represents exactly the formula obtained in [19] for N0→1(t), where Nx0(t) is expressed as xt(1−p(t)).

By a similar argument, one can write the following formulas for N
kj

1→1(t), the number of nodes of class

Cj that remain 1 from time t to t + 1, N
kj

0→0(t) the number of nodes of class Cj that remain 0, and

N
kj

1→0(t), the number of nodes of class Cj that change from 1 to 0. In each case an appropriate random

variable is defined as in the case of N
kj

0→1(t), and the number of nodes going from one state at time t to

the next state at time t + 1 is defined as the expected value of that random variable. Thus we obtain the

following:

N
kj

1→1(t) = (Nkj

1 (t)−Nx
kj

1 (t)) + Nx
kj

1 (t)(1− p(t)kj ),

N
kj

0→0(t) = (Nkj

0 (t)−Nx
kj

0 (t)) + Nx
kj

0 (t)(1− p(t))kj ,

N
kj

1→0(t) = Nx
kj

1 (t)p(t)kj .

Again, by setting all numbers kj equal to k and performing the computations we get the formulas obtained

in [19], namely

N1→1(t) = N1(t)−Nx1(t)p(t)k, N0→0(t) = (N0(t)−Nx0(t))+Nx0(t)(1−p(t))k, N1→0(t) = Nx1(t)p(t)k

where N0(t) =
∑J

j=1 N
kj

0 (t), N1(t) =
∑J

j=1 N
kj

1 (t), Nx0(t) =
∑J

j=1 Nx
kj

0 (t), Nx1(t) =
∑J

j=1 Nx
kj

1 (t).

In [19] Nx0(t) = xt(1− p(t)), Nx1(t) = xtp(t).

It follows immediately that the sum of all these quantities is equal to N . We can now construct the

quantities pj(t + 1) = 1
N

[
N

kj

0→1(t) + N
kj

1→1(t)
]

where j = 1, 2, . . . , J , representing the probabilities of

finding a node of class Cj in state 1 at time t + 1. Observe that after a short computation

pj(t + 1) =
n

kj

1 (t)
N

+
Nx

kj

0 (t)
N

(1− (1− p(t))kj )− Nx
kj

1 (t)
N

p(t)kj .

Now Nx
kj

1 (t) can be expressed as a proportion of xt as follows Nx
kj

1 (t) = N
kj
1 (t)
N xt, and consequently

Nx
kj

0 (t) = Mj−N
kj
1 (t)

N xt. Thus, after replacing these in the expression of pj(t + 1) and performing some

computations we get

pj(t + 1) =
Mj

N

[
N

kj

1 (t)
Mj

(
1− xt

N

(
1− (1− p(t))kj + p(t)kj

))
+

xt

N

(
1− (1− p(t))kj

)
]

.

The quantity N
kj
1 (t)
Mj

represents the proportion of nodes of class Cj that are 1 at time t. Thus we can

write the final formula for the probability that a node is in state 1 at time t + 1, by summing up the
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pj(t + 1) for all j = 1, 2, . . . , J as follows

(2.1) p(t + 1) =
J∑

j=1

Mj

N

[
N

kj

1 (t)
Mj

(
1− xt

N

(
1− (1− p(t))kj + p(t)kj

))
+

xt

N

(
1− (1− p(t))kj

)
]

We include here the formula for p(t + 1) obtained in [21] for a synchronous network with multiple values

of the number of parents

p(t + 1) =
J∑

j=1

pj(t + 1) =
J∑

j=1

Mj

N

[
1− N

kj

0 (t)
Mj

(1− p(t))kj − N
kj

1 (t)
Mj

p(t)kj

]
.

Observe the similarities when replacing N
kj

0 (t) by Mj −N
kj

1 (t). We also include the formula for p(t + 1)

obtained in [19] for a GARBN with a constant number of parents k

p(t + 1) =
N1(t + 1)

N
= p(t) +

xt

N

[
1− p(t)− p(t)k+1 − (1− p(t))k+1

]
.

Again we can observe the similarities if we collect together the terms involving xt

N in formula (2.1).

Note that if all the nodes are 0 at time t, then N
kj

0 (t) = N, N
kj

1 (t) = 0, for all j = 1, 2, . . . J , so that

p(t+1) = 0, which is to be expected since by the Boolean rule all the nodes stay 0 at time t+1. Similarly,

if all the nodes are 1 at time t, p(t + 1) = N−xt

N by the formula, as well as by the Boolean rule.

