
University of Nebraska at Omaha University of Nebraska at Omaha

DigitalCommons@UNO DigitalCommons@UNO

Computer Science Faculty Publications Department of Computer Science

7-2016

On Abstract Modular Inference Systems and Solvers On Abstract Modular Inference Systems and Solvers

Yuliya Lierler
University of Nebraska at Omaha, ylierler@unomaha.edu

Miroslaw Truszczyński
University of Kentucky

Follow this and additional works at: https://digitalcommons.unomaha.edu/compscifacpub

 Part of the Computer Sciences Commons

Please take our feedback survey at: https://unomaha.az1.qualtrics.com/jfe/form/

SV_8cchtFmpDyGfBLE

Recommended Citation Recommended Citation
Lierler, Yuliya and Truszczyński, Miroslaw, "On Abstract Modular Inference Systems and Solvers" (2016).
Computer Science Faculty Publications. 22.
https://digitalcommons.unomaha.edu/compscifacpub/22

This Article is brought to you for free and open access by
the Department of Computer Science at
DigitalCommons@UNO. It has been accepted for
inclusion in Computer Science Faculty Publications by an
authorized administrator of DigitalCommons@UNO. For
more information, please contact
unodigitalcommons@unomaha.edu.

http://www.unomaha.edu/
http://www.unomaha.edu/
https://digitalcommons.unomaha.edu/
https://digitalcommons.unomaha.edu/compscifacpub
https://digitalcommons.unomaha.edu/compsci
https://digitalcommons.unomaha.edu/compscifacpub?utm_source=digitalcommons.unomaha.edu%2Fcompscifacpub%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unomaha.edu%2Fcompscifacpub%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
https://unomaha.az1.qualtrics.com/jfe/form/SV_8cchtFmpDyGfBLE
https://unomaha.az1.qualtrics.com/jfe/form/SV_8cchtFmpDyGfBLE
https://digitalcommons.unomaha.edu/compscifacpub/22?utm_source=digitalcommons.unomaha.edu%2Fcompscifacpub%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:unodigitalcommons@unomaha.edu
http://library.unomaha.edu/
http://library.unomaha.edu/

Artificial Intelligence 236 (2016) 65–89

Contents lists available at ScienceDirect

Artificial Intelligence

www.elsevier.com/locate/artint

On abstract modular inference systems and solvers ✩

Yuliya Lierler a,∗, Miroslaw Truszczynski b,∗
a Department of Computer Science, University of Nebraska at Omaha, Omaha, NE 68182, USA
b Department of Computer Science, University of Kentucky, Lexington, KY 40506-0633, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 5 August 2014
Received in revised form 10 March 2016
Accepted 17 March 2016
Available online 29 March 2016

Keywords:
Knowledge representation
Model-generation
Automated reasoning and inference
SAT solving
Answer set programming

Integrating diverse formalisms into modular knowledge representation systems offers
increased expressivity, modeling convenience, and computational benefits. We introduce
the concepts of abstract inference modules and abstract modular inference systems to study
general principles behind the design and analysis of model generating programs, or solvers,
for integrated multi-logic systems. We show how modules and modular systems give rise
to transition graphs, which are a natural and convenient representation of solvers, an idea
pioneered by the SAT community. These graphs lend themselves well to extensions that
capture such important solver design features as learning. In the paper, we consider two
flavors of learning for modular formalisms, local and global. We illustrate our approach by
showing how it applies to answer set programming, propositional logic, multi-logic systems
based on these two formalisms and, more generally, to satisfiability modulo theories.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Knowledge representation and reasoning (KR&R) is concerned with developing formal languages and logics to model
knowledge, and with designing and implementing corresponding automated reasoning tools. The choice of specific log-
ics and tools depends on the type of knowledge to be represented and reasoned about. Different logics are suitable for
common-sense reasoning, reasoning under incomplete information and uncertainty, for temporal and spatial reasoning, and
for modeling and solving Boolean constraints, or constraints over larger, even continuous domains. In applications in areas
such as distributed databases, semantic web, hybrid constraint modeling and solving, to name just a few, several of these
aspects come into play. Accordingly, often diverse logics have to be accommodated together.

Modeling convenience is not the only reason why diverse logics are combined into modular hybrid KR&R systems. An-
other motivation is to exploit in reasoning the transparent structure that comes from modularity, computational strengths of
individual logics, and synergies that arise when they are put together. An early example of a successful integration of differ-
ent types of reasoning is constraint logic programming (CLP) [28,29], which exploited computational properties of different
theories of constraints in a formalism centered around logic programming. About two decades later a similar idea appeared
in the area of propositional satisfiability. The resulting approach, known as satisfiability modulo theories (SMT) [49,4], con-
sists of integrating diverse constraint theories around the “core” provided by propositional satisfiability. SMT solvers are
currently among the most efficient automated reasoning tools and are widely used for computer-aided software verification
[10]. Another, more recent example is constraint answer set programming (CASP) [45,20,2,31,35] that integrates answer set

✩ This paper is a substantially extended version of the paper presented at PADL 2014 [38].

* Corresponding authors.
E-mail addresses: ylierler@unomaha.edu (Y. Lierler), mirek@cs.uky.edu (M. Truszczynski).

http://dx.doi.org/10.1016/j.artint.2016.03.004
0004-3702/© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

66 Y. Lierler, M. Truszczynski / Artificial Intelligence 236 (2016) 65–89

programming (ASP) [42,47] with constraint modeling and solving [51]. These approaches do not impose any strong a priori
restrictions on the constraint theories they allow. However, some types of theories are particularly heavily studied (for in-
stance, equality with uninterpreted functions, forms of arithmetic, arrays). Finally, more focused hybrid systems that combine
modules expressed in classical logic with modules given as answer set programs have also received substantial attention
lately. Examples include the “multi-logics” PC(ID) [43], SM(ASP) [36] and ASP-FO [11].1 These multi-logic modular integra-
tions facilitate modeling but also often lead to enormous performance gains. A good example is the problem of existence
of Hamiltonian cycles in graphs. Known propositional logic encodings require that counter variables be used to represent
reachability. That leads to representations of large sizes. Using propositional logic to represent non-recursive constraints and
logic programs to represent reachability (which is much more direct than a counter-based propositional encoding) leads to
concise encodings. East and Truszczynski [13] demonstrated that the performance of SAT solvers on propositional encodings
of the problem lags dramatically behind that of the solver aspps, designed for handling together propositional and logic pro-
gram modules on hybrid representations of the problem.2 The “computational” motivation behind modular KR&R underlies
our paper.

The key computational task arising in KR&R is that of model generation. Model Generating programs, or solvers, developed
in satisfiability (SAT) and ASP proved to be effective in a broad range of KR&R applications. Accordingly, model generation
is of critical importance in modular multi-logic systems. Research on formalisms listed above resulted in fast solvers that
demonstrate substantial gains that one can obtain from their heterogeneous nature. However, the diversity of logics con-
sidered and low-level technical details of their syntax and semantics obscure general principles that are important in the
design and analysis of solvers for multi-logic systems.

In this paper, we address this problem by proposing a language for representing modular multi-logic systems that aims
to provide a general abstract view on solvers, to bring up key principles behind solver design, and to facilitate studies of
their properties. As we are not concerned with the modeling aspect of a KR&R system but with solving, we design our
language so that it (i) abstracts away the syntactic details, (ii) can capture diverse concepts of inference, and (iii) is based
only on the weakest assumptions concerning the semantics of underlying logics, in particular, this language can capture any
formalism whose semantics is determined by a set of models. The basic elements of this language are abstract inference mod-
ules (or just modules) that are defined to consist of inferences. Collections of abstract inference modules constitute abstract
modular inference systems (or just modular systems). We define the semantics of abstract inference modules and show that
they provide a uniform language to capture inference mechanisms from different logics, and their modular combinations.
Importantly, abstract inference modules and abstract modular inference systems give rise to transition graphs of the type
introduced by Nieuwenhuis, Oliveras, and Tinelli [49] in their study of SAT and SMT solvers. As in that earlier work, our
transition graphs provide a natural and convenient representation of solvers for modules and modular systems. They lend
themselves well to extensions that capture such important solver design techniques as learning (which here comes in two
flavors: local that is limited to single modules, and global that is applied across modules). In this way, abstract modular
inference systems and the corresponding framework of transition graphs are useful conceptualizations clarifying computa-
tional principles behind solvers for multi-logic knowledge representation systems and facilitating systematic development
of new ones. The design of transition systems based on syntax-free modules is what separates this work from earlier uses
of graphs for describing model generation algorithms behind SAT, SMT, PC(ID), or ASP solvers [49,43,34,36]. These earlier
transition graphs are language specific and based on the syntactic constructs typical of the respective formalisms. Adding
a new level of abstraction allows one a bird’s eye view on the landscape of solving techniques and their usage in hybrid
settings.

To demonstrate the power of our approach, we show that it applies to answer set programming, propositional logic,
multi-logic systems based on these two formalisms, and generally to satisfiability modulo theories. As SMT is a general
framework for integrating diverse logics, the same expressivity claims hold true for our approach. However, in at least one
aspect, our approach goes beyond the basic tenants of SMT. Namely, our modular systems have no central core, the role
played by SAT in the case of SMT. Rather, all modules are viewed in exactly the same way and can pass on results of
inferences directly to each other. In addition, all modules are presented in a uniform way as sets of inferences. In this way,
we can ignore syntactical aspects of logics. Of course, that makes our formalism poorly tailored for modeling, as it is the
syntax of logics that is typically used to provide concise representations of knowledge. Yet, our syntax-free modules make
explicit the reasoning the logics of the modules support, and that is of central importance to our objective to support the
design and analysis of solvers.

The paper is organized as follows. We start by introducing abstract inference modules. We then adapt the transition
graphs of Nieuwenhuis et al. [49] to the formalism of abstract inference modules and use them to describe algorithms
for finding and enumerating models of modules. In Section 4, we introduce abstract modular inference systems, extend
the concept of a transition graph to modular systems, and show that transition graphs can be used to formalize search

1 Logic PC(ID) is a propositional fragment of classical first-order logic with inductive definitions; SM(ASP) is a propositional language that merges classical
logic expressions and logic programs under stable model semantics; ASP(FO) is a first-order language, which encapsulates modules stemming from classical
logic and modules stemming from logic programming.

2 We stress that in this discussion we simply aim at showing that combining modules coming from different logics may be beneficial. Here, limitations
of propositional logic in modeling recursive constraints are overcome with modules designed specifically for this task. However, it is possible (in fact,
straightforward) to design a single ASP program that efficiently handles the Hamiltonian cycle application.

Y. Lierler, M. Truszczynski / Artificial Intelligence 236 (2016) 65–89 67

Fig. 1. All inferences and two inference modules over the vocabulary {a}.

for models in this setting, too. We also show in that section that abstract modular systems can be used to represent
SMT. In Section 5, we discuss extensions to our framework that support representing model-finding algorithms exploiting
“inference” learning, an abstract version of clause learning developed and studied in SAT. Throughout the paper, we illustrate
our approach by showing how it applies to propositional logic, answer set programming, to multi-logic systems based on
these two formalisms, and to SMT. We conclude by discussing related work, and recapping our contributions. All proofs are
gathered in the appendix.

2. Abstract inference modules

We start with some notation. Let σ be a vocabulary (a set of propositional atoms). Elements of σ and their negations
are literals. We write Lit(σ) for the set of all literals over σ . For a literal l we define its dual literal l as ¬a, if l = a, and a,
if l = ¬a. For a set M ⊆ Lit(σ), we define M+ = σ ∩ M and M− = {a ∈ σ : ¬a ∈ M}. A literal l ∈ Lit(σ) is unassigned by a
set of literals M ⊆ Lit(σ) if M contains neither l nor its dual literal l. A set M of literals over σ is consistent if for every
literal l ∈ Lit(σ), l /∈ M or l /∈ M . We denote the set of all consistent subsets of Lit(σ) by C(σ). A set M of literals is complete
over σ if for every atom a ∈ σ , either a ∈ M or ¬a ∈ M .

Definition 1. An abstract inference module over a vocabulary σ (or just a module, for short) is a finite set of pairs of the
form (M, l), where M ∈ C(σ), l ∈ Lit(σ) and l /∈ M . These pairs are called inferences of the module. For a module S , σS
denotes the set of all atoms that appear (possibly negated) in inferences of S .

Intuitively, an inference (M, l) in a module indicates support for inferring l whenever all literals in M are given. We note
that if (M, l) is an inference and l ∈ M , the inference is an explicit indication of a contradiction. Fig. 1(a) shows all inferences
over the vocabulary {a}. Figs. 1(b) and 1(c) give examples of modules over the vocabulary {a}. Here and throughout the
paper, we present inferences as directed edges and modules as bipartite graphs.

A set M ⊆ Lit(σ) is consistent with a set X (not necessarily included in σ) if M+ ⊆ X and M− ∩ X = ∅. A literal l ∈ Lit(σ)

is consistent with a set X if {l} is consistent with X . Let S be an abstract inference module over a vocabulary σ . A set X
is a model of S if for every inference (M, l) ∈ S such that M is consistent with X , l is consistent with X , too. A module is
satisfiable if it has models, and is unsatisfiable otherwise. For example, any set that contains a is a model of the module in
Fig. 1(b), whereas no set that does not contain a is such. The module in Fig. 1(c) has no models due to inferences (∅, a)

and (∅, ¬a) (as well as ({a}, ¬a) and ({¬a}, a)). The module in Fig. 1(b) is satisfiable, the one in Fig. 1(c) is unsatisfiable.
Let S be an abstract module over some vocabulary σ . Clearly, S can also be viewed as a module over the vocabulary σS ,

as any inference of S is an inference constructed of literals in Lit(σS). Moreover, it is clear from the definitions that for a
module S viewed as a module over σS , a set X is a model of S if and only if X ∩σS is a model of S . Thus, the semantics of
a module S is fully determined by its models contained in σS . Following the same argument, we can view a module S over
a vocabulary σ as a module over any vocabulary σ ′ ⊇ σ . In this respect, modules behave exactly as formulas and theories
in classical logic.

Two modules (not necessarily over the same vocabulary) that have the same models are equivalent. Similarly to the
observation made above, the following proposition shows that to test equivalence of modules one may restrict attention
only to models consisting of atoms that occur in the modules in question.

Proposition 1. Abstract inference modules S1 and S2 are equivalent if and only if they have the same models contained in the
set σS1 ∪ σS2 .

The semantics of modules is given by their models. Let S be a module over a vocabulary σ and l a literal in Lit(σ). We
say that S entails l, written S |≈ l, if for every model X of S , l is consistent with X . Furthermore, S entails l with respect to
a set M ⊆ Lit(σ) of literals, written S |≈M l, if whenever M is consistent with a model X of S , l is consistent with X , too.
Modules are sound with respect to their semantics, which we formally state below.

