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Asynchronous random Boolean network model based on elementary cellular automata

Mihaela T. Matache*

Jack Heidel

Department of Mathematics

University of Nebraska at Omaha

Omaha, NE 68182-0243, USA

*dmatache@mail.unomaha.edu

Abstract This paper considers a simple Boolean network with N nodes, each node’s state at time

t being determined by a certain number k of parent nodes, which is fixed for all nodes. The nodes,

with randomly assigned neighborhoods, are updated based on various asynchronous schemes. We make

use of a Boolean rule that is a generalization of rule 126 of elementary cellular automata. We provide

formulae for the probability of finding a node in state 1 at a time t for the class of Asynchronous Random

Boolean Networks (ARBN) in which only one node is updated at every time step, and for the class of

Generalized ARBNs (GARBN) in which a random number of nodes can be updated at each time point.

We use simulation methods to generate consecutive states of the network for both the real system and

the models under the various schemes. The results match well. We study the dynamics of the models

through sensitivity of the orbits to initial values, bifurcation diagrams, and fixed point analysis. We

show, both theoretically and by example, that the ARBNs generate an ordered behavior regardless of the

updating scheme used, whereas the GARBNs have behaviors that range from order to chaos depending

on the type of random variable used to determine the number of nodes to be updated and the parameter

combinations.

1. Introduction

Due to their convenient and easy to understand structure, Boolean networks have been used extensively

as models for complex networks such as genetic or biochemical networks, networks in artificial life,

biophysics, condensed matter and solid-state physics, or statistical mechanics. Originally introduced by

Kauffman ( [1], [2], [3]), the Boolean network models appeal to any situation in which the activity of

the nodes of the network can be quantized to only two states, ON and OFF, and each node updates

its state based on logical relationships with other nodes of the network. For example, most biological

phenomena are often described in binary language such as ”responsive and nonresponsive”, ”upregulated

and downregulated”, despite their manifestation in the continuous domain [4]. Although a Boolean
1
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network model may represent a very simplified view of a network, it retains in most cases meaningful

information that can be used to study the dynamics of the network and make inferences regarding the

real system they model.

Boolean and random Boolean networks have been extensively considered and studied as models of

genetic regulatory networks ( [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14]) with the goal of understanding

the global network dynamics. Knowing the long-run behavior of such networks would allow one to identify

steady-state behavior associated with tumors, and develop a methodology for altering this steady-state

as means of therapy. Applications of synchronous Boolean networks to biochemical systems have been

studied in [15], [16].

Cellular automata (CA) are a special case of Boolean networks, with various systems whose structure

lies between the two. CA are dynamical systems which are discrete in space and time, operate on a

uniform, regular lattice, and are characterized by ”local” interactions. They provide models in computa-

tional and physical systems, in biological systems, such as pattern formation, and in ecology, for example

modelling forest fires ( [17], [18]). There has been a great interest in studying the dynamics of these

systems in light of Wolfram’s analysis of randomness in modeling nature, which categorizes the rules of

elementary cellular automata (ECA) [19]. In this paper we analyze a random Boolean network whose

dynamics are established by a generalization of ECA Rule 126.

It is known that related to condensed matter and solid-state physics, the dynamics of ”spin-glasses”

have been influential in the formulation of Kauffman’s N/K models used in his random Boolean networks

and other complex, adaptive systems ( [3]). Such models yield insight into the dynamics of interactive

systems through the changing of connectivity rules and the exploration of the ensuing emergent phenom-

ena. So it is important to model the behavior of interconnected systems in terms of coupling between

components and understanding the means for moving the system into and out of equilibrium states.

Understanding the dynamics of large interacting systems is one of the challenges of statistical mechan-

ics. In such systems the nodes (units) have diverse functions and they are connected in random fashion

to other nodes [20]. It is important to understand under what circumstances the systems self-organize,

and how the dynamics is influenced by the way the elements are connected and interact. The study of

scale-free networks by Barabasi and Albert ( [20], [21], [22]) has created the framework for the study

of systems in which the distribution of the node links obeys a power-law rule. These kinds of systems

have been found in many real-world complex networks, such as the Internet, cellular metabolic networks,

and research collaboration networks [23]. Although in this paper we assume that all nodes have a fixed

number of parents, future work will include the study of similar systems in which the number of parents

varies according to specified rules, such as power-law distributions.