Given all of the above, we propose the following simulation algorithm for the Boolean network under

consideration. The algorithm provides the computation of p(t) for all t = 0, 1, 2, . . . .

• For t = 0 choose arbitrary numbers pj(0) ∈ [0,
Mj

N ], j = 1, 2, . . . , J , and let

p(0) =
J∑

j=1

pj(0).

• For each t = 0, 1, 2, . . . compute

(2.2) pj(t + 1) =
Mj

N

[
pj(t)
Mj

N

(
1− xt

N

(
1− (1− p(t))kj + p(t)kj

))
+

xt

N

(
1− (1− p(t))kj

)
]

where j = 1, 2, . . . , J , and let

p(t + 1) =
J∑

j=1

pj(t + 1).

The formula for pj(t + 1) in (2.2) is similar to the summands for pj(t + 1) in (2.1).

We can use this algorithm to simulate consecutive states of the model and compare the results with

iterations of the real system. In this paper we present only typical graphs, as the result of numerous

simulations performed in Matlab. The asynchrony is generated using various random distributions:

discrete uniform on {1, 2, . . . , N}, binomial with N trials and probability of success θ, Poisson with

parameter λ, power law with parameter γ, and hypergeometric with N balls, w white balls, N −w black

balls, and s selected balls.
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The graphs in Figures 1-2 represent simulations of the (2-dimensional) model and the actual Boolean

system for some parameter choices and the binomial distribution for xt. The model is represented by the

mesh, while the real system is represented by points. We graph p(t+iteration) versus p1(t) and p2(t) for

the iteration specified in each graph. We can deduce the behavior of the system and the model for other

cases from these graphs, since all the other simulations obtained for various parameter combinations are

quite similar to those in Figures 1-2. We have simulated similar graphs for the following distributions of xt:

uniform, Poisson, binomial, power law, hypergeometric. In all cases the parameters of the distributions

are chosen such that the probability of a value xt larger than N is practically zero. In Figure 1 we observe

that although the match between the model and the real system is not perfect in the beginning, in the

long run they match quite well. Figure 1 is representative for almost all the cases considered. The only

situation for which the situation differs is the binomial distribution with N trials and a large probability

of success. In this case both the system and the model do not settle even after a significantly large

number of iterations as seen in Figure 2.

Figure 1. Iterations of the system and the model, with N = 64, k1 = 4, k2 = 32, M1 =

4, M2 = 60, and xt from a binomial distribution with number of trials N and probability of

success θ = 0.5. The model is a good approximation for the system after a transient period.

This figure is similar to other graphs obtained with other distributions such as uniform, Poisson,

power law, and hypergeometric.

3. System Dynamics

Now we can study the dynamics of the system by analyzing the model and its behavior. We start with

the study of the stability of the orbits to initial conditions. We consider the case of only two distinct
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Figure 2. Iterations of the system and the model, with N = 64, k1 = 4, k2 = 32, M1 =

60, M2 = 4, and xt from a binomial distribution with number of trials N and probability of

success θ = 0.9. We observe that both the model and the real system do not settle even after

many iterations.

values for the number of parents for simplicity. We fix the parameters N, M1,M2, k1, k2, and generate

xt according to various distributions: uniform, binomial, Poisson, power law, and hypergeometric. We

choose two initial pairs (p1(0), p2(0)) and (q1(0), q2(0)) as starting points for the orbits. We iterate many

times the equations of the model and compute p(t) = p1(t) + p2(t) and q(t) = q1(t) + q2(t) for each

time point t. Then we plot the error E(t) = |p(t) − q(t)| versus t. In Figure 3 we show the case of

N = 1024, M1 = M2 = N
2 , k1 = 4, k2 = 128 and xt from a power law distribution with parameter γ = 2.

In this graph p(0) = 0.375 and q(0) = 0.415, so the starting values are relatively close. This graph is

typical and very similar for most other combinations of parameters considered in the experiments. We

observe that the error converges to zero. The rates of convergence to zero may vary based on the closeness

of the initial values and the parameter combinations. Thus the system does not exhibit sensitivity to

initial values and this is consistent with the ordered behavior observed in the bifurcation diagrams which

will be analyzed next.