Proposition 2. Let S be a module and (M, l) an inference in S. Then S |≈M l.

In the paper, we often consider unions of (finitely many) modules. The union of modules is a well-defined operation as
modules are sets (of inferences). Thus, the union of modules M1, . . . , Mn is simply the module that consists precisely of all
the inferences of M1, . . . , Mn . We use the symbol ∪ to denote the union of modules. The resulting module can be viewed
as a module over any vocabulary σ that contains the vocabularies of all modules in the union.

68 Y. Lierler, M. Truszczynski / Artificial Intelligence 236 (2016) 65–89

Fig. 2. Abstract module Ent(T) for the theory T given by (1).

Proposition 3. Let S1 and S2 be abstract inference modules. A set X is a model of S1 ∪ S2 if and only if X is a model of S1 and S2 .

Modules are not meant for modeling knowledge. Representations by means of logic theories are usually more con-
cise. Furthermore, logic languages align closely with the natural language, which facilitates modeling and makes the
correspondence between logic theories and knowledge they represent direct. Modules lack this connection. The power
of modules comes from the fact that they provide a uniform, syntax-independent way to describe theories and infer-
ence methods for different logics. We illustrate this property of modules by showing that they can capture theories and
inferences in classical propositional logic and in answer set programming [23,42,47] (where logic programs are used as
theories).

2.1. Propositional logic via abstract inference modules

Let T be a finite propositional theory (formula) over σ , and let σT be the set of atoms that appear in T . We first
consider the inference method given by the classical entailment. By Ent(T) we denote the module consisting of pairs (M, l)
that satisfy the following conditions: M ∈ C(σT), l ∈ Lit(σT) \ M , and T ∪ M |= l. Fig. 1(b) shows the module Ent({a}). Fig. 1(c)
shows the module Ent({a ∧ ¬a}). Similarly, Fig. 2 presents the module Ent(T), where T is the theory in conjunctive normal
form (CNF theory)3:

{a ∨ b,¬a ∨ ¬b}. (1)

We note that Ent(T) has two models contained in {a, b}: {a} and {b}.4 More generally, every model X of Ent(T) contains
exactly one of a and b.

Focusing on specific inference rules of propositional logic also gives rise to abstract modules. Unit Propagate is a standard
inference rule commonly used when reasoning with CNF theories. This inference rule is essential to all satisfiability (SAT)
solvers, programs that compute models of CNF theories or determine that no models exist. Let T be a finite propositional
CNF theory over σ . The Unit Propagate rule gives rise to the module UP(T) that consists of all pairs (M, l) that satisfy the
following conditions: M ∈ C(σT), l ∈ Lit(σT) \ M , and T has a clause C ∨ l (modulo reordering of literals) such that for every
literal u of C , u ∈ M .

Let T be the CNF theory (1). The module Ent(T) in Fig. 2 coincides with UP(T). Thus, for the theory (1) the Unit Propagate
rule captures entailment.

We say that a module S is equivalent to a propositional theory T if they have the same models. Clearly, the module in
Fig. 2 is equivalent to the propositional theory (1). This is an instance of a general property.

Proposition 4. For every propositional theory T (respectively, CNF formula T containing no empty clause), Ent(T) (respectively, UP(T))
is equivalent to T .

2.2. Answer set programming via abstract inference modules

Unit Propagate is the primary inference rule of most SAT solvers. In the case of answer set programming, most solvers
rely on several inference rules associated with reasoning under the answer set semantics. For instance, the classical answer
set solver smodels [48] exploits four inference rules called the Unit Propagate rule, the Unfounded rule, the All Rules Cancelled
rule, and the Backchain True rule. To state these rules we introduce some definitions and notations commonly used in logic
programming.

A logic program, or simply a program, over σ is a finite set of rules of the form

a0 ← a1, . . . ,a�,not a�+1, . . . ,not am, (2)

where each ai , 0 ≤ i ≤ m, is an atom from σ . The expression a0 is the head of the rule. The expression on the right hand
side of the arrow is the body. For a program � and an atom a, Bodies(�, a) denotes the set of the bodies of all rules in �

with the head a. We write σ� for the set of atoms that occur in a program �.

3 We follow a common convention and represent CNF theories as sets of clauses.
4 We identify a model, an interpretation, of a propositional theory with the set of atoms that are assigned True in the model.

Y. Lierler, M. Truszczynski / Artificial Intelligence 236 (2016) 65–89 69

For the body B of a rule (2), we define s(B) = {a1, . . . , a�, ¬a�+1, . . . , ¬am}. In some cases, we identify B with the
conjunction of the elements in s(B), and we often interpret a rule (2) as the propositional clause

a0 ∨ ¬a1 ∨ . . . ∨ ¬a� ∨ a�+1 ∨ . . . ∨ am. (3)

For a program �, we write �cl for the set of clauses (3) corresponding to all rules in �.
The concept of an answer set (stable model) was introduced in [22]. Saccà and Zaniolo [52] showed that answer sets can

be characterized in terms of unfounded sets [56]. This characterization is the one we present here as it is especially useful
in understanding inference rules of modern answer set solvers discussed here. A set U of atoms occurring in a program �

is unfounded on a consistent set M of literals with respect to � if for every atom a ∈ U and every B ∈ Bodies(�, a), there
is u ∈ s(B) such that u ∈ M or U ∩ s(B)+ �= ∅. For a program � over σ , a set X of atoms over σ is an answer set of � if and
only if X is a model of �cl and X contains no element of a set that is unfounded on X ∪ {¬a : a ∈ σ \ X} with respect to �.
For a set M of literals and a program �, we write Unf (M, �) to denote the family of all sets unfounded on M w.r.t. �.

We are now ready to define the smodels inference rules. For a program �, a set M ∈ C(σ�) of literals, and a literal l ∈
Lit(σ�) \ M:

Unit Propagate: derive l if �cl contains clause C ∨ l such that for every u ∈ C , u ∈ M;

Unfounded: derive l if l = ¬a and a ∈ U , for some U ∈ Unf (M, �);

All Rules Cancelled: derive l if l = ¬a and for every B ∈ Bodies(�, a), there is u ∈ s(B) such that u ∈ M;

Backchain True: derive l, if for some rule a ← B ∈ �, a ∈ M , l ∈ s(B), and for every B ′ ∈ Bodies(�, a) such that s(B ′) �= s(B),
there is u ∈ s(B ′) such that u ∈ M .

The four rules above give rise to abstract inference modules UP(�), UF(�), ARC(�) and BC(�), respectively, each ob-
tained by taking the definition of the corresponding rule as the condition for (M, l), where M ∈ C(σ�) and l ∈ Lit(σ�) \ M ,
to be an inference of the module. For instance, the module UF(�) consists of all inferences (M, l) such that M ∈ C(σ�), l ∈
Lit(σ�) \ M , and l = ¬a, where a is any atom such that a ∈ U , for some U ∈ Unf (M, �).

We note that the inference rule All Rules Cancelled is subsumed by the inference rule Unfounded. That is, ARC(�) ⊆
UF(�). This is the only inclusion relation between distinct modules in that set that holds for every program. We also note
that UP(�) and UP(�cl) are identical (and so, equivalent) even though they concern different logics.

We say that a module S is equivalent to a program � if for every X ⊆ σ� , X is a model of S if and only if X is an answer
set of �.5 None of the four modules UP(�), UF(�), ARC(�) and BC(�) alone is equivalent to the underlying program �.
However, some combinations of these modules are. Let us define

UPUF(�) = UP(�) ∪ UF(�)

and

smodels(�) = UP(�) ∪ UF(�) ∪ ARC(�) ∪ BC(�).

Since ARC(�) ⊆ UF(�), it is not necessary to list the module ARC(�) explicitly in the union above. We do so, as the
rule All Rules Cancelled is computationally cheaper than the rule Unfounded and in practical implementations the two are
distinguished.

The following result restates well-known properties of these inference rules in terms of equivalence of modules and
programs.

Proposition 5. Every logic program � is equivalent to the modules UPUF(�) and smodels(�).

Let � be the program

a ← not b
b ← not a. (4)

This program has two answer sets {a} and {b}. Since these are also the only two models over the vocabulary {a, b} of the
module in Fig. 2, the program and the module are equivalent. This module represents the program (4) and the reason-
ing mechanism captured by the module smodels(�). Two other modules associated with program (4) are given in Fig. 3.
Fig. 3(a) shows the module UP(�), and the reasoning mechanism based on Unit Propagate. This module is not equivalent to
program (4). Indeed, {a, b} is its model, but not an answer set of (4). Fig. 3(b) shows the module ARC(�) (which in this case
happens to coincide with both UF(�) and BC(�)). Also this module is not equivalent to program (4) as ∅ is its model but
not an answer set of �. The union of the two modules in Fig. 3 captures all four inference rules and is indeed equal to the
module in Fig. 2.

5 This is not the standard concept of equivalence as it is restricted to models over the vocabulary of the program. It is sufficient, however, for our purpose
of studying algorithms to compute answer sets.

70 Y. Lierler, M. Truszczynski / Artificial Intelligence 236 (2016) 65–89

Fig. 3. Two abstract modules based on program (4).

Fig. 4. Two abstract modules based on program (5).

Fig. 5. An abstract module based on program (5).

We conclude this section with two more examples. In the first example, let � be the program consisting of the rule

a ← not a.

This program has no answer sets. The module UP(�) consists of a single inference ({¬a}, a), whereas the mod-
ules UF(�), ARC(�), and BC(�) coincide and consist of a single inference ({a}, ¬a). The module resulting from the union of
two last mentioned inferences is unsatisfiable.

In the second example, we assume that � is given by the rules

a ← b
b ← a. (5)

The empty set is the only answer set of this program. The inferences in Fig. 4(a) form the module BC(�) and those in
Fig. 4(b) define the module ARC(�). The union of these two modules yields the module UP(�). The union of the inferences
in Fig. 4(b) and in Fig. 5 gives the module UF(�).

3. Transition graphs — an abstraction of model finding algorithms

Finding models of logic theories and programs is a key computational task in declarative programming. Nieuwenhuis
et al. [49] proposed to use transition graphs to describe search procedures involved in model-finding algorithms commonly
called solvers, and developed that approach for the case of SAT. Their transition graph framework can express dpll, the basic
search procedure employed by SAT solvers, and its enhancements with techniques such as conflict-driven clause learning.
Lierler and Truszczynski [34,36] proposed a similar framework to describe and analyze the answer set solvers smodels,
cmodels [25] and clasp [17,19], as well as a PC(ID) solver minisat(id) [43]. In the previous section, we argued that theories
and programs can be represented by equivalent abstract inference modules (Propositions 4 and 5). We now show that the
idea of a transition graph can be generalized to the setting of modules, leading to an abstract perspective on the problem
of search for models of modules, and unifying the approaches to the model-finding task.

Let σ be a finite vocabulary. A state over σ is either a special state ⊥ (the fail state) or a sequence M of distinct literals
over σ , some possibly annotated by �, which marks them as decision literals, such that:

1. the set of literals in M is consistent or M = M ′l, where the set of literals in M ′ is consistent and contains l, and
2. if M = M ′l�M ′′ , then l is unassigned in the set of the literals in M ′ .

For instance, if σ = {a, b}, then ∅, a, ¬a� b, ¬a b� a and ⊥ are examples of states over σ .
If M is a state, by [M] we denote the set of the literals in M (that is, we drop annotations and ignore the order). Our def-

inition of a state allows for inconsistent states. However, inconsistent states are of a very specific form — the inconsistence
arises because of the last literal in the state. There is also a restriction on annotated (decision) literals. A decision literal
must not appear in a state following another occurrence of that literal or its dual (annotated or not). Intuitively, a literal

Y. Lierler, M. Truszczynski / Artificial Intelligence 236 (2016) 65–89 71

Inference PropagateS : M −→ Ml if

{ [M] is consistent, l /∈ [M], and

for some M ′ ⊆ [M], (M ′, l) is an inference of S

Fail: M −→ ⊥ if [M] is inconsistent and M contains no decision literals

Backtrack: P l� Q −→ P l if

{ [P l� Q] is inconsistent, and

Q contains no decision literals

Decide: M −→ M l� if [M] is consistent and l is unassigned by [M]

Fig. 6. The transition rules of the graph amS .

annotated by � denotes a current assumption: thus once a literal is assigned in a state, there is no point in later making
an assumption concerning whether it holds or not.

Each module S determines its transition graph amS . The set of nodes of amS consists of all possible states relative to
σS . The edges of the graph amS are specified by the transition rules listed in Fig. 6. The first rule depends on the module,
the last three do not. They have the same form no matter what module we consider. Hence, we omit the reference to the
module from their notation. Moreover, even for the rule Inference Propagate, we often omit the reference to the module if it
is implied by the context, or if the specific reference is immaterial. Finally, we call a node in a transition graph terminal if
no edge originates in it (equivalently, no rule applies to it).

The graph amS can be used to decide whether a module S has a model. The following properties are essential.

Theorem 6. For every abstract inference module S,

(a) graph amS is finite and acyclic,
(b) for any terminal state M of amS other than ⊥, [M]+ is a model of S,
(c) state ⊥ is reachable from ∅ in amS if and only if S is unsatisfiable (has no models).

Thus, to decide whether a module S has a model it is enough to find in the graph amS a path leading from node ∅ to a
terminal node M . If M = ⊥, S is unsatisfiable. Otherwise, [M]+ is a model of S . For instance, let S be the module in Fig. 2.
Below we show a path in the transition graph amS with every edge annotated by the corresponding transition rule:

∅ Decide−→ b� Inference PropagateS−→ b� ¬a. (6)

The state b� ¬a is terminal. Thus, Theorem 6(b) asserts that {b} is a model of S . There may be several paths determining
the same model. For instance, the path

∅ Decide−→ ¬a� Decide−→ ¬a� b� (7)

leads to the terminal node ¬a� b� , which is different from b� ¬a but corresponds to the same model.
We can view a path in the graph amS starting in ∅ and ending in a terminal node as a description of a specific way to

search for a model of module S . Each such path is determined by a function (strategy) selecting for each non-terminal state
exactly one of its outgoing edges (exactly one applicable transition). Therefore, solvers based on the transition graph amS are
determined by the “select-edge-to-follow” function. Such a function can be based, in particular, on assigning strict priorities
to inferences in S . Below we describe an algorithm that captures the “classical” dpll strategy. Assuming M is the current
state and it is not terminal, the algorithm proceeds as follows:

If M is inconsistent and has no decision literals, follow the Fail edge (this is the only applicable transition);
if M is inconsistent and has decision literals, follow the Backtrack edge (this is the only applicable transition);
if M is consistent and Inference PropagateS applies, follow the edge implied by the highest priority inference of the
form (M ′, l) in S such that M ′ ⊆ [M];
otherwise, follow a Decide edge.

This is still not a complete specification of a solver, as it offers no directions on how to select a decision literal
(which of many possible Decide transitions to apply). Much of research on SAT solvers design has focused on this par-
ticular aspect and several heuristics were proposed over the years. Each such heuristics for selecting a decision literal
when the Decide transition applies yields an algorithm. Additional algorithms can be obtained by switching the preference
between Inference Propagate and Decide rules. Earlier, we selected an Inference Propagate edge and only if impossible, we
selected a Decide edge. But that order can be reversed resulting in another class of algorithms. Finally, we could even con-
sider more complicated selection functions that, when both Decide and Inference Propagate edges are available, in some cases
select an Inference Propagate edge and in others a Decide one.

72 Y. Lierler, M. Truszczynski / Artificial Intelligence 236 (2016) 65–89

Fig. 7. The dpF graph where F = a.

Before we proceed, we state several observations about the graph amS . First, for every model X of an abstract module S ,
there is a terminal state M in amS such that X ∩ σS = [M]+ and M is reachable from ∅ in the graph amS (in other words,
every model of S is represented by some terminal state reachable from ∅ in amS). Indeed, we can take for M any state that
contains annotated atoms x� , for all x ∈ X ∩ σS , and annotated negated atoms ¬y� , for all y ∈ σS \ X . Each such state M
is reachable by a path whose edges are determined by the Decide rule. Moreover, if X is a model of S , then M is clearly a
terminal state.

Second, generally each model of a module S is represented by many terminal states in the graph amS . Some are reachable
from ∅ and some are not. However, as we just argued, the terminal states reachable from ∅ represent all models of the
module. Thus, to decide satisfiability of a module (or, for satisfiable modules, to find a model) it is sufficient to consider
only the states reachable from ∅. In this sense, the states reachable from ∅ determine the “essential” fragment of the
transition graph. To illustrate these observations, let us consider the module UP({a ∨ b}) (which simulates Unit Propagate
inferences based on a ∨ b). Then, a b, a� b, a b� , and a� b� all represent the same family of models — those that contain
atoms a and b.6 However, only one of these four states, a� b� , is reachable from ∅. The other three are not.

Third, one can generalize part (c) of Theorem 6 as follows. Let M be any state other than ⊥. If a terminal state other
than ⊥ is reachable from M , then S has models that are consistent with [M]. Otherwise, ⊥ is the only terminal state reach-
able from M and S has no models consistent with [M] (but it may have other models). Thus, while only the fragment of
the graph amS consisting of the states reachable from ∅ is needed to determine satisfiability and find models of the module,
other parts of the graph are of interest too. Incidentally, similar generalizations are possible for parts (c) in Theorems 11, 16
and 17 that we state later.

Finally, we observe that the fragment of the graph amS reachable from ∅ contains inconsistent states also. Such states
are, however, not terminal. For instance, the state ¬a� ¬b� a is reachable from ∅ in the transition graph of the mod-
ule UP({a ∨b}) (the path is given by the edges determined by two applications of the Decide rule, followed by an application
of the Unit Propagate rule). This state is not terminal as the Backtrack rule applies. Similarly, the fragment consisting of states
that are not reachable may contain states that are consistent (as we mentioned above, the state a b is not reachable from ∅
yet, it is consistent).

3.1. Abstract SAT solvers

We now show how the approaches proposed by Nieuwenhuis et al. [49] and Lierler [34] to describe and analyze SAT and
ASP solvers, respectively, fit in our abstract framework. Let F be a CNF formula that contains no empty clause. Nieuwenhuis
et al. [49], defined the transition graph dpF to capture the computation of the dpll algorithm. We now review this graph
in the form convenient for our purposes. All states over the vocabulary of F form the vertexes of dpF . The edges of dpF

are specified by the three “generic” transition rules Fail, Backtrack and Decide of the graph amS , and the Unit Propagate rule
below:

Unit PropagateF : M −→ Ml if

⎧⎨
⎩

[M] is consistent, l /∈ [M], and
there is C ∨ l ∈ F , such that
for every u ∈ C , u ∈ [M]

For example, let F be the theory consisting of a single clause a. Fig. 7 presents dpF .
It turns out that we can see the graph dpF as the transition graph of the abstract module UP(F).

Proposition 7. For every CNF formula F with no empty clause, dpF = amUP(F) .

Theorem 6, Proposition 7, and the fact that a CNF formula F and the module UP(F) are equivalent (Proposition 4) imply
the following result.

6 Four more states, with b preceding a, also represent this family of models.

Y. Lierler, M. Truszczynski / Artificial Intelligence 236 (2016) 65–89 73

Unfounded� : M −→ M¬a if

{ [M] is consistent, ¬a /∈ [M], and

a ∈ U , for some U ∈ Unf ([M],�)

All Rules Cancelled� : M −→ M¬a if

⎧⎪⎨
⎪⎩

[M] is consistent, ¬a /∈ [M], and

for every B ∈ Bodies(�,a),

there is u ∈ s(B) such that u ∈ [M]

Backchain True� : M −→ Ml if

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[M] is consistent, l /∈ [M]
for some a ← B ∈ �, a ∈ [M], l ∈ s(B), and

for every B ′ ∈ Bodies(�,a) so that s(B ′) �= s(B),

there is u ∈ s(B ′) such that u ∈ [M]

Fig. 8. Transition rules of the graph sm� .

Corollary 8. For any CNF formula F ,

(a) graph dpF is finite and acyclic,
(b) for any terminal state M of dpF other than ⊥, [M]+ is a model of F ,
(c) state ⊥ is reachable from ∅ in dpF if and only if F is unsatisfiable (has no models).

This is precisely the result stated by Nieuwenhuis et al. [49] and used to argue that the graph dpF is an abstraction of
the dpll method. To decide the satisfiability of F (and to find a model, if one exists), it is enough to find a path leading
from the state ∅ to a terminal state M: If M = ⊥ then F is unsatisfiable; otherwise, [M]+ is a model of F . In our example,
the only terminal states reachable from the state ∅ in dpF are a and a� . This translates into the fact that {a} is a model
of F . Specific algorithms encapsulated by the graph dpF (equivalently, amUP(F)) can be obtained by deciding on a way to
select an edge while in a consistent state. Typical implementations of basic backtracking SAT solvers follow a Unit PropagateF
edge whenever possible, choosing Decide edges only if nothing else applies. These algorithms differ from each other in the
heuristics they use for the selection of a decision literal.

3.2. Abstract answer set solvers

Our abstract approach to model generation in logics also applies to answer set programming [23,42,47]. Lierler [34]
introduced a transition system sm� to describe and study the smodels solver. We first review the graph sm� and then
show that Lierler’s approach can be viewed as an instantiation of our general theory.

The set of nodes of the graph sm� consists of all states relative to the vocabulary of program �. The edges of sm� are
specified by the transition rules of the graph dp�cl and the rules presented in Fig. 8.

The following result shows that Lierler’s approach can be viewed as an instantiation of our general theory.

Proposition 9. For every logic program �, sm� = amsmodels(�) .

Indeed, this proposition, Theorem 6 and the fact that � is equivalent to the module smodels(�) (Proposition 5) imply
the result stemming from that of Lierler [34].

Corollary 10. For every logic program �,

(a) graph sm� is finite and acyclic,
(b) for any terminal state M of sm� other than ⊥, M+ is an answer set of �,
(c) state ⊥ is reachable from ∅ in sm� if and only if � has no answer sets.

Since UPUF(�) is also equivalent to �, we obtain a similar corollary for the transition graph amUPUF(�) . Intuitively,
this graph is characterized by the transition rules of the graph dp�cl as well as the rule Unfounded presented in Fig. 8.
Thus, amUPUF(�) is an abstraction of another class of correct algorithms for finding answer sets of programs. In fact, it is so
for any module S such that UPUF(�) ⊆ S ⊆ smodels(�).

Also the graph sm� describes a whole family of backtracking search algorithms for finding answer sets of programs.
They differ from each other by the way an edge is selected while in a consistent state.

Our discussion of SAT and ASP solvers shows that the framework of modules uniformly encompasses different logics.
Furthermore, it uniformly models diverse reasoning mechanisms (the logical entailment, reasoning under specific inference
rules). Our results also show that transition graphs proposed earlier to represent and analyze SAT and ASP solvers are special
cases of transition graphs for abstract inference modules.

74 Y. Lierler, M. Truszczynski / Artificial Intelligence 236 (2016) 65–89

3.3. Model enumeration

We showed above how the transition graph amS can be used to conceptualize algorithms for deciding whether a mod-
ule S has a model. Model enumeration is a related task of generating all models of a module S . Paper by Gebser et al.
[18] is a good references for the problem. We now show that the transition graph approach can be adapted for the task of
enumeration.

To account for model enumeration for a module S , we extend the graph amS to a graph ameS . To this end, we introduce
the transition rule

Enumerate : M −→

⎧⎪⎪⎨
⎪⎪⎩

P l if no other rule applies to M ,
M = P l� Q , and Q contains no decision literals

⊥ if no other rule applies to M , and
M contains no decision literals,

and define the transition graph ameS for an AM S as the graph amS extended with the transition rule Enumerate. The
following theorem captures the main properties of this graph.

Theorem 11. For every abstract inference module S,

(a) the graph ameS is finite and acyclic,
(b) the ⊥ state is reachable from ∅,
(c) for every path from ∅ to ⊥ in ameS , the set of states in which the rule Enumerate applies is precisely the set of models of S over σS ,

and for each model X of S over σS there is exactly one state M on the path such that X = [M].

This theorem assures us that if we follow a path from ∅ to ⊥ we will encounter all models of S over σS .
Another related task is model counting where one wants to find the number of models of S , rather than what they

are. Gomes at al. [27] provides a good account for the task. Since methods used for model counting aim to avoid explicit
enumeration, it is not clear whether transition graphs can be useful for this task.

4. Abstract modular system and solver AMSA

By capturing diverse logics in a single framework, abstract modules are well suited for studying modularity in declara-
tive formalisms and for analyzing solvers for such modular formalisms. As illustrated by our examples, abstract inference
modules can capture reasoning of various logics including classical reasoning with propositional theories and reasoning with
programs under the answer set semantics. Putting modules together provides an abstract, uniform way to represent hybrid
modular systems, in which modules represent theories from different logics.

We now define an abstract modular declarative framework that uses the concept of a module as its basic element. We
then show how abstract transition graphs for modules generalize to the new formalism.

Definition 2. An abstract modular inference system (AMS) over a vocabulary σ is a finite set A of abstract inference modules
over vocabularies contained in σ . A set X , is a model of A if X is a model of every module S ∈A.

For an abstract modular inference system A, by σA we denote the vocabulary
⋃

S∈A σS . Recalling our comments from
Section 2, we note that an AMS A can be viewed as a modular system over any vocabulary extending σA .

Let S1 be the module presented in Fig. 1(b) and S2 be the module in Fig. 2. The vocabulary σA of an AMS A = {S1, S2}
consists of the atoms a and b. It is easy to see that the set {a} is the only model of A over σA (more generally, a set X
is a model of A if and only if X contains a and does not contain b). In Section 2, we observed that (i) S1 = Ent(T) (and
also = UP(T)) for a propositional theory T = {a}, and (ii) S2 = smodels(�) for a program � given by (4). Thus, the AMS
A = {S1, S2} illustrates how abstract modular systems can serve as an abstraction for heterogeneous multi-logic systems.

4.1. Modular logic programs via abstract modular inference systems

For a general example of a modular declarative formalism that can be seen as an abstract modular system we now
discuss modular logic programs [37]. Modular logic programs generalize the formalism of lp-modules, an early approach to
modular answer set programming proposed by Oikarinen and Janhunen [50].

The semantics of modular logic programs relies on the notion of an input answer set of a program [36]. A set X of atoms
is an input answer set of a logic program � if X is an answer set of the program � ∪ (X \ Head(�)), where Head(�) denotes
the set of all head atoms of �. Informally, input answer sets treat all atoms not occurring in the heads of program rules as
open so that they can assume any logical value. These atoms are viewed as the “input.” For instance, program a ← b has
two input answer sets that are subsets of set {a, b}: namely, ∅ and set {a, b}.

Y. Lierler, M. Truszczynski / Artificial Intelligence 236 (2016) 65–89 75

To capture the semantics of input answer sets in terms of inferences, we introduce a modified version of the propagation
rule Unfounded:

Unfounded′: derive l if l = ¬a and, for some U ∈ Unf (M, �), a ∈ U and for every b ∈ U , b ∈ Head(�) or ¬b ∈ M .

The only difference from the Unfounded rule we discussed earlier is a restriction on unfounded sets that the new rule
imposes.

The Unfounded′ rule gives rise to an inference module UF′(�) defined by taking the condition of the rule as a spec-
ification of when (M, l) is to be an inference of the module. With the module UF′(�) at hand, we define UPUF′(�) =
UP(�) ∪ UF′(�).

An inference module S is input-equivalent to a logic program � if the input answer sets of � coincide with the models
of S . We now restate Proposition 5 for the case of input-equivalence.

Proposition 12. Every program � is input-equivalent to the module UPUF′(�).

A modular (logic) program is a set of logic programs [37]. For a modular program P , a set X of atoms is a model of P if X
is an input answer set of every program � in P . An AMS A is equivalent to a modular program P if models of P coincide
with models of A.

Proposition 13. Every modular program {�1, . . . , �n} is equivalent to the abstract modular system {UPUF′(�1), . . . , UPUF′(�n)}.

Theories in the logics SM(ASP) [37] and PC(ID) [43] can be viewed as abstract modular systems in the same manner.

Remarks on modularity in ASP We use modular logic programs in this paper only to illustrate the key aspects of our general
framework. Thus, it is not the place for an extended discussion of the relationship between modular logic programs and
more standard work on modularity in ASP. Nevertheless, a few comments might be in order. First, in ASP the thrust is on
identifying a decomposition of a program into subprograms (“modules”) so that there is a direct correspondence between
the answer sets of the subprograms and the answer sets of the program. Finding such decompositions (either explicitly by
preprocessing, or implicitly during search) may have a big impact on the performance of solvers. Because of the nature of
the answer set semantics, such decompositions are only possible for programs with some hierarchical structure given by
stratification [1] or, more generally, splitting [41]. In this work, we use the generic term “model” of a modular system to
stress that our semantics of modular logic programs is not directly related to the semantics of answer sets of the union of
modules.7 In fact, our motivation is quite different. We assume an “inverse” scenario where the modular structure is given
right from the beginning. The objective is to define a semantics of a collection of programs based on the semantics of the
individual programs. The semantics of answer sets does not lend itself naturally to this purpose. For instance, consider a
modular program

{{a ← }, {b ← }} (8)

There is no set of atoms that yields an answer set to both logic programs {a ← } and {b ← } simultaneously. Therefore,
in our earlier work we proposed the input answer set semantics as the semantics for individual logic programs, that lends
a way to defining a meaningful semantics of modular logic programs. In this example, the set {a, b} of atoms is a model
of modular logic program (8), as it is an input answer set of each of the component programs. For another example, let as
consider a modular program

{{a ← b}, {b ← a}}. (9)

Clearly, the union of the rules in the modules of (9) is exactly the program given by (5). Each of the programs {a ← b}
and {b ← a} has only one answer set, ∅. However, the modular program has two models ∅ and {a, b}. It is so because both
sets are input answer sets of each module, even though only the first one is an answer set. To summarize, an important point
behind input answer set semantics is that it allows us to avoid difficulties that arise in ASP in the context of substitutability
of one subprogram by another [40] or when attempting to determine the answer sets of the union of programs [32].