The case when xt is generated with a binomial distribution exhibits a more complicated behavior. For

example, in Figure 4 we present the case of N = 210, M1 = N/16, k1 = 50, k2 = 256, and xt from a

binomial distribution with N trials and probability of success 0.9. We observe that the error does not

converge to zero even after 10, 000 iterations. However, for values of k2 smaller than approximately 45

or larger than approximately 340 (not shown but similar to Figure 3) the error converges to zero rather

fast. This suggests a range of values of k2 for which the system may exhibit chaos, which is reversed
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Figure 3. Error plot for the ARBN model with N = 1024, M1 = 512, M2 = 512, k1 = 4, k2 =

128, and xt from a power law distribution with parameter γ = 2. This graph is typical for

all the distributions considered by the authors, with various parameters, except the binomial

distribution with a large probability of success, and hypergeometric with large values of the

parameters. We note that both these situations correspond to the case when the generated

values of xt are rather large.
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Figure 4. Error plot for the ARBN model with N = 1024, M1 = 64, M2 = 960, k1 = 50, k2 =

256, and xt from a binomial distribution with N trials and probability of success 0.9. We observe

a clear sensitivity to initial values.

for large values of k2. A similar behavior is observed for other parameter combinations with the note

that the values of k1 and k2 for which sensitivity of the orbits to initial values is observed, decrease with

the increase of the probability of success of the binomial distribution. Similar situations occur for the

uniform and the Poisson distributions. The bifurcation diagrams will clarify this situation.

Finally, in the case when xt is generated with a hypergeometric distribution with the following param-

eters: N the total number of balls (equal to the total number of nodes in the network), w the number

of white balls, and s the number of selected balls, the error may or may not converge to zero, depending
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on the parameter combinations. More precisely, it is observed that if the parameters w and s are such

that the values xt are not very large, the error converges to zero. The same behavior is observed for

cases when the values xt are large, but the connectivity values k1 and k2 are both small enough. This

behavior is basically independent of the proportions M1
N , M2

N as long as the parameters k1 and k2 are

small enough. When the parameters are large enough, the error does not converge to zero. To provide a

better graphical view of the situation, we employ some three dimensional graphs as follows. In Figure 5

we consider the following fixed parameters: N = 210, M1 = 960,M2 = 64, w = 900, s = 700. We allow k1

and k2 to move freely, and for each combination, we iterate the system 1000 time steps and plot E(1001)

versus k1 and k2. Similar graphs are obtained for more than 1000 iterations. The initial values of the

orbits are within 0.0001 of each other. We observe that the error is zero for smaller values of k1 and k2,

but for larger values the error is nonzero.
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Figure 5. Error plot for the ARBN model with N = 1024, M1 = 960, M2 = 64, and xt from

a hypergeometric distribution with a total of N balls, w = 900 white balls, and s = 700 selected

balls. For each combination of the parameters k1 and k2 we iterate the system 1000 times and

plot E(1001). We observe that if k1 and k2 are large enough the error is not zero. This situation

holds for more than 1000 iterations as well.

Similarly, in Figure 6 we fix the parameters N = 210,M1 = 960,M2 = 64, k1 = 64, k2 = 1000, and

allow the parameters w and s to move freely. Again, we iterate the system 1000 times and plot E(1001)

versus w and s. Again, we observe that w and s have to be large enough for the error to be nonzero.

We also observe that if both w and s are very large the error is zero again. The bifurcation diagrams to

follow will supplement the error plots and clarify that indeed, when the parameters are large enough the

system exhibits chaos. Otherwise it has an ordered behavior.

To graph the bifurcation diagrams with integer values for the parameters k, we consider the two

dimensional case and fix the parameters N, M1,M2. In Figure 7 we graph bifurcation diagrams for
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Figure 6. Error plot for the ARBN model with N = 1024, M1 = 960, M2 = 64, k1 = 64, k2 =

1000, and xt from a hypergeometric distribution with a total of N balls, w white balls, and

s selected balls. For each combination of the parameters w and s we iterate the system 1000

times and plot E(1001). We observe that if w and s are large enough the error is not zero. This

situation holds for more than 1000 iterations as well. At the same time, if both w and s are

very large, the error is again zero.

N = 1024,M1 = 64,M2 = 960 and let k1 take on a few values between 1 and 1023, while k2 increases

freely. The values xt are from a binomial distribution with N trials and probability of success 0.5. The

diagrams represent p vs. (k1, k2) for only a few values of k1, which allows one to understand how the

diagrams change from one value of k1 to another. We note here that the initial values (p1, p2) are the

same for all the ”slices” shown in the graph. We observe that for smaller values of k1 the diagrams

exhibit one period doubling bifurcation which is reversed for large values of k2. Thus the system has a

very ordered behavior. Figure 8 is a zoom in on the ”slice” k1 = 50 of Figure 7 for more clarity. We

observe that for fixed, but larger values of k1 the situation changes and the system exhibits chaos. The

route to chaos is through a cascade of period doubling bifurcations which is then reversed to a cascade of

period halving bifurcations for large values of k2. This can be seen by looking at the ”slices” of Figure 7.

Since the values of k1 and k2 are bounded above by N−1, if k1 is large enough, the reversed cascade does

not occur in the given range of k2 values. However, we observe that if the number of nodes is large, the

reversed bifurcations occur for larger and larger values of k2. On the other hand, if θ is small enough, the

system may exhibit only ordered behavior for any values of k1 and k2 within their range {1, 2, . . . , N−1}.
As θ increases, the chaos occurs starting with smaller and smaller values of k1, and the range of values

for p(t) becomes wider. We include for comparison two other figures: Figure 9 is the analog of Figure 7

for θ = 0.4 and Figure 10 is the analog of Figure 7 for θ = 0.9.
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Figure 7. Bifurcation diagram for the case where N = 1024, M1 = 64, M2, = 960, and k1

takes on a range of values between 1 and N − 1 as seen in the graph, while k2 increases freely

(up to the maximum of N − 1). The values xt are from a binomial distribution with N trials

and probability of success 0.5. We observe that for smaller values of k1 the diagrams exhibit

one period doubling bifurcation which is reversed as k2 increases. Thus the system has a very

ordered behavior. In the next figure we zoom in on the ”slice” k1 = 50 for more clarity. At

the same time, for larger values of k1 the system exhibits chaos as k2 increases which occurs

through period doubling bifurcations which may be reversed as k2 becomes large. If k1 is large

enough the reversed bifurcations do not appear within the range of admissible k2 values.

Thus for the case of a binomial distribution with N trials and probability of success θ medium or

large, the system exhibits chaos for certain values of the parameters k1 and k2, which may be reversed

through a cascade of period halving bifurcations, as seen more precisely in Figure 11. As k1 increases the

reversed bifurcations occur for larger values of k2. At the same time, we observe that if M1 increases, the

reversed bifurcations occur for smaller values of k2 when k1 is fixed. Also, as the probability of success

θ decreases the chaos appears for larger values of k1 and k2. Similar situations occur for the cases when

xt is generated by a uniform or a Poisson distribution.

For the case when xt is from a power law distribution we observe that the diagrams ”fan-out” as

shown in Figures 12-13 where the parameter of the distribution is γ = 4. This is suggestive of an ordered

behavior. Figure 13 is a zoom in on the slice k1 = 5 of Figure 12 with various levels of detail in the three

subplots provided. The diagrams are similar for any values of k1 within the range {1, 2, . . . , N − 1}. We

observe the same behavior for values of γ >= 4, while for smaller values the system exhibits only stable

fixed points. These graphs are typical for various combinations of the parameters.

In the case of the hypergeometric distribution with parameters N,w, s, the bifurcation diagrams sup-

port the behavior observed in the error plots, namely, that large enough values of k1 and k2 combined



14

0 50 100 150 200 250
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

k
2

p
(t

)

Figure 8. Bifurcation diagram for the case where N = 1024, M1 = 64, M2, = 960, k1 = 50 and

k2 increases freely. The values xt are from a binomial distribution with N trials and probability

of success 0.5. We observe that the diagrams exhibit one period doubling bifurcation which is

reversed for large values of k2. Thus the system has a very ordered behavior. This figure is a

zoom in on the ”slice” k1 = 50 of Figure 7.
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Figure 9. Bifurcation diagram for the case where N = 1024, M1 = 64, M2, = 960, and k1

takes on a few values between 1 and N − 1 as seen in the graph, while k2 increases freely (up

to the maximum of N − 1). The values xt are from a binomial distribution with N trials and

probability of success 0.4. We observe that the diagrams exhibit one period doubling bifurcation

which may be reversed as k2 increases, similarly to Figure 8. Thus the system has a very ordered

behavior.