4.2. Satisfiability modulo theories via abstract modular inference systems

Satisfiability modulo theories (SMT) [49,4] is a general, broadly used framework for integrating diverse logics. In this
section we review the concept of SMT programs and illustrate how these programs can be seen as abstract modular systems
presented in this paper.

We start by introducing the notion of a theory in SMT. A signature � is a set of predicate and function symbols, each
with an associated nonnegative integer called arity. We call predicate symbols of arity 0 propositional. We call a signature

7 We used the term “answer set” in our earlier work.

76 Y. Lierler, M. Truszczynski / Artificial Intelligence 236 (2016) 65–89

propositional if it only contains propositional symbols. (We note that elsewhere in the paper we refer to propositional
signatures as vocabularies.) A term over � is either

• a function symbol of arity 0 from �, or
• an expression f (t1, . . . , tn), where f is a function symbol from � of arity n > 0 and t1, . . . , tn are terms over �.

An atomic formula is either

• a propositional symbol from �, or
• an expression p(t1, . . . , tn), where p is a predicate symbol from � of arity n > 0 and t1, . . . , tn are terms over �.

A theory literal, or t-literal, is either an atomic formula A or its negation ¬A. A theory formula (or a t-formula, for short) is
a set of t-literals. An interpretation for a signature � (or a �-interpretation for short) is a pair I consisting of a non-empty
set |I|, the universe of the interpretation, and a mapping (·)I assigning

• to each function symbol f in � of arity 0, an element f I ∈ |I|,
• to each function symbol f in � of arity n > 0, a total function f I : |I|n → |I|,
• to each propositional symbol p in �, an element in {True, False},
• to each predicate symbol p in � of arity n > 0, a total function pI : |I|n → {True, False}.

Let I be a �-interpretation. We extend the mapping (·)I to all terms over � by induction by setting for every function
symbol f of arity n > 0 and every sequence t1, . . . , tn of terms

(f (t1, . . . , tn))I = f I (t I
1, . . . , t I

n),

where f I is the function assigned to f by the interpretation I . Similarly, we extend the mapping (·)I to all t-formulas
over �. Namely, if φ is a t-literal p(t1, . . . , tn), we set

φ I = pI (t I
1, . . . , t I

n),

where pI is the truth value function for p given by the interpretation I . Next, if φ is a t-literal ¬A, we set

φ I = (¬A)I =
{

True if AI = False,
False if AI = True

Finally, for a t-formula φ,

φ I =
{

True if for every t-literal L ∈ φ, LI = True,
False otherwise

When φ I = True we say that the interpretation I satisfies φ.
For a signature �, a �-theory is a set of �-interpretations. We say that a t-formula φ over � is satisfiable in a �-theory ϒ

(or is ϒ-satisfiable, for short) if there is an element of the set ϒ that satisfies φ.
Clearly, t-formulas can be regarded simply as classical ground formulas with negation and conjunction as the only con-

nectives allowed. Further, the semantics we introduced above is just the classical first-order logic semantics of such formulas.
In the literature on SMT, a more sophisticated syntax of formulas is considered. Yet, SMT solvers often use so-called propo-
sitional abstractions of first-order formulas which, in their most commonly used case, are t-formulas of the kind discussed
here [49, Section 3.1].

For a signature �, a disjoint propositional signature σ , and a �-theory ϒ , a [�, σ , ϒ]-abstraction is a mapping from
atomic formulas over � to σ . For a [�, σ , ϒ]-abstraction λ, a set M of propositional literals over the signature σ is a model
of λ (or a λ-model) if a t-formula

{A | λ(A) ∈ M} ∪ {¬A | ¬λ(A) ∈ M}
is satisfiable in �-theory ϒ . Clearly, λ-models are consistent sets of literals over σ .

An SMT program is a tuple 〈T , λ1, . . . , λn〉, where T is a propositional CNF formula that contains no empty clauses, and
every λi , 1 ≤ i ≤ n, is a [�i, σT , ϒi]-abstraction. Recall that by σT we denote the set of atoms that appear in T . A consistent
and complete set M of literals over σT is a model of an SMT program 〈T , λ1, . . . , λn〉 if M+ is a model of T and M is
a λi -model, for every i, 1 ≤ i ≤ n.

We will now construct several abstract module systems that are equivalent to an SMT program 〈T , λ1, . . . , λn〉. The
propositional formula T can be equivalently represented by modules Ent(T) and UP(T) introduced in Section 2.1. What
remains is to construct modules to represent [�i, σT , ϒi]-abstractions λi .

We first define the notion of entailment for [�, σ , ϒ]-abstractions. Let λ be a [�, σ , ϒ]-abstraction, l ∈ σ a literal, and M
a consistent set of literals over σ . We say that λ entails l w.r.t. M when for every consistent set M ′ of literals over σ that is

Y. Lierler, M. Truszczynski / Artificial Intelligence 236 (2016) 65–89 77

a superset of M it holds that if M ′ is a λ-model then l ∈ M ′ . We denote the fact that λ entails l w.r.t. M by λ[M] |= l. Note
that if there is no single consistent set M ′ of literals over σ such that M ⊆ M ′ and M ′ is a λ-model then, every literal l ∈ σ
is entailed by λ w.r.t. M .

For a [�, σ , ϒ]-abstraction λ, by Ent(λ) we denote the module consisting of pairs (M, l) that satisfy the following con-
ditions: M is a consistent set of literals over σ (in other words, M ∈ C(σ)), l ∈ Lit(σ) \ M , and λ[M] |= l.

For a [�, σ , ϒ]-abstraction λ, by Min(λ) we denote the module consisting of pairs (M, l) that satisfy the following
conditions: M is a consistent and complete set of literals over σ , l ∈ Lit(σ) \ M , and λ[M] |= l. The Min module differs from
the Ent module by only including inferences (M, l), where M is complete in addition to being consistent. Thus, it serves the
purpose of spotting that set M+ is not a λ-model.

An AMS A and an SMT program P = 〈T , λ1, . . . , λn〉, are equivalent if for any consistent and complete set M of literals
over σT , M is a model of P if and only if M+ is a model of A. We are now ready to state a formal result relating SMT
programs and abstract modular inference systems composed of introduced modules.

Proposition 14. Every SMT program P = 〈T , λ1, . . . , λn〉 is equivalent to any of the following abstract modular systems (over the
vocabulary σT)

1. {Ent(T), Ent(λ1), . . . , Ent(λn)},
2. {UP(T), Ent(λ1), . . . , Ent(λn)},
3. {Ent(T), Min(λ1), . . . , Min(λn)},
4. {UP(T), Min(λ1), . . . , Min(λn)}.

It is interesting to note that replacing Ent(λi) with Min(λi) makes no difference for the semantics. However, the modular
systems that result from such replacements capture different evaluation strategies of SMT solvers. In particular, the lazy
evaluation strategy of SMT solvers [49] relies on the fact that the SMT program P = 〈T , λ1, . . . , λn〉 is equivalent to the
fourth abstract modular system in the proposition above.

Constraint answer set programming [45,20,2,31,35] is another prominent multi-logic formalism. In SMT, theories are
integrated with a propositional formula. In constraint answer set programming, theories (called constraints) are integrated
with logic programs. A similar argument can be used to show that AMSs capture constraint answer set programs.

4.3. Abstract AMS solver

We now resume our study of general properties of abstract modular systems. For an AMS A = {S1, . . . , Sn}, we de-
fine A∪ = S1 ∪ . . . ∪ Sn . We can now state the result showing that modular systems can be expressed in terms of a single
abstract inference module. We say that an AMS A is equivalent to an abstract inference module S if A and S have the same
models.

Theorem 15. Every abstract modular inference system A is equivalent to the abstract inference module A∪ .

This theorem shows the value of our abstraction. Concrete modular systems composed from theories of different logics
cannot be easily combined into single theory. In particular, the operation of union cannot be applied since the result might
not belong to any well-defined formal system. However, once all modules of the system are expressed as abstract modules,
the problem disappears. The corresponding abstract modules can be combined and the union operator is the right one for
the task.

We use Theorem 15 to define for each AMS A its transition graph amsA . Namely, we set amsA = amA∪ . Theorem 6
implies the following result.

Theorem 16. For every AMS A,

(a) the graph amsA is finite and acyclic,
(b) for any terminal state M of amsA other than ⊥, [M]+ is a model of A,
(c) the state ⊥ is reachable from ∅ in amsA if and only if A is unsatisfiable.

As in several other similar results before, Theorem 16 shows that the graph amsA is an abstract representation of a class
of algorithms to decide satisfiability of a modular system A. An algorithm from the class searches for a path in amsA that
leads from node ∅ to a terminal node. In each step, it extends the path with a node reachable from the currently last node
by some edge originating in it. Theorem 16(a) guarantees that the method terminates, the other two parts of that result
ensure correctness.

For instance, let A be the AMS {S1, S2}, where S1 is a module in Fig. 1(b) and S2 is a module in Fig. 2. Below is a valid
path in the transition graph amsA with every edge annotated by the corresponding transition rule:

∅ Decide−→ ¬a�
Inference PropagateS2−→ ¬ a� b

Inference PropagateS1−→ ¬ a� b a
Backtrack−→ a

Decide−→ a ¬b�.

78 Y. Lierler, M. Truszczynski / Artificial Intelligence 236 (2016) 65–89

The state a ¬b� is terminal. Thus, Theorem 16(b) asserts that {a} is a model of A. Let us interpret this example. Earlier we
demonstrated that module S1 can be regarded as a representation of a propositional theory consisting of a single clause a
whereas S2 corresponds to the logic program (4) under the semantics of answer sets. We then illustrated how modules S1
and S2 give rise to particular algorithms for implementing search procedures. The graph amsA represents all algorithms
obtained by integrating algorithms represented by the modules S1 and S2, respectively.

We will now discuss some classes of algorithms captured by the graph amsA . As before, they are more specifically
determined by a strategy of selecting an outgoing edge from the current state. Let us assume that such a strategy is available
for each module S ∈ A. Let us also assume that modules in A are prioritized. Since modular systems do not assume any
inherent priorities among modules, we assume the priorities are provided by the user as input (or control parameter) to the
algorithm. This leads to an algorithm that proceeds as follows (assuming M is the current state and it is not terminal):

if M is inconsistent, we always select the Fail or Backtrack edge (whichever is applicable);
if M is consistent then we select an edge determined by the edge-selection strategy for the highest priority module.

Assuming that modules in A are enumerated S1, . . . , Sk according to the descending priorities, the described algorithm
works as follows. It starts by moving along edges implied by inferences of the module S1 (according to the selection
strategy for that module). If we reach ⊥, the entire search is over with failure. Otherwise, we reach a consistent state,
in which no further inference from module S1 is applicable (that state represents a model of S1). The phase of search
involving module S1 gets suspended and we continue in the same way but now following edges determined by inferences
in module S2. In other words, we start the phase of the search involving module S2. If we reach ⊥, the search is over with
failure. If we reach an inconsistent state that contains decision literals, we apply the Backtrack rule. If that rule backtracks
to a literal introduced after we moved to module S2, we remain in the module S2 phase and continue. If the backtrack
takes us back to a literal introduced while a higher priority module was considered (in this case, that must be module S1),
we resume the module S1 phase of the search suspended earlier. If Inference Propagate or Decide edges in module S2 are
available, we select one of them following the strategy for module S2. If we reach a consistent state with no outgoing edges
implied by inferences of S2 (that state represents a model of both S1 and S2) we suspend the module S2 phase and start
the module S3 phase, and continue in that way until a terminal state is reached.

The main advantage of such an algorithm is that each phase is concerned only with inferences coming from a single
module and state changes involve only literals from the vocabulary of that module. The literals established during phases
involving higher priority modules remain fixed. Thus, the search space in each phase is effectively limited to that of the
module involved in that phase.

Our goal in this discussion is not to present a complete landscape of possible algorithmic instantiation of the graph amsA
but simply to show an example of such an instantiation. Clearly, other possibilities exist. For instance, the preference order
may be dynamic. That is, once a model M of modules S1, . . . , Si is found, the next module to drive the search might be
selected based on M . We may also alternate between modules in a more arbitrary way, possibly switching from the current
module to another even in situations when the current state has outgoing edges implied by the inferences of the current
module. However, such algorithms may have to work with search spaces that are larger than the search space for a single
module.

System dlvhex Our results apply to a version of the dlvhex
8 solver [15] restricted to logic programs. dlvhex computes

models of HEX-programs by exploiting their modularity, that is, representing programs as an equivalent modular program.
Answer set programs consisting of rules of the form (2) form a special class of HEX-programs. Therefore, dlvhex restricted to
such programs can be seen as an answer set solver that exploits their modularity. Given a program �, dlvhex starts its op-
eration by constructing a modular program P = {�1, . . . , �n} so that (i) � = �1 ∪· · ·∪�n and (ii) answer sets of P coincide
with answer sets of �. It then processes modules one after another according to an order determined by the structure of a
program. That process can be modeled in abstract terms described above. In particular, the graph ams{UPUF′(�1),...,UPUF′(�n)}
can be seen as an abstraction capturing the family of dlvhex-like algorithms based on Unit Propagate and Unfounded′ infer-
ences.9

Model enumeration By Theorem 15, the problem of model enumeration for abstract modular systems can be reduced to the
problem of model enumeration for a single module. Therefore, we do not discuss it here.

5. Learning in solvers for AMSs

Nieuwenhuis et al. [49, Section 2.4] defined the DPLL-System-with-Learning graph to describe SAT solvers’ learning, one of
the crucial features of current SAT solvers responsible for rapid success in this area of automated reasoning. Their approach

8 http://www.kr.tuwien.ac.at/research/systems/dlvhex/.
9 A modular structure of a program was exploited by other solvers, too [8,19,53]. However, in those efforts modularity (represented by strongly connected

components of the positive dependency graph) was used to improve the performance of a specific propagator, namely, the one based on unfounded sets.
Our approach is not meant to model that level of granularity in solver’s design.