with suitable values of w and s generate chaos. More precisely, if say s and w are fixed and we allow k1

and k2 to increase, we observe that for small values of k1 the system exhibits order as k2 moves freely,



15

200 400 600 800 1000200
400

600
800

1000
0.5

0.6

0.7

0.8

0.9

1

k
1

k
2

p
(t

)

Figure 10. Bifurcation diagram for the case where N = 1024, M1 = 64, M2 = 960, and k1

takes on a few values between 1 and N − 1 as seen in the graph, while k2 increases freely (up

to the maximum of N − 1). The values xt are from a binomial distribution with N trials and

probability of success 0.9. We observe that for a wide range of values of k1 (between 1 and

N − 1) the system exhibits chaos as k2 increases which occurs through period doubling bifurca-

tions.
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Figure 11. Bifurcation diagram for the case where N = 1024, M1 = 64, M2 = 960, k1 = 50

and k2 increases freely. The values xt are from a binomial distribution with N trials and

probability of success 0.9. We observe that the route to chaos is through a cascade of period

doubling bifurcations which are reversed for larger values of k2.

while for larger values of k1 the system exhibits period doubling bifurcations and chaos as k2 increases

freely. This can be seen in Figure 14, where we graph bifurcation diagrams after iterating the system

2000 steps. We select only a few values of k1 whereas k2 increases freely. The fixed parameters are
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Figure 12. Bifurcation diagram for the case where N = 1024, M1 = 512, M2 = 512, k1 =

1, 2, 3, 4, 5 and k2 increases freely. The values xt are from a power law distribution with param-

eter γ = 4. We observe that the diagrams show an ordered but nontrivial behavior. In the next

figure we provide a zoom in on the ”slice” k1 = 5 to see that the diagrams are non-bifurcating.
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Figure 13. Bifurcation diagram for the case where N = 1024, M1 = 512, M2 = 512, k1 = 5

and k2 increases freely. The values xt are from a power law distribution with parameter γ = 4.

We observe that the diagrams show an ordered but nontrivial behavior. This figure is a zoom

in on the ”slice” k1 = 5 of Figure 12, providing three different levels of detail.

N = 210,M1 = 960,M2 = 64, w = 700, s = 900 and they match the previous error plots for the hyperge-

ometric distribution. At the same time, if we consider similar graphs for combinations of the parameters

s and w that generate larger values of xt, the diagrams exhibit period doubling bifurcations and chaos

starting with smaller values of k1. On the other hand, if s and w are such that the values xt become
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smaller, then the system exhibits an ordered behavior for a wider range of k1 values, potentially for all

values of k1 in the admissible range if the values of xt are small enough.
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Figure 14. Bifurcation diagram for the case where N = 1024, M1 = 960, M2 = 64, k1 takes

on a few values in the allowed range of values, and k2 increases freely. The values xt are from

a hypergeometric distribution with parameters N, w = 700, s = 900. We observe that for small

values of k1 the system exhibits order as k2 increases, whereas when k1 is large enough the

system exhibits period doubling bifurcations and chaos.

Finally, to end the analysis we look at the J-dimensional map

fj(p1, p2, . . . , pJ) =

=
Mj

N


 pj

Mj

N


1− xt

N


1−

(
1−

J∑

i=1

pi

)kj

+

(
J∑

i=1

pi

)kj




 +

xt

N


1−

(
1−

J∑

i=1

pi

)kj






where j = 1, 2, . . . , J , and find its fixed points, that is we solve the system of equations fj(p1, p2, . . . , pJ) =

pj , j = 1, 2, . . . , J which yields the following equivalent system

(3.1) pj =

Mj

N

(
1−

(
1−∑J

i=1 pi

)kj
)

1−
(
1−∑J

i=1 pi

)kj

+
(∑J

i=1 pi

)kj
, j = 1, 2, . . . , J.

It is clear that if kj → ∞ for a fixed j in the above system, then pj converges to Mj

N . Of course the

sequence (pj)j is increasing. Also, pj = 0, j = 1, 2, . . . , J is obviously a fixed point of the J-dimensional

map. Observe that if for a given j = 1, 2, . . . , J we set kj = 1 then pj = 1
2

Mj

N . On the other hand, if none

of the k’s are equal to 1, since pj → Mj

N as kj →∞ the sum
∑J

j=1 pj → 1 as the k’s increase. One other

aspect to observe is that the fixed points are independent of the choice of xt. In Figure 15 we observe

that the fixed points converge indeed to Mj

N for each specified combination of parameters, and to 1
2

Mj

N
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for kj = 1. We look at 2, 3 and 4-dimensional cases, and we graph the values of the pj , j = 1, 2, . . . , J

and p =
∑J

j=1 pj against one of the k values which is free. The other k values are constant.
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Figure 15. Fixed points for the following cases. Subplot 1: We graph p1, p2, p = p1+p2 for the

2 dimensional case in which N = 1024, M1 = 256, M2 = 768, k1 = 2. Observe that p1 → M1
N

=

0.25, while p2 → M2
N

= 0.75 as k2 increases. Subplot 2: We graph p1, p2, p3, p = p1 + p2 + p3

for the 3 dimensional case in which N = 1024, M1 = 128, M2 = 384, M3 = 512, k1 = 2, k2 = 8.

Observe that p1 → M1
N

= 0.125, p2 → M2
N

= 0.375, while p3 → M3
N

= 0.5 as k3 increases.

Subplot 3: We graph p1, p2, p3, p4, p = p1 + p2 + p3 + p4 for the 4 dimensional case in which

N = 1024, M1 = 64, M2 = 128, M3 = 320, M4 = 512, k1 = 1, k2 = 2, k3 = 8. Observe that

p1 = 1
2

M1
N

= 0.03125, p2 → M2
N

= 0.125, p3 → M3
N

= 0.3125, while p4 → M4
N

= 0.5 as k4

increases.

4. More on Bifurcations

Consider the formula (2.2) simplified by replacing the term xt

N by a constant α ∈ [0, 1]. We can view

α as the mean value of the distribution generating xt divided by N . Thus the formula becomes

pj(t + 1) =
Mj

N

[
pj(t)
Mj

N

(
1− α

(
1− (1− p(t))kj + p(t)kj

))
+ α

(
1− (1− p(t))kj

)
]

where j = 1, 2, . . . , J . Again, let

p(t + 1) =
J∑

j=1

pj(t + 1).

To understand the appearance of bifurcations in the previous section, we will consider the two dimen-

sional case, with two possible values for the number of parents of a node, k1 and k2. Also, for simplicity,
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we will assume M1
N = M2

N = 1
2 , and we let p2(t) = M2

N = 1
2 . Recall that from the fixed point condition

(3.1) we have obtained that p2(t) → M2
N as k2 →∞. Thus, assuming k2 →∞, we obtain

p1(t + 1) = p1(t)

[
1− α

(
1−

(
1
2
− p1(t)

)k1

+
(

1
2

+ p1(t)
)k1

)]
+

α

2

(
1−

(
1
2
− p1(t)

)k1
)

p2(t + 1) =
1
2
.

Equivalently, using the fact that p(t + 1) = p1(t + 1) + p2(t + 1) we obtain

(4.1) p(t + 1) =
1
2

+
(

p(t)− 1
2

) [
1− α

(
1− (1− p(t))k1 + p(t)k1

)]
+

α

2
(
1− (1− p(t))k1

)
.

Thus we can study the behavior of this map, which corresponds to large values of k2. We will look now

at the three dimensional bifurcation diagram of the map (4.1), considering p as a function of both k1

and α. We iterate the system 2000 before plotting the diagrams in Figures 16-17. In Figure 16 we show

slices along k1 and observe that the system is stable for small values of α, but exhibits period doubling

bifurcations and chaos as α increases. We note here that similar results have been obtained in [19] for the

case of generalized asynchronous random Boolean networks with a constant number of parents. Figure

16 corresponds to Figure 11 of that paper. On the other hand, in Figure 16 we observe ordered behavior

for α = 1 as well. We will elaborate on this in what follows. Figure 17 is a zoom in on the slice α = 0.8 of

Figure 16, for a wider range of k1 values, with three levels of detail. We observe the existence of period

doubling bifurcations and chaos, together with periodic windows. In fact, if we set α = 0.8 and k1 = 500,

the graph of the first six iterates of the map shows the complexity introduced in the system by higher

order iterates, as shown in Figure 18. For example, the third iterate shows the existence of period three

orbits, and therefore, according to well-known theoretical results [26], implies the existence of periodic

orbits of all periods and an uncountably infinite set of sensitive points.