Y. Lierler, M. Truszczynski / Artificial Intelligence 236 (2016) 65–89 79

Inference PropagateSi
: M‖G −→ Ml‖G if

⎧⎨
⎩

[M] is consistent, l /∈ [M] and
for some M ′ ⊆ [M],
(M ′, l) is an inference of S
i

i

Learn LocalSi : M‖ . . . ,
i, . . . −→ M‖ . . . ,
i ∪ E, . . . if

⎧⎨
⎩

E is an Si-safe set of
inferences over σSi

such that E ∪
i �=
i

Fig. 9. The transition rules of amslA determined by a module Si ∈ A.

Fail: M‖G −→ ⊥ if [M] is inconsistent and M contains no decision literals

Backtrack: P l� Q ‖G −→ P l‖G if

{ [P l� Q] is inconsistent, and
Q contains no decision literals

Decide: M‖G −→ M l�‖G if [M] is consistent and l is unassigned by [M]

Learn Global: M‖G −→ M‖GE if

{
E is an A-safe set of inferences over σA
such that GE �= G

Fig. 10. Global transition rules of amslA .

extends to our abstract setting. Specifically, the graph amsA can be extended with “learning transitions” to represent solvers
for AMSs that incorporate learning.

The intuition behind learning in SAT is to allow new propagations by extending the original set of clauses as computation
proceeds. These additional “learned” clauses give rise to new inferences to a SAT solver by enabling additional applications
of Unit Propagate. In abstract modules, a similar effect can be obtained by extending them with new inferences (pairs (M, l)).
These inferences give rise to new edges in the transition graph via the rule Inference Propagate. Thus, they can be seen as
“shortcuts” in the original graph leading to shorter paths to a terminal state. We now state these intuitions formally for the
case of abstract modular systems.

Let S be a module and E a set of inferences over σS . By S E we denote the module constructed by adding to S the
inferences in E . A set E of inferences over σS is S-safe if the module S E is equivalent to S .

Let A be an AMS and E a set of inferences over σA . For a module S ∈ A, we define E |S to be the set of all inferences
in E over the vocabulary σS , and set AE = {S E |S : S ∈A}. We say that E is A-safe if E = ⋃

S∈A E |S (that is, if every inference
in E is an inference over σS , for some S ∈A), and if the module AE is equivalent to A.

An (augmented) state relative to an AMS A = {S1, . . . , Sn} is either a distinguished state ⊥ or a pair of the form
M‖
1, . . . ,
n , where M is a state over the vocabulary σA and
1, . . . ,
n is a sequence of sets of inferences over the
vocabularies of the modules S1, . . . , Sn , respectively. Sometimes we denote the sequence
1, . . . ,
n by G . If E is a set of
inferences over the vocabulary σA and G =
1, . . . ,
n , we define GE =
1 ∪ E |S1 , . . . ,
n ∪ E |Sn .

Each AMS A = {S1, . . . , Sn} determines a graph amslA . Its nodes are the augmented states relative to A and its transi-
tions are specified in Figs. 9 and 10. The transitions in the first group are determined by individual modules, the transitions
in the second group are “global.”

To illustrate the rule Learn Global, consider an AMS consisting of two modules:

1. F is a module over the vocabulary {a1, a2} with no inferences. (Every consistent and complete set of literals over {a1, a2}
is its model.)

2. S is a module over the vocabulary {a1} of the form:

The inferences (∅, a1), (∅, ¬a1), ({a1}, ¬a1) and ({¬a1}, a1) are {F , S}-safe. Thus, we can apply the rule Learn Global with any
subset of these inferences. This allows the future applications of Inference PropagateF to have access to these new inferences.
Note that originally, Inference PropagateF has empty set of inferences to work with. Also, no {F }-safe inferences exist so that
Learn LocalF is inapplicable.

We refer to the transition rules Inference Propagate, Backtrack, Decide, and Fail of the graph amslA as basic. We say that a
node in the graph is semi-terminal if no basic rule is applicable to it. The graph amslA can be used for deciding whether an
AMS A has a model by constructing a path from ∅‖∅, . . . , ∅ to a semi-terminal node. We make this claim precise by stating
the following theorem.

80 Y. Lierler, M. Truszczynski / Artificial Intelligence 236 (2016) 65–89

Theorem 17. For every AMS A,

(a) the graph amslA is finite and acyclic,
(b) for any semi-terminal state M‖G of amslA reachable from ∅‖∅, . . . , ∅, [M]+ is a model of A,
(c) state ⊥ is reachable from ∅‖∅, . . . , ∅ in amslA if and only if A has no models.

It follows that if we are constructing a path starting in ∅‖∅, . . . , ∅ then we will reach some semi-terminal state and at
that point the task of finding a model of A is completed.

We stress that our discussion of learning does not aim at any specific algorithmic ways in which one could perform
learning. Instead, we formulate conditions that learned inferences are to satisfy (S-safety for learning local to a module S ,
and A-safety for the global learning rule), which ensure the correctness of solvers that implement learning. In this way, we
provide a uniform framework for correctness proofs of multi-logic solvers incorporating learning.

There is an important difference between Learn Local and Learn Global. The first one allows new propagations within
a module but does not change its semantics as the models of the module stay the same. Moreover, it is local, that is,
other modules are unaffected by it. The application of Learn Global, while preserving the overall semantics of the system,
may change the semantics of individual modules by eliminating some of their models. Moreover, being global, it affects in
principle all modules of the system.

SAT researchers have demonstrated that Learn Local is crucial for the success of SAT technology both in practice and
theoretically [46,44]. In fact, local (conflict-driven) learning has become standard not only in SAT solvers [26], but also in
ASP solvers [19]. Nieuwenhuis et al. [49] described a transition rule T-Learn for SMT that can be seen as a precursor of the
Learn Global rule. It is a standard practice in SMT solving to implement T-Learn [49]. Eiter et al. [14] implement Learn Global
in the system dlvhex and report that this significantly decreases the runtime of the system. We now present theoretical
analysis showing that in some cases, Learn Global has a potential to yield substantial performance benefits for modular
systems.

Let us consider a solver modeled within our abstract solving framework by imposing two restrictions. First, the transitions
determined by the rule Learn Global are not allowed. We write amsl

− for the graph obtained from the corresponding
graph amsl by removing the edges corresponding to the application of the rule Learn Global. Second, we assume that the
solver proceeds (applies the rules) according to the ranking given by an enumeration of modules in the input AMS A,
say A = {S1, . . . , Sk} (vide our discussion of solvers, and in particular of dlvhex, in an earlier section). We will now show
that a solver of this type can reap significant performance benefits by incorporating the rule Learn Global. To show that let
us consider a family An = {Fn, S} (n = 1, 2, . . .) of AMSs, where:

1. Fn is a module over the vocabulary {a1, . . . , an} with no inferences. In particular, every consistent and complete set of
literals over {a1, . . . , an} is its model.

2. S is a module as defined in the example prior to Theorem 17.

Assuming that the module Fn is higher ranked than the module S , solvers modeled by the graph amsl
− and the ranking-

based rule application will start with the module Fn and by applying Decide to all its atoms, arrive at one of the models
of Fn . Next, they will move the search to module S and in constant time discover a contradiction. Once the contradiction
has been reached by means of rules in S , the algorithm backtracks to module Fn and generates another model of Fn . Then
it moves on to S again, and again discovers a contradiction. The search terminates with failure only after all 2n models of Fn

have been inspected. Consequently, the search runs in time exponential in n.
There are two inferences that could be learned and added to S by means of the rule Learn Local: ({a1}, ¬a1)

and ({¬a1}, a1). Indeed, both are S-safe. However, incorporating these two inferences in the module S does not improve
the performance of the solver. It will still try all models of Fn and fail only after all of them were considered. Thus, local
learning does not help reduce the running time.

However, the inferences (∅, a1), (∅, ¬a1), ({a1}, ¬a1) and ({¬a1}, a1) are {Fn, S}-safe. Applying the rule Learn Global with,
say, (∅, a1) and ({a1}, ¬a1), and incorporating these two inferences into Fn allows the solver to immediately terminate the
search (it will apply the inference (∅, a1) followed by ({a1}, ¬a1), and finally reach ⊥ by applying the rule Fail). That search
will run in time linear in n (essentially, the amount of time needed to reach the first conflict as all other steps take constant
time). Thus, global learning results in an exponential speed up.

6. Related work and future research

In an important development, Brewka and Eiter [6] introduced an abstract notion of a heterogeneous nonmonotonic multi-
context system (MCS). One of the key aspects of that proposal is its abstract representation of a logic that allows one to study
MCSs without regard to syntactic details. The independence of contexts from syntax has allowed researchers to focus on
semantic aspects of multi-context systems. Since their inception, multi-context systems have received substantial attention
and inspired implementations of hybrid reasoning systems including dlvhex [15] and dmcs [16]. There are some similarities
between AMSs and MCSs. However, there are also differences. First, MCSs provide an abstract framework to define seman-

Y. Lierler, M. Truszczynski / Artificial Intelligence 236 (2016) 65–89 81

tics of hybrid systems. In contrast, AMSs explicitly represent inferences of a logic and provide an abstract framework for
studying model generation algorithms.

Second, the two formalisms differ in how they share information among modules. MCSs use to this end the so-called
“bridge rules.” In AMSs information sharing is implemented by a simple notion of sharing parts of the vocabulary between
the modules. Rather non-surprisingly, bridge rules can simulate it. More interestingly, as our recent research on model-based
abstract modular systems shows, despite its simplicity, information sharing through vocabulary sharing is expressive enough
to capture the effects of bridge rules [39].

Modularity is one of the key techniques in principled software development. The importance of modularity has also
been recognized in declarative programming languages rooted in KR&R such as answer set programming. In particular,
Oikarinen and Janhunen [50] proposed a modular version of answer set programs called lp-modules. In that work, the
authors were primarily concerned with the decomposition of lp-modules into sets of simpler ones. They proved that under
some assumptions such decompositions are possible. Dao-Tran et al. [9] extend modularity to programs under the answer
set semantics, whose models may have contextually dependent input provided by other modules. Janhunen [30] proposed
the composition of hybrid reasoning systems using a general modular architecture that allows to combine propositional
formulas as well as logic programs. Järvisalo, Oikarinen, Janhunen, and Niemelä [33], and Tasharrofi and Ternovska [54]
studied different collections of operators to combine elementary abstract modules into more complex ones. We focused
on building simple (flat-structured) modular systems that can be obtained from abstract modules by means of only one
composition operator, the union (which implements the standard notion of the logical conjunction connective). In contrast
to the work by Järvisalo et al. [33] and Tasharrofi and Ternovska [54], the conjunction (union) can be applied to any modules,
no matter their internal structure and interdependencies between them. Whether our “union-based” modular systems can
represent modular systems arising when other operators to combine modules are allowed is an interesting open question.

Tasharrofi, Wu, and Ternovska [55] proposed an algorithm for modular model expansion tasks, in particular, for the task
of model generation, in the abstract multi-logic system setting developed by Tasharrofi and Ternovska [54]. They describe
their algorithm by standard pseudocode and do not propose any abstract representations. Giunchiglia et al. [24] analyzed
pseudocode descriptions of algorithms to study and relate several backtrack search procedures behind answer set solvers.
In this work, we adapt an abstract graph-based framework for designing backtrack search algorithms for abstract modular
systems. The benefits of that approach for modeling families of backtrack search procedures employed in SAT, ASP, and
PC(ID) solvers were demonstrated by Nieuwenhuis et al. [49], Lierler [34], and Lierler and Truszczynski [36]. Our work
provides additional support for the generality and flexibility of the graph-based framework as a finer abstraction of backtrack
search algorithms than direct pseudocode representations, allowing for convenient means to prove correctness and study
relationships between the families of the algorithms.

Gebser and Schaub [21] describe a form of a tableaux system to capture inferences involved in computing answer sets.
Several rules used in their approach are closely related to those we discussed in the context of modules designed to repre-
sent reasoning on logic programs. However, the two approaches are formally different. Most notably, the concepts of states
in a tableaux and in an abstract module are different. Still, there seems to be a connection between them, which we plan
to investigate in our future work.

Brain [5] introduces the concept of I-spaces meant to uniformly capture states of computation of search algorithms
stemming from different logical formalisms. This way search algorithms can be uniformly described and compared. Simi-
larly, D’Silva, Haller and Kroening [12] introduce a lattice-theoretic generalization of several logic-based formalisms including
propositional satisfiability. They show that a conflict-driven-clause-learning algorithm of modern satisfiability solvers can be
considered and analyzed in lattice-theoretic terms. It is an interesting question whether I-spaces of Brain or the lattice-
theoretic approach of D’Silva et al. could be used to study modularity of multi-logic systems.

Brochenin et al. [7] illustrated how the graph-based framework in spirit of Nieuwenhuis et al. can be lifted from cap-
turing DPLL-like procedures to decision procedures at the second level of polynomial hierarchy. In the future we intend
to investigate the applicability of the ideas by Brochenin et al. in the context of abstract modular inference systems and
solvers.

Barrett et al. [3] proposed the transition system DPLL(T1, . . . , Tn) that captures the following architecture of an SMT
solver: DPLL-based SAT solver plays the role of the master system coordinating the search process of distinct specialized
solvers for theories T1, . . . , Tn . The amslA transition system can be seen as a generalization of the DPLL(T1, . . . , Tn) frame-
work that (a) removes SAT solving as the distinguished component of an SMT solver, and (b) is agnostic about which theory
solver plays the role of the master system.

7. Conclusions

In this paper, we introduced abstract modules and abstract modular systems and showed that they provide a framework
capable of capturing diverse logics and inference mechanisms integrated into modular knowledge representation systems. In
particular, we showed that propositional theories and logic programs can be expressed as abstract inference modules, and
that collections of propositional theories and logic programs can be represented as abstract modular systems. Even more
importantly, we showed that satisfiability modulo theories can be translated to and studied in the language of abstract
modular systems, too, thus demonstrating a broad scope of applicability of our formal framework.

82 Y. Lierler, M. Truszczynski / Artificial Intelligence 236 (2016) 65–89

Next, we showed that transition graphs determined by modules and modular systems provide an elegant and effective
unifying representation of model generating algorithms, or solvers, and simplify reasoning about such issues as correct-
ness or termination. Our discussion of inference learning identified two types of learning relevant to computing models of
modular systems — local and global. The former corresponds to learning studied before in SAT and SMT and shown both
theoretically and practically to be essential for good performance. The latter, the global learning, is a new concept that arises
in the context of modular systems. It concerns learning across modules and, as local learning, promises to lead to perfor-
mance gains. In the future, we will conduct a systematic study of global learning and its impact on solvers for practical
multi-logic formalisms.

The paper provides evidence that abstract inference modules, abstract modular systems and their transition graphs can
be useful in theoretical studies of solver properties, and in the development of solvers for modular systems that combine
theories from different logic formalisms.

Acknowledgements

We are grateful to the reviewers for numerous comments that helped us to significantly improve the paper.

Appendix A. Proofs

Proposition 1. Abstract inference modules S1 and S2 are equivalent if and only if they have the same models contained in the
set σS1 ∪ σS2 .

Proof. (⇒) Evident.

(⇐) Assume that S1 and S2 have the same models contained in the set σS1 ∪ σS2 . To prove the implication, it suffices to
show that if X is a model of S1 then X is a model of S2. To simplify the notation, we define δ = σS1 ∪ σS2 and Xδ = X ∩ δ.

Let (M, l) be an inference of S1 such that M is consistent with Xδ . Since M ⊆ Lit(δ), M is consistent with X . It follows
that l is consistent with X . Since l ∈ Lit(δ), l is consistent with Xδ . Thus, Xδ is a model of S1. By the assumption, Xδ is a
model of S2.

Let (M ′, l′) be an inference of S2 such that M ′ is consistent with X . Since M ′ ⊆ Lit(δ), M ′ is consistent with Xδ . We
recall that Xδ is a model of S2. Thus, l′ is consistent with Xδ and, since l′ ∈ Lit(δ), also with X . It follows that X is a model
of S2. �
Proposition 2. Let S be a module and (M, l) an inference in S. Then S |≈M l.

Proof. Let X be a model of S such that M is consistent with X . By the definition of a model of a module, l is consistent
with X and the result follows. �
Proposition 3. Let S1 and S2 be abstract inference modules. A set X is a model of S1 ∪ S2 if and only if X is a model of S1 and S2 .

Proof. The assertion is an immediate consequence of definitions. Let X be a model of S1 ∪ S2 and (M, l) be an inference
of S1 such that M is consistent with X . Since (M, l) is an inference of S1 ∪ S2, l is consistent with X and so, X is a model
of S1. The case of (M, l) being an inference of S2 and the converse implication can be proved in a similar way. �
Proposition 4. For every propositional theory T (respectively, CNF formula T containing no empty clause), Ent(T) (respectively, UP(T))
is equivalent to T .

Proof. We denote by σT the vocabulary that consists of atoms occurring in T (and Ent(T)).

Statement 1: For every propositional theory T , Ent(T) is equivalent to T . Let X be a model of T and (M, l) an inference of Ent(T)

such that M is consistent with X . Clearly, X is a model of M . Since T ∪ M |= l and X is a model of T ∪ M , X is model of l,
that is, l is consistent with X . We derive that X is a model of Ent(T).

Conversely, let X be a model of Ent(T) and let us define M = (X ∩σT) ∪{¬a : a ∈ σT \ X}. Clearly, M is consistent with X .
We now proceed by contradiction. Assume that X is not a model of T . Then, T ∪ M is inconsistent. Let l be any literal
in M and M ′ = M \ {l}. It follows that T ∪ M ′ |= l (indeed, since T ∪ M is inconsistent, every model of T ∪ M ′ , must be
consistent with l). By definition, (M ′, l) ∈ Ent(T). From the fact that M is consistent with X and M ′ ⊂ M , we derive that M ′
is consistent with X . Since X is a model of Ent(T), l is consistent with X . On the other hand, l ∈ M and M is consistent
with X . Thus, l is consistent with X , a contradiction.

Statement 2: For every CNF formula T containing no empty clause, UP(T) is equivalent to T . Let X be a model of T and (M, l)
an inference of UP(T) such that M is consistent with X . It follows that T has a clause C ∨ l such that for every literal u
of C , u ∈ M . Thus, all literals u, u ∈ C , are consistent with X , that is, X is a model of ¬C . Since X is a model of T , X is a
model of l, that is, l is consistent with X . We derive that X is a model of UP(T).

Y. Lierler, M. Truszczynski / Artificial Intelligence 236 (2016) 65–89 83

Conversely, let X be a model of UP(T). We proceed by contradiction. Assume that X is not a model of T . Then there
is a clause C in T such that X is a model of ¬C . Let us assume that C = u1 ∨ . . . ∨ uk . It follows that the set {u1, . . . , uk}
is consistent with X . Since C is a clause of T and T contains no empty clause, k ≥ 1. Moreover, since C is not a tautology
(we recall that X is a model of ¬C), uk /∈ {u1, . . . , uk−1}. By the definition of UP(T), ({u1, . . . , uk−1}, uk) ∈ UP(T). Since
{u1, . . . , uk−1} is consistent with X and X is a model of UP(T), uk is consistent with X , a contradiction. �

We recall that if � is a program, σ� denotes the vocabulary that consists of atoms occurring in �. It is obvious that σ�

also coincides with the set of atoms occurring in the modules UP(�), UF(�), UPUF(�) and smodels(�).

Proposition 5. Every logic program � is equivalent to the modules UPUF(�) and smodels(�).

Proof. Statement 1: Every logic program � is equivalent to the module UPUF(�). Let X be an answer set of �. By definition, X is
a model of �cl and X does not have any non-empty subset that is unfounded on X with respect to �. We start by showing
that X is a model of UP(�). We then demonstrate that X is a model of UF(�). By Proposition 3, it will immediately follow
that X is a model of UPUF(�).

Let (M, l) be any inference in UP(�) such that M is consistent with X . Since (M, l) ∈ UP(�), �cl has a clause C ∨ l
(modulo a reordering of literals) such that for every literal u ∈ C , u ∈ M . Thus, all literals u, u ∈ C , are consistent with X ,
that is, X is a model of ¬C . Since X is a model of �cl , X is a model of l, that is, l is consistent with X . Thus, X is a model
of UP(�).

Let (M, l) be any inference in UF(�) such that M is consistent with X . By the definition of UF(�), there is an atom a ∈ σ�

such that l = ¬a and a ∈ U , for some set U ∈ Unf (M, �). Since M is consistent with X , U is also unfounded on X ∪{¬a : a ∈
σ� \ X} with respect to �. By the definition of an answer set, a /∈ X . Consequently, l = ¬a is consistent with X . It follows
that X is a model of UF(�) and, by the comment above, a model of UPUF(�).

Conversely, let X ⊆ σ� be a model of UPUF(�). By Proposition 3, X is a model of UP(�) and a model of UF(�). Let us
assume that X is not an answer set of �.

Case 1: X is not a model of �cl . Then there is a clause C in �cl such that X is a model of ¬C . Let us assume that C =
u1 ∨ . . .∨uk . It follows that the set {u1, . . . , uk} is consistent with X . Since C is a clause of �cl , k ≥ 1. Moreover, since C is not
a tautology, uk /∈ {u1, . . . , uk−1}. By the definition of UP(�), ({u1, . . . , uk−1}, uk) ∈ UP(�). Since {u1, . . . , uk−1} is consistent
with X and X is a model of UP(�), uk is consistent with X , a contradiction.

Case 2: X contains an element, say a, that belongs to a set that is unfounded on X ∪ {¬a : a ∈ σ� \ X} with respect to �.
By the definition of the rule Unfounded, we conclude that (X ∪ {¬a : a ∈ σ� \ X}, ¬a) ∈ UF(�). Since X is a model of UF(�)

and is consistent with X ∪ {¬a : a ∈ σ� \ X}, ¬a is consistent with X , a contradiction.

Statement 2: Every logic program � is equivalent to the module smodels(�). Let X be an answer set of �. By Statement 1, X is
a model of UP(�) and UF(�). Since ARC(�) ⊆ UF(�), X is a model of ARC(�). The proof that X is also a model of BC(�)

uses the well-known fact that if X is an answer set of �, X is also a supported model of � that is, for every a ∈ X , there
is B ∈ Bodies(�) such that X is a model of s(B). Let us consider an inference (M, l) ∈ BC(�) such that M is consistent with
X . By the definition of BC(�), there is a rule a ← B in � such that a ∈ M , l ∈ s(B), and for every B ′ ∈ Bodies(�, a) such
that s(B ′) �= s(B), there is u ∈ s(B ′) such that u ∈ M . Let a ← B ′ be a rule in � such that s(B ′) �= s(B) and let u ∈ s(B ′) be
such that u ∈ M . Since M is consistent with X , X is not a model of u (if u = b, for some atom b, ¬b ∈ M and so, b /∈ X ; if
u = ¬b, for some atom b, b ∈ M and so, b ∈ X). It follows that X is not a model of s(B ′) for any rule a ← B ′ in �, where
s(B ′) �= s(B). Since X is a supported model of � and a ∈ X , X must be a model of s(B). In particular, X is a model of l,
that is, l is consistent with X . Thus, X is a model of the inference (M, l) and so, a model of BC(�). By Proposition 3, X is a
model of smodels(�).

Conversely, let X ⊆ σ� be a model of smodels(�). By the definitions of UPUF(�) and smodels(�), UPUF(�) ⊆ smodels(�).
Thus, X is a model of UPUF(�). By Statement 1, X is an answer set of �. �

Since states are sequences of literals, we will often refer to prefixes of states. Formally, given a state l1l2 . . . ln , every
sequence l1l2 . . . lk , where 0 ≤ k ≤ n, is its prefix. In particular, each state is its own prefix.

Lemma 18. Let S be an abstract inference module and N a non-fail state in the transition system amS reachable in amS from ∅. For
every prefix M ′ of N and for every model X of S, if every decision literal of M ′ is consistent with X, then [M ′] is consistent with X.

Proof. We proceed by induction on the length of a path from ∅ to N in amS . If that length is 0, N = ∅ and the claimed
property trivially holds. Let us consider a non-fail state N reachable from ∅ by a path p of length k > 0 and let us assume
that every non-fail state reachable in amS from ∅ by a path of length at most k − 1 has the claimed property. Let M ′ be
the state preceding N on p. Since M ′ is reachable from ∅ by a path of length k − 1, it follows by the induction hypothesis
that M ′ has the claimed property. That is, for every prefix M ′′ of M ′ (including M ′′ = M ′) and for every model X of S , if
every decision literal in M ′′ is consistent with X then [M ′′] is consistent with X .

84 Y. Lierler, M. Truszczynski / Artificial Intelligence 236 (2016) 65–89

Let N be of the form l1 . . . ln .10 Since N is reached from M ′ by an edge resulting from Inference Propagate, Backtrack
or Decide (applying the rule Fail results in the state ⊥), l1 . . . ln−1 is a prefix of M ′ .

Let X be a model of S and M ′′ a prefix of N such that all decision literals in M ′′ are consistent with X . If M ′′ is a prefix
of l1 . . . ln−1, then M ′′ is a prefix of M ′ . By the observation above, [M ′′] is consistent with X . In particular, if all decision
literals in l1 . . . ln−1 are consistent with X , [l1 . . . ln−1] is consistent with X .

The only other case is M ′′ = N . Since all decision literals in N are consistent with X , all decision literals of l1 . . . ln−1 are
consistent with X . Thus, by the observation above, [l1 . . . ln−1] is consistent with X . To complete the proof, we have to show
that ln is consistent with X . The edge connecting M ′ to N = l1 . . . ln in amS is not generated by the rule Fail. This leaves us
with three cases to consider.
Inference Propagate: In this case, M ′ = l1 . . . ln−1, [M ′] is consistent, ln /∈ [M ′] and for some M ′′ ⊆ [M ′], (M ′′, ln) is an inference
of S . By Proposition 2, S |≈ M′′ ln . Since [M ′] is consistent with X , M ′′ is consistent with X and so, ln is consistent with X .

Backtrack: In this case, M ′ has the form l1 . . . ln−1l
�

n Q , where Q contains no decision literals, and [M ′] = [l1 . . . ln−1l
�

n Q] is
inconsistent. Let us assume that ln is not consistent with X . It follows that ln is consistent with X . Consequently, all decision
literals of M ′ are consistent with X . By the induction hypothesis, [M ′] is consistent with X , a contradiction. Thus, ln is
consistent with X .
Decide: In this case, M ′ = l1 . . . ln−1 and ln is a decision literal. Since all decision literals of M are consistent with X then,
trivially, [ln] is consistent with X . �
Theorem 6. For every module S,

(a) graph amS is finite and acyclic,
(b) for any terminal state M of amS other than ⊥, [M]+ is a model of S,
(c) state ⊥ is reachable from ∅ in amS if and only if S is unsatisfiable (has no models).

Proof. Part (a) can be proved following the argument for Proposition 1 in the paper by Lierler [34]. It also follows as a
corollary from Theorem 11(a), to which we provide an explicit proof later on.

(b) Let M be a terminal state of amS other than ⊥. Since neither Fail nor Backtrack is applicable, [M] is consistent.
Since Decide is not applicable, [M] assigns all literals, that is, [M] is complete. Let (M ′, l) be an inference of S such that M ′
is consistent with [M]+ . It follows that M ′ ⊆ [M]. Since Inference Propagate is not applicable, l ∈ M . Thus, l is consistent
with [M]+ . It follows that [M]+ is a model of S .

(c) Left-to-right: Since ⊥ is reachable from ∅, there is a state M without decision literals such that there is a path in amS
from ∅ to M , and there is an edge from M to ⊥ in amS due to the application of Fail. It follows that [M] is inconsistent. By
Lemma 18, [M] is consistent with every model of S (indeed, M has no decision literals). Since [M] is inconsistent, S has no
models.

Right-to-left: From (a) it follows that there is a path in amS from ∅ to some terminal state. Since S has no models, (b)
implies that this state must be ⊥. �
Proposition 7. For every CNF formula F with no empty clause, dpF = amUP(F) .

Proof. It is clear that the two graphs have the same sets of nodes (⊥ and all states over the vocabulary σF). It is also
clear that both graphs have the same edges arising from the generic rules Fail, Backtrack and Decide. Thus, let us consider
an edge in dpF implied by the rule Unit PropagateF . By definition, this edge has the form (M, Ml), where [M] ⊆ Lit(σF) is
consistent, l ∈ Lit(σF) \ M , and there is a clause C ∨ l ∈ F such that for every literal u of C , u ∈ [M]. It follows that ([M], l) ∈
UP(F) and, by the definition of Inference PropagateUP(F) , (M, Ml) is an edge of amUP(F) .

Conversely, let us consider an edge of amUP(F) implied by Inference PropagateUP(F) . This edge is of the form (M, Ml), where
[M] ⊆ Lit(σF) is consistent, l ∈ Lit(σF) \ M , and for some M ′ ⊆ [M], (M ′, l) is an inference of UP(F). It follows that there is a
clause C ∨ l ∈ F , such that for every literal u in C , u ∈ M ′ . Consequently, for every literal u in C , u ∈ [M] and so, (M, Ml) is
an edge of dpF . �
Proposition 9. For every logic program �, sm� = amsmodels(�) .

Proof. The proof follows the same line of argument as the previous one and is an immediate consequence of the defini-
tions. �

We say that a sequence M ′ extends a sequence M if M is a prefix of M ′; moreover, M ′ properly extends M if M ′
extends M and M �= M ′ . We recall that states other than the fail state ⊥ are sequences and note that the following lemma
follows directly from the definitions of the transition rules.