We note that for α = 1, meaning that the network is synchronous, the bifurcation diagram shows a

range of values for k1 corresponding to a single stable fixed point and one period doubling bifurcation to

a single stable period two orbit. This is exactly the behavior observed in [21] for a synchronous network

with varying number of parents, and corresponds to Figure 8 of that paper.

Similar to Figure 16 we can obtain bifurcation diagrams for p as a function of k and α with slices along

α. This is shown in Figure 19. It is apparent that the complex behavior occurs for larger values of α, or

in terms of the network, for the case when a sufficient number of nodes are updated at each time point.

We finalize the focus on the two dimensional case by looking now at the map (4.1), viewing it entirely

as a map for p with one parameter k1. We view it as a surface p(t + 1) versus (p(t), k1) for four different

values of α in Figure 20. We note that the last of the four graphs corresponds to α = 1, thus to a

synchronous network. This last graph is similar to the one obtained in Figure 9(a) of [21].



20

0
0.2

0.4
0.6

0.8
1

200
400

600
800

1000

0.8

0.85

0.9

0.95

1

Figure 16. Bifurcation diagram for the map p(t + 1) = 1
2

+
(
p(t)− 1

2

) [
1− α

(
1− (1− p(t)k1 + p(t)k1

)]
+ α

2

(
1− (1− p(t))k1

)
, where α takes on a

few values in [0, 1], while k1 increases from 1 to 1000. The vertical axis represents the 2001

iteration of p(t) for various initial values. We can see the rather ordered behavior for small α

as well as for α = 1, and period doubling bifurcations and chaos for larger values of α.

Figure 17. Bifurcation diagram for the map p(t + 1) = 1
2

+
(
p(t)− 1

2

) [
1− α

(
1− (1− p(t)k1 + p(t)k1

)]
+ α

2

(
1− (1− p(t))k1

)
, where α = 0.8 and k1

increases from 1 to 10000. The vertical axis represents the 2001 iteration of p(t) for various

initial values. We observe the period doubling bifurcations and chaos and the periodic windows

in the three levels of detail.

We can now look at higher dimension maps. For example, we can analyze the three dimensional case

in a similar fashion, by considering M1
N = M2

N = 1
4 , M3

N = 1
2 , and p3(t) = 1

2 as k3 →∞ in the fixed point
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Figure 18. The first six iterations of the map p(t + 1) = 1
2

+
(
p(t)− 1

2

) [
1− α

(
1− (1− p(t)k1 + p(t)k1

)]
+ α

2

(
1− (1− p(t))k1

)
, where α = 0.8 and

k1 = 500. The higher order iterates introduce complexity in the system.
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Figure 19. Bifurcation diagram for the map p(t + 1) = 1
2

+
(
p(t)− 1

2

) [
1− α

(
1− (1− p(t)k1 + p(t)k1

)]
+ α

2

(
1− (1− p(t))k1

)
, where k1 takes on a

few values between 1 and 1000, and α moves freely in [0, 1]. The vertical axis represents the

2001 iteration of p(t) for various initial values. We can see the rather ordered behavior for

small α and more complex behavior for larger values of α.

condition. The maps become

p1(t + 1) = p1(t)

[
1− α

(
1−

(
1
2
− p1(t)− p2(t)

)k1

+
(

1
2

+ p1(t) + p2(t)
)k1

)]
+

+
α

4

(
1−

(
1
2
− p1(t)− p2(t)

)k1
)
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Figure 20. Surface map for p(t + 1) versus (p(t), k1) for the map p(t + 1) = 1
2

+ (p(t) −
1
2
)
[
1− α

(
1− (1− p(t))k1 + p(t)k1

)]
+ α

2

(
1− (1− p(t))k1

)
, viewed as a map for p with one

parameter k1. Here α = 1/4, 1/2, 3/4, 1 respectively. We note the increased complexity of the

surface as α increases.