10 As we move from a state to a non-fail state in the transition, the state can grow or shrink, the latter when the rule Backtrack is used. Thus, we have
that n ≤ k and, in general, the inequality is strict.

Y. Lierler, M. Truszczynski / Artificial Intelligence 236 (2016) 65–89 85

Lemma 19. If M �= ⊥ is a state in ameS and M ′ is a successor of M such that M ′ �= ⊥, then M ′ is a proper extension of M or M ′ = P l,
where l is the last decision literal in M = P l� Q .

Lemma 20. Let S be an abstract module. For every path p in ameS starting in a state M, every state that follows M on p is equal to ⊥,
or is a proper extension of M, or contains a literal l, for some decision literal l� in M.

Proof. We prove the statement by induction on the number of decision literals k in M . Let k = 0. Then, M = ⊥ or M is a
sequence of non-decision literals. In the first case, path p consists of M only and the assertion is trivially true (there are no
nodes on p that follow M). In the second case, Lemma 19 and a simple inductive argument imply that every state on p that
follows M , other than ⊥, has M as its proper prefix.

Thus, let k ≥ 1 and let us assume that the assertion holds for every path originating in a state with at most k −1 decision
literals. For the induction step, let us consider a state M = P1l�1 P2l�2 . . . Pkl�k Pk+1, where P1, . . . , Pk+1 contain no decision
literals. If all states on p contain l�k then, by Lemma 19 and a simple induction, all states that follow M on p are of the
form M Q , for some non-empty sequence Q of literals (possibly annotated) that are unassigned in M . Thus, the assertion
follows. Otherwise, let M ′ be the first state on p not containing l�k . By Lemma 19 and a simple inductive argument, all
states on p strictly between M and M ′ properly extend M and M ′ = P1l�1 P2l�2 . . . Pklk . In particular, lk ∈ M ′ . Moreover, by
the induction hypothesis, every state that follows M ′ on p is equal to ⊥, is an extension of M ′ and, consequently, contains lk ,
or contains li , for some i, 1 ≤ i ≤ k − 1. Thus, the assertion follows in this case, too. �
Theorem 11. For every abstract inference module S,

(a) the graph ameS is finite and acyclic,
(b) the ⊥ state is reachable from ∅,
(c) for every path from ∅ to ⊥ in ameS , the set of states in which the rule Enumerate applies is precisely the set of models of S over σS ,

and for each model X of S over σS there is exactly one state M on the path such that X = [M].

Proof. (a) Finiteness of ameS is evident. Let us assume that there is a cycle in ameS . Then, there is a path in ameS that
starts in a state M and returns to M after traversing a positive number of edges. That contradicts Lemma 20.
(b) It is easy to see that every path ending in a state other than ⊥ can be extended. Since ameS is acyclic, following outgoing
edges of nodes in ameS (breaking ties in an arbitrary way, if more than one rule applies) eventually takes us to ⊥.
(c) We note that (i) the states of graphs amS and ameS coincide, and (ii) each edge of the graph amS is also an edge of the
graph ameS . Also, for every terminal state M of amS other than ⊥, the rule Enumerate is the only transition rule applicable
to M in ameS . By Theorem 6(b), it follows that [M]+ is a model of S . Thus, if M is a state on a path p from ∅ to ⊥ in ameS ,
and the edge on p leading from M out to the next state on the path is determined by Enumerate, then [M]+ is a model
of S .

To conclude the proof, we show that every model of S over σS will eventually be reached by any path from ∅ to ⊥. Let X
be a model of S over σS . Consider any path p from ∅ to ⊥ in ameS . Let P denote the longest prefix of a state on p such
that [P] ⊆ X . Let M denote the first state on p such that P is a prefix of M . We will show that M = P and [P] = X = [M].

Case 1. M = P Q , where Q is a nonempty sequence of literals. It follows that M �= ∅ and that M was obtained from
its predecessor on p, say M ′ , by means of one of the rules of ameS other than the Fail rule. It follows that P is the prefix
of M ′ . This contradicts the fact that M is the first state on p such that P is a prefix of M .

Case 2. M = P . It remains to show that [P] = X . We recall that [P] ⊆ X . Towards a contradiction, let us assume that [P] ⊂
X . It follows that (i) P is consistent and (ii) X \ [P] is nonempty and contains literals that are unassigned by [P]. By (i),
rules Fail and Backtrack are not applicable. By (ii), rule Decide is applicable and hence rule Enumerate is not applicable. By P ′
we denote the successor state for P on p. Let us assume that P ′ is generated by the Unit Propagate rule. Then, P ′ = Pl and
since P is consistent with X and X is a model of S , l is consistent with X and so, l ∈ X . This contradicts the fact that P
is the longest prefix of any state on p such that [P] ⊆ X . Thus, P ′ is obtained from P by the Decide rule and so, P ′ = Pl� .
Since P is the longest prefix of any state on p such that [P] ⊆ X , l /∈ X . The path p can only terminate by entering ⊥ from a
state with no decision literals by an application of either Enumerate or Fail rule. Let M ′ be the first state on p after M that
does not contain l� . By Lemma 19 and a simple inductive argument, M ′ = Pl. We recall that l /∈ X . Thus, l ∈ X and [Pl] ⊆ X ,
a contradiction.

From Lemma 20 it immediately follows that we will not encounter two states encoding the same model on any path
in ameS . �
Proposition 12. Every program � is input-equivalent to the module UPUF′(�).

Proof. By definition, X is an input answer set of � if and only if X is an answer set of � ∪(X \Head(�)). By Proposition 5, X
is an answer set of � ∪ (X \ Head(�)) if and only if X is a model of UPUF(� ∪ (X \ Head(�))). Thus, to complete the proof
it suffices to show that X is a model of UPUF′(�) if and only if X is a model of UPUF(� ∪ (X \ Head(�))).

86 Y. Lierler, M. Truszczynski / Artificial Intelligence 236 (2016) 65–89

Let us assume that X is a model of UPUF(� ∪ (X \ Head(�))). Let (M, l) be an inference of UPUF′(�) such that M is
consistent with X . To prove that X is a model of UPUF′(�) we need to show that l is consistent with X . If (M, l) is implied
by the rule Unit Propagate then, clearly, (M, l) is also an inference of UPUF(� ∪ (X \ Head(�))). Since X is a model of that
module and M is consistent with X , l is consistent with X .

Thus, let us assume that (M, l) is implied by the rule Unfounded′ . It follows that l = ¬a and that for some set U of
atoms, U is unfounded on M w.r.t. �, a ∈ U , and for every b ∈ U , b ∈ Head(�) or ¬b ∈ M . Let us assume that a ∈ X . Since M
is consistent with X and X is a model of UPUF(� ∪ (X \ Head(�))), (M, ¬a) is not an inference of UPUF(� ∪ (X \ Head(�))).
In particular, it follows that U is not unfounded on M w.r.t. � ∪ (X \ Head(�)). Since U is unfounded on M w.r.t. �,
we obtain that U ∩ (X \ Head(�)) �= ∅. Let b ∈ U ∩ (X \ Head(�)). Then b ∈ U , b ∈ X and b /∈ Head(�). By the properties
of U , ¬b ∈ M . Since M is consistent with X , b /∈ X , a contradiction. Thus, a /∈ X and so, ¬a (that is, l) is consistent with X .

Conversely, let us assume that X is a model of UPUF′(�) and let (M, l) be an inference of UPUF(� ∪ (X \ Head(�)))

such that M is consistent with X . We will show that l is consistent with X . This property will imply that X is a model
of UPUF(� ∪ (X \ Head(�))), thus completing the argument.

Case 1. The inference (M, l) is determined by the rule Unit Propagate applied to a clause from �cl . It follows that (M, l)
is also an inference of the module UPUF′(�). Since X is a model of UPUF′(�) and M is consistent with X , l is consistent
with M .

Case 2. The inference (M, l) is determined by the rule Unit Propagate applied to a single-atom clause a, where a ∈ X \
Head(�). It follows that l = a. Since a ∈ X \ Head(�), then a (that is, l) is consistent with X .

Case 3. The inference (M, l) is determined by the rule Unfounded, that is, it is of the form (M, ¬a), where a ∈ σ� , a is
unassigned by M , and a belongs to some set U of atoms that is unfounded on M w.r.t. � ∪ (X \ Head(�)). It is clear
that U ∩ (X \ Head(�)) = ∅. In particular, U is unfounded on M also w.r.t. �.

Let us define M ′ = M ∪ {¬b : b ∈ σ� \ X, b �= a}. First, it is evident that a is unassigned by M ′ . Second, M ′ is consistent
with X and so, M ′ is consistent. Finally, U is unfounded on M ′ w.r.t. � (since M ⊆ M ′). Let b ∈ U . If b /∈ Head(�), then b /∈ X
(otherwise, we would have b ∈ U ∩ (X \ Head(�))). Thus, ¬b ∈ M ′ . Since a is unassigned in M ′ (M ′, ¬a) is an inference
of UPUF′(�) implied by the rule Unfounded′ (with U as an unfounded set underlying it). Since X is a model of UPUF′(�)

and M ′ is consistent with X , ¬a (that is, l) is consistent with X . �
Proposition 13. Every modular program {�1, . . . , �n} is equivalent to the abstract modular system {UPUF′(�1), . . . , UPUF′(�n)}.

Proof. A set X of atoms is a model of a modular program {�1, . . . , �n} if and only if X is an input answer set of every �i ,
1 ≤ i ≤ n. Similarly, X is a model of the abstract modular system {UPUF′(�1), . . . , UPUF′(�n)} if and only if X is a model of
every abstract module UPUF′(�i), 1 ≤ i ≤ n. Thus, the result follows from Proposition 12. �
Proposition 14. Every SMT program P = 〈T , λ1, . . . , λn〉 is equivalent to any of the following abstract modular systems (over the
vocabulary σT)

1. {Ent(T), Ent(λ1), . . . , Ent(λn)},
2. {UP(T), Ent(λ1), . . . , Ent(λn)},
3. {Ent(T), Min(λ1), . . . , Min(λn)},
4. {UP(T), Min(λ1), . . . , Min(λn)}.

Proof. Statement 1. Let M be a consistent and complete set of literals over σT such that M is a model of P . By the definition
of a model of an SMT program, M+ is a model of T and, for every i, 1 ≤ i ≤ n, M is a λi -model. By Proposition 4, the former
implies that M+ is a model of Ent(T). We will now use the latter to show that for every i, 1 ≤ i ≤ n, M+ is a model of
Ent(λi). To this end, let us consider an inference (L, l) ∈ Ent(λi) such that L is consistent with M+ . We need to show that l
is consistent with M+ . Since L is consistent with M+ , L+ ⊆ M+ and L− ∩ M+ = ∅. By the assumption that both M and L
are sets of literals over σT , we obtain L ⊆ M . From the construction of Ent(λi) it follows that λ[L] |= l. Since M is consistent
and complete, and is also a λi -model such that L ⊆ M , l ∈ M . Consequently, l is consistent with M+ .

Conversely, let M be a consistent and complete set of literals over σT such that M+ is a model of {Ent(T), Ent(λ1), . . . ,
Ent(λn)}. By the definition of a model of an AMS, M+ is a model of Ent(T) and, for every i, 1 ≤ i ≤ n, a model of Ent(λi).
By Proposition 4, M+ is a model of T . It remains to show that for every i, 1 ≤ i ≤ n, M is a λi -model. Let us fix an arbi-
trary i, 1 ≤ i ≤ n, and proceed by contradiction. That is, let us assume that M is not a λi -model. Since M is a consistent
and complete set of literals over σT , for every literal l ∈ σT , λi[M] |= l. Let us consider any literal l over σT such that l /∈ M
(since M is consistent, such literals exist). From the definition of Ent(λi) it follows that (M, l) ∈ Ent(λi). Since M is consis-
tent with M+ and M+ is a model of Ent(λi) it follows that l is consistent with M+ . By the completeness of M , l ∈ M , a
contradiction.

Statement 2. The proof follows that of Statement 1. The only difference is that we now use the module UP(T) as an equivalent
abstract inference module representation of T (cf. Proposition 4).

Y. Lierler, M. Truszczynski / Artificial Intelligence 236 (2016) 65–89 87

Statement 3. Let M be a consistent and complete set of literals over σT such that M is a model of P . We reason as before
and obtain that M+ is a model of T . In the proof of Statement 1, we showed that M+ is a model of Ent(λi). Since Min(λi) ⊆
Ent(λi), M+ is a model of Min(λi).

The converse implication can be proved exactly as in Statement 1, as the only elements of Ent(λi) we used in the
reasoning also belong to Min(λi).

Statement 4. The proof follows the lines of the argument of Statement 3 with the same proviso that we used in State-
ment 2. �
Theorem 15. Every abstract modular inference system A is equivalent to the abstract inference module A∪ .

Proof. By definition, X is a model of A = {S1, . . . , Sn} if and only if X is a model of every module Si , 1 ≤ i ≤ n. By
Proposition 3, that latter holds if and only if X is a model of the module A∪ . �
Theorem 16. For every AMS A,

(a) the graph amsA is finite and acyclic,
(b) for any terminal state M of amsA other than ⊥, [M]+ is a model of A,
(c) the state ⊥ is reachable from ∅ in amsA if and only if A is unsatisfiable.

Proof. By definition, amsA = amA∪ . By Theorem 6(a), amA∪ is finite and acyclic. Thus, the graph amsA is finite and acyclic,
too. Next, by Theorem 6(b), any terminal state of amA∪ other than ⊥ is a model of A∪ . Thus, by Theorem 15, each such
state is a model of amsA . Part (c) follows by a similar argument. �
Theorem 17. For every AMS A,

(a) the graph amslA is finite and acyclic,
(b) for any semi-terminal state M‖G of amslA reachable from ∅‖∅, . . . , ∅, [M]+ is a model of A,
(c) state ⊥ is reachable from ∅‖∅, . . . , ∅ in amslA if and only if A has no models.

Proof (Sketch). (a) The set of augmented states is obviously finite as augmented states are defined over a finite vocabulary.
Thus, the graph amslA is finite. Let us assume that amslA contains a cycle, say C . Since transition rules either keep the
second component of a state the same or extend it, C is of the form M0‖G, M1‖G, . . . , Mp‖G , where G is a sequence of
sets of inferences, and each Mi is a state over σA . Let G = ⋃

G . One can show that M0, M1, . . . , Mp is a cycle in amsAG , a
contradiction with Theorem 16(a).

(b) Let us assume that M‖G is reachable from ∅‖∅, . . . , ∅. It follows that G = ⋃
G is A-safe. Using this observation, one can

show that M is reachable from ∅ in amsAG . Moreover, since M‖G is a semi-terminal state in amslA , M is a terminal state
in amsAG . By Theorem 16(b), [M]+ is a model of AG . Since G is A-safe, AG and A are equivalent and so, [M]+ is a model
of A.