p2(t + 1) = p2(t)

[
1− α

(
1−

(
1
2
− p1(t)− p2(t)

)k2

+
(

1
2

+ p1(t) + p2(t)
)k2

)]
+

(4.2) +
α

4

(
1−

(
1
2
− p1(t)− p2(t)

)k2
)

and p(t + 1) = p1(t + 1) + p2(t + 1) + 1
2 . Then the map p(t) produces a monotone map as seen in

Figure 21, where k1 = 5 and k2 = 10. We graph p(t + 1) versus (p1(t), p2(t)) for the following values of

α = 1/4, 1/2, 3/4, 1. Again we observe the similarity of the fourth graph for α = 1 to Figure 9(b) of [21]

which corresponds to the synchronous case.

Due to the analogy with the two dimensional case, we can conclude that a high connectivity value

k (even for one class of nodes) can lead to a variety of behaviors, that range from order to chaos. The

chaos is due to period doubling bifurcations, which in some cases may be reversed through a cascade of

period halving bifurcations. For the case when a small or moderate number of nodes update at the same

time, the system is ordered in the long run, exhibiting stable fixed points or period two orbits. For a

large number of nodes updated at the same time, the system can exhibit order or chaos, depending on

the other parameters. The chaos occurs through a cascade of period doubling bifurcations, which may be

reversed into period halving bifurcations. We observe that the synchronous case is similar to the previous

results obtained in [21] for the case of synchronous networks.



23

Figure 21. Surface map for p(t + 1) versus (p1(t), p2(t)) for the map system (4.2). Here

k1 = 5, k2 = 10 and α = 1/4, 1/2, 3/4, 1 respectively. We note the increased complexity of the

surface as α increases.

5. Conclusions

We consider a Boolean network with N nodes, each node having a number of parents that can vary

from one node to another. The Boolean rule is a generalization of ECA rule 126 and is assumed the

same for all nodes. The nodes are updated asynchronously, and the number of nodes to be updated

at each time point is generated by a chosen random variable. The distributions used in this paper are

uniform, binomial, Poisson, power law, and hypergeometric. The network model provides the probability

p(t + 1) of finding a node in state 1 at time t + 1 knowing p(t). Using the model we study the dynamics

of the system through sensitivity of the orbits to initial values, bifurcation diagrams, and fixed point

analysis. We show that the system may exhibit order or chaos, depending on the underlying parameters,

the distributions used, and the number of nodes to be updated at each time point. The route to chaos

is due to period-doubling bifurcations which turn into reversed bifurcations for certain combinations of

parameter values. A detailed discussion on bifurcations shows that in general, when a few nodes are

updated at the same time, the system exhibits order, while for the case when a large number of nodes

are updated at each time point, the system could exhibit chaos which may be reversed for high values of

the connectivity parameters.

Future work will extend the asynchrony to various stochastic processes such as Markov processes or

(homogeneous or nonhomogeneous) Poisson processes. For a more in depth analysis of the dynamics of

the model, we would consider also processes such as Brownian motion or fractional Brownian motion,
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to account for short or long range dependence and self similarity properties of the number of updated

nodes.

Extending this work to the entire class of ”totalistic” ECA rules ( [21], [23]), would be a natural step

in the future, since the construction of the model in this paper depends only on the number of parent

nodes that are in state 1 or 0 at each time point, and not on their spatial structure. In conjunction with

this we plan on allowing for multiple Boolean rules since nodes of real systems may not behave according

to a fixed rule.

It has been observed that many processes in natural or artificial networks, could be both asynchronous

and ordered [27]. The authors of [27] propose the spotlight model in which the Boolean network is

divided into modules, each module being associated to a regulator node which controls the updates of

the module, depending on its own state. The asynchrony is obtained by altering the number of modules

used. Applying the spotlight model to the network described in this paper could generate some interesting

results.

Many complex systems in areas such as biology, chemistry, neural networks, or social networks, have

been shown to evolve based on synchronization of coupled elements ( [28] - [31]). In [32] - [34], the authors

discuss the synchronization of Kauffman networks and coupled cellular automata. In light of their work,

it would be of interest to study the synchronization of coupled networks similar to those described in this

paper, allowing for variability in the initial states of the networks to be synchronized, as well as in the

underlying parameters.
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