(c) Let us first assume that ⊥ is reachable from ∅‖∅, . . . , ∅ in amslA . Let M‖G be the direct predecessor of ⊥ on one of
those reachability paths. It follows that M is inconsistent and contains no decision literals. Reasoning as before, we can
show that M is reachable from ∅ in amsAG (where G = ⋃

G). Since M is inconsistent and contains no decision literals,
⊥ is reachable from ∅ in amsAG . By Theorem 16(c), AG is not satisfiable. Since G is A-safe, AG and A are equivalent.
Consequently, A is unsatisfiable (has no models).

Next, let us assume that ⊥ is not reachable from ∅‖∅, . . . , ∅ in amslA . Then ⊥ is not reachable from ∅ in amsA . By
Theorem 16(c), A has models. �
References

[1] K. Apt, H. Blair, A. Walker, Towards a theory of declarative knowledge, in: J. Minker (Ed.), Foundations of Deductive Databases and Logic Programming,
Morgan Kaufmann, 1988, pp. 89–142.

[2] M. Balduccini, Representing constraint satisfaction problems in answer set programming, in: Proceedings of ICLP Workshop on Answer Set Program-
ming and Other Computing Paradigms, ASPOCP, 2009, https://www.mat.unical.it/ASPOCP09/.

[3] C. Barrett, R. Nieuwenhuis, A. Oliveras, C. Tinelli, Splitting on demand in sat modulo theories, in: M. Hermann, A. Voronkov (Eds.), Logic for Program-
ming, Artificial Intelligence, and Reasoning, in: Lecture Notes in Computer Science, vol. 4246, Springer, Berlin, 2006, pp. 512–526.

[4] C. Barrett, R. Sebastiani, S. Seshia, C. Tinelli, Satisfiability modulo theories, in: A. Biere, M. Heule, H. van Maaren, T. Walsh (Eds.), Handbook of Satisfia-
bility, IOS Press, 2008, pp. 737–797.

[5] M. Brain, An algebra of search spaces, in: A.M. Frisch, B. O’Sullivan (Eds.), Proceedings of the ERCIM Workshop on Constraint Solving and Constraint
Logic Programming, 2011, pp. 72–86, http://csclp2011.cs.st-andrews.ac.uk/csclp2011proceedings.pdf.

[6] G. Brewka, T. Eiter, Equilibria in heterogeneous nonmonotonic multi-context systems, in: Proceedings of the 22nd National Conference on Artificial
Intelligence, AAAI 2007, AAAI Press, 2007, pp. 385–390.

[7] R. Brochenin, Y. Lierler, M. Maratea, Abstract disjunctive answer set solvers, in: T. Schaub, G. Friedrich, B. O’Sullivan (Eds.), Proceedings of the 21st
European Conference on Artificial Intelligence, ECAI 2014, in: Frontiers in Artificial Intelligence and Applications, vol. 263, IOS Press, 2014, pp. 165–170.

88 Y. Lierler, M. Truszczynski / Artificial Intelligence 236 (2016) 65–89

[8] F. Calimeri, W. Faber, G. Pfeifer, N. Leone, Pruning operators for disjunctive logic programming systems, Fundam. Inform. 71 (2–3) (2006) 183–214.
[9] M. Dao-Tran, T. Eiter, M. Fink, T. Krennwallner, Modular nonmonotonic logic programming revisited, in: P. Hill, D. Warren (Eds.), Logic Programming,

in: Lecture Notes in Computer Science, vol. 5649, Springer, Berlin, 2009, pp. 145–159.
[10] L.M. de Moura, N. Bjørner, Satisfiability modulo theories: introduction and applications, Commun. ACM 54 (9) (2011) 69–77, http://doi.acm.org/

10.1145/1995376.1995394.
[11] M. Denecker, Y. Lierler, M. Truszczynski, J. Vennekens, A Tarskian informal semantics for answer set programming, in: A. Dovier, V.S. Costa (Eds.), ICLP

(Technical Communications), in: LIPIcs, vol. 17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2012, pp. 277–289.
[12] V. D’Silva, L. Haller, D. Kroening, Abstract conflict driven learning, in: R. Giacobazzi, R. Cousot (Eds.), The 40th Annual ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages, POPL 2013, ACM, 2013, pp. 143–154.
[13] D. East, M. Truszczynski, Predicate-calculus-based logics for modeling and solving search problems, ACM Trans. Comput. Log. 7 (1) (2006) 38–83.
[14] T. Eiter, M. Fink, T. Krennwallner, C. Redl, Conflict-driven ASP solving with external sources, Theory Pract. Log. Program. 12 (4–5) (Sep. 2012) 659–679,

http://dx.doi.org/10.1017/S1471068412000233.
[15] T. Eiter, G. Ianni, R. Schindlauer, H. Tompits, A uniform integration of higher-order reasoning and external evaluations in answer-set programming, in:

Proceedings of the 19th International Joint Conference on Artificial Intelligence, IJCAI 2005, Morgan Kaufmann, San Francisco, CA, USA, 2005, pp. 90–96.
[16] S. El-Din Bairakdar, M. Dao-Tran, T. Eiter, M. Fink, T. Krennwallner, The DMCS solver for distributed nonmonotonic multi-context systems, in: T. Jan-

hunen, I. Niemelä (Eds.), Proceedings of the 12th European Conference on Logics in Artificial Intelligence, JELIA 2010, in: LNCS, vol. 6341, Springer,
Berlin, 2010, pp. 352–355.

[17] M. Gebser, B. Kaufmann, A. Neumann, T. Schaub, Conflict-driven answer set solving, in: Proceedings of the 20th International Joint Conference on
Artificial Intelligence, IJCAI 2007, Morgan Kaufmann, San Francisco, CA, USA, 2007, pp. 386–392.

[18] M. Gebser, B. Kaufmann, T. Schaub, Solution enumeration for projected boolean search problems, in: W.-J. van Hoeve, J. Hooker (Eds.), Integration of
AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, in: Lecture Notes in Computer Science, vol. 5547, Springer,
Berlin, 2009, pp. 71–86.

[19] M. Gebser, B. Kaufmann, T. Schaub, Conflict-driven answer set solving: from theory to practice, Artif. Intell. 187 (2012) 52–89.
[20] M. Gebser, M. Ostrowski, T. Schaub, Constraint answer set solving, in: Proceedings of 25th International Conference on Logic Programming, ICLP,

Springer, Berlin, 2009, pp. 235–249.
[21] M. Gebser, T. Schaub, Tableau calculi for answer set programming, in: S. Etalle, M. Truszczynski (Eds.), Proceedings of the 22nd International Conference

on Logic Programming, ICLP 2006, in: LNCS, vol. 4079, Springer, Berlin, 2006, pp. 11–25.
[22] M. Gelfond, V. Lifschitz, The stable model semantics for logic programming, in: R. Kowalski, K. Bowen (Eds.), Proceedings of International Logic Pro-

gramming Conference and Symposium, MIT Press, 1988, pp. 1070–1080.
[23] M. Gelfond, V. Lifschitz, Classical negation in logic programs and disjunctive databases, New Gener. Comput. 9 (1991) 365–385.
[24] E. Giunchiglia, N. Leone, M. Maratea, On the relation among answer set solvers, Ann. Math. Artif. Intell. 53 (1–4) (2008) 169–204.
[25] E. Giunchiglia, Y. Lierler, M. Maratea, Answer set programming based on propositional satisfiability, J. Autom. Reason. 36 (2006) 345–377.
[26] C.P. Gomes, H. Kautz, A. Sabharwal, B. Selman, Satisfiability solvers, in: F. van Harmelen, V. Lifschitz, B. Porter (Eds.), Handbook of Knowledge Repre-

sentation, Elsevier, 2008, pp. 89–134.
[27] C.P. Gomes, A. Sabharwal, B. Selman, Model counting, in: Handbook of Satisfiability, IOS Press, 2009, pp. 633–654.
[28] J. Jaffar, J. Lassez, Constraint logic programming, in: Conference Record of the Fourteenth Annual ACM Symposium on Principles of Programming

Languages, Munich, Germany, January 21–23, 1987, ACM Press, 1987, pp. 111–119.
[29] J. Jaffar, M. Maher, Constraint logic programming: a survey, J. Log. Program. 19 (20) (1994) 503–581.
[30] T. Janhunen, Modular equivalence in general, in: 19th European Conference on Artificial Intelligence, ECAI, 2008, pp. 75–79.
[31] T. Janhunen, G. Liu, I. Niemelä, Tight integration of non-ground answer set programming and satisfiability modulo theories, in: Working Notes of the

1st Workshop on Grounding and Transformations for Theories with Variables, 2011.
[32] T. Janhunen, E. Oikarinen, H. Tompits, S. Woltran, Modularity aspects of disjunctive stable models, in: Proceedings of the 9th International Confer-

ence on Logic Programming and Nonmonotonic Reasoning, LPNMR’07, Springer, Berlin, 2007, pp. 175–187, http://dl.acm.org/citation.cfm?id=1758481.
1758499.

[33] M. Järvisalo, E. Oikarinen, T. Janhunen, I. Niemelä, A module-based framework for multi-language constraint modeling, in: E. Erdem, F. Lin, T. Schaub
(Eds.), Proceedings of the 10th International Conference on Logic Programming and Nonmonotonic Reasoning, LPNMR 2009, in: LNCS, vol. 5753,
Springer, Berlin, 2009, pp. 155–168.

[34] Y. Lierler, Abstract answer set solvers with backjumping and learning, Theory Pract. Log. Program. 11 (2011) 135–169.
[35] Y. Lierler, Relating constraint answer set programming languages and algorithms, Artif. Intell. 207 (2014) 1–22.
[36] Y. Lierler, M. Truszczynski, Transition systems for model generators — a unifying approach, in: 27th International Conference on Logic Programming,

ICLP 2011, Theory Pract. Log. Program. 11 (4–5) (2011), Special Issue.
[37] Y. Lierler, M. Truszczynski, Modular answer set solving, in: Late-Breaking Developments in the Field of Artificial Intelligence, in: AAAI Workshops,

vol. WS-13-17, AAAI, 2013.
[38] Y. Lierler, M. Truszczynski, Abstract modular inference systems and solvers, in: M. Flatt, H.-F. Guo (Eds.), Practical Aspects of Declarative Languages, in:

Lecture Notes in Computer Science, vol. 8324, Springer, Berlin, 2014, pp. 49–64.
[39] Y. Lierler, M. Truszczynski, An abstract view on modularity in knowledge representation, in: B. Bonet, S. Koenig (Eds.), Proceedings of the 29th AAAI

Conference on Artificial Intelligence, 2015, pp. 1532–1538.
[40] V. Lifschitz, D. Pearce, A. Valverde, Strongly equivalent logic programs, ACM Trans. Comput. Log. 2 (4) (2001) 526–541.
[41] V. Lifschitz, H. Turner, Splitting a logic program, in: P.V. Hentenryck (Ed.), Proceedings of the 11th International Conference on Logic Programming,

ICLP 1994, 1994, pp. 23–37.
[42] V. Marek, M. Truszczyński, Stable models and an alternative logic programming paradigm, in: The Logic Programming Paradigm: a 25-Year Perspective,

Springer, Berlin, 1999, pp. 375–398.
[43] M. Mariën, J. Wittocx, M. Denecker, M. Bruynooghe, SAT(ID): satisfiability of propositional logic extended with inductive definitions, in: H.K. Büning,

X. Zhao (Eds.), Proceedings of the 11th International Conference on Theory and Applications of Satisfiability Testing, SAT 2008, in: LNCS, vol. 4996,
Springer, Berlin, 2008, pp. 211–224.

[44] J.P. Marques Silva, I. Lynce, S. Malik, Conflict-driven clause learning SAT solvers, in: Handbook of Satisfiability, IOS Press, 2009, pp. 131–153.
[45] V.S. Mellarkod, M. Gelfond, Y. Zhang, Integrating answer set programming and constraint logic programming, Ann. Math. Artif. Intell. 53 (1–4) (2008)

251–287.
[46] M.W. Moskewicz, C.F. Madigan, Y. Zhao, L. Zhang, S. Malik, Chaff: engineering an efficient SAT solver, in: Proceedings DAC-01, 2001.
[47] I. Niemelä, Logic programs with stable model semantics as a constraint programming paradigm, Ann. Math. Artif. Intell. 25 (1999) 241–273.
[48] I. Niemelä, P. Simons, Extending the Smodels system with cardinality and weight constraints, in: J. Minker (Ed.), Logic-Based Artificial Intelligence,

Kluwer, 2000, pp. 491–521.
[49] R. Nieuwenhuis, A. Oliveras, C. Tinelli, Solving SAT and SAT modulo theories: from an abstract Davis–Putnam–Logemann–Loveland procedure to DPLL(T),

J. ACM 53 (6) (2006) 937–977.

Y. Lierler, M. Truszczynski / Artificial Intelligence 236 (2016) 65–89 89

[50] E. Oikarinen, T. Janhunen, Modular equivalence for normal logic programs, in: G. Brewka, S. Coradeschi, A. Perini, P. Traverso (Eds.), Proceedings of the
17th European Conference on Artificial Intelligence, ECAI 2006, IOS Press, Amsterdam, The Netherlands, 2006, pp. 412–416.

[51] F. Rossi, P. van Beek, T. Walsh, Constraint programming, in: F. van Harmelen, V. Lifschitz, B. Porter (Eds.), Handbook of Knowledge Representation,
Elsevier, 2008, pp. 181–212.

[52] D. Saccà, C. Zaniolo, Stable models and non-determinism in logic programs with negation, in: D.J. Rosenkrantz, Y. Sagiv (Eds.), Proceedings of the 9th
ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, PODS 1990, ACM, New York, NY, USA, 1990, pp. 205–217.

[53] P. Simons, I. Niemelä, T. Soininen, Extending and implementing the stable model semantics, Artif. Intell. 138 (2002) 181–234.
[54] S. Tasharrofi, E. Ternovska, A semantic account for modularity in multi-language modelling of search problems, in: C. Tinelli, V. Sofronie-Stokkermans

(Eds.), Proceedings of the 8th International Symposium on Frontiers of Combining Systems, FroCoS 2011, in: LNCS, vol. 6989, Springer, Berlin, 2011,
pp. 259–274.

[55] S. Tasharrofi, X.N. Wu, E. Ternovska, Solving modular model expansion tasks, CoRR, arXiv:1109.0583, 2011.
[56] A. Van Gelder, K. Ross, J. Schlipf, The well-founded semantics for general logic programs, J. ACM 38 (3) (1991) 620–650.

	On Abstract Modular Inference Systems and Solvers
	Recommended Citation

	tmp.1460582418.pdf.LRXZN