One important aspect of all the studies mentioned above is that the networks are assumed to be

synchronous, that is the nodes update their states at the same time. However, various authors have
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observed that for many biological phenomena or cellular automata, including examples discussed above,

asynchronous versions are more plausible models. For example, individual ants display aperiodic patterns

of active and resting periods, while the colony as a whole may exhibit synchronized activity; asynchronous

activity of the neurons in the brain could lead to some global patterns [24]. Studies of asynchronous

random Boolean networks (ARBN) include properties of attractors of the ARBNs [25], role of the updating

scheme of the nodes in the dynamics of the system and the emergence of modularity ( [24], [26]), rhythmic

and non-rhythmic attractors in ARBNs ( [27], [28]), critical values in ARBNs [29], role of asynchrony in

generating edge of chaos patterns in cellular automata [30]. In this paper we extend previous work on

synchronous random Boolean networks governed by a generalization of ECA Rule 126 ( [31], [32]) to the

case of asynchronous updating.

Following Wolfram [19] it makes sense to think about three types of randomness in modeling nature.

There may be randomness in the environment. Such phenomena are studied mathematically by, for

example, Markov processes, probabilistic cellular automata [33] or probabilistic Boolean networks [4].

The second Wolfram category is randomness in initial conditions. A prominent example here are random

Boolean networks as discussed by Kauffman [3]. Wolfram puts the phenomenon of deterministic chaos

into this second group. The third group is comprised of intrinsic generators of randomness such as the

elementary cellular automata rule 30 and rule 110.

In this paper we discuss a random Boolean network model which generalizes ECA rule 126 and therefore

falls into Wolfram second type of generation of randomness. Rule 126 is most simply described as

¥¥¥ ¥¥¤ ¥¤¥ ¥¤¤ ¤¥¥ ¤¥¤ ¤¤¥ ¤¤¤
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
¤ ¥ ¥ ¥ ¥ ¥ ¥ ¤

where black is ON and white is OFF. Rule 126 falls into both of Wolfram’s ”legalistic” and ”totalistic”

groups of rules ( [19], [32]). Rule 126 is useful as a conceptual model of (biological) cell growth and of

a (chemical) catalytic process because the central site survives (or is born) unless the neighborhood is

too poorly populated or too crowded, in which case it dies. Other ECA rules such as 22, 90, and 150

have similar interpretations ( [32], [34], [35]). It is interesting that Rule 126 is both a very simple growth

model and yet exhibits a quite sophisticated dynamic behavior.

The present paper uses an approach introduced by Andrecut and Ali [31], whereby the density function

for the number of 1’s in a network at time t, is shown to satisfy a simple first order difference equation.

These authors then apply the familiar methods of bifurcation analysis, with respect to the neighborhood

size k, to show the existence of chaos in their generalized Rule 126 model. A similar investigation of a

different generalization of Rule 126 has been carried out by Boccara and Roger [36].
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The scalar density function discussed here is exact as opposed to the probabilistic approximation in CA

mean field theory ( [19], [37]). Furthermore our theory can also be extended to all of the 32 legalistic rules

by interpreting them as the simple growth rules discussed above. Rule 126 has the most sophisticated

behavior in this way. For example the nontrivial legalistic and totalistic ECA rule 22 ( [19], p. 263,

or [32], ) turns out to have a non-bifurcating density function when analyzed by the methods of this

paper. This extension will be the subject of future work.

The model considered by Andrecut and Ali [31] is a simple Boolean network with N nodes, each node

being influenced by exactly k other nodes at each step of the Boolean system. In other words each node

has exactly k parents, selected randomly, so that the Boolean rule for each node is determined only by the

state of the k parents. The number k is fixed and the nodes of the network are updated synchronously.

Our emphasis in this paper is to extend that model by allowing an asynchronous update rule for the N

nodes. There are various types of updating schemes in the literature such as the clock scheme ( [38], [39]),

the cyclic scheme ( [30]), the random independent scheme ( [25]), and the random order scheme ( [25]). It

has been shown ( [24]) that properties of the models are changed by the particular update scheme chosen.

At the same time the random Boolean networks have been classified by Gershenson [40]. According to

this author the class of Asynchronous Random Boolean Networks (ARBN) incorporates all the cases in

which at each time point a single node is selected in order to be updated. The node to be updated can be

chosen at random or according to a deterministic rule based on the above mentioned updating schemes.

He then generalizes the class of ARBN to the Generalized Asynchronous Random Boolean Networks

(GARBN) defined as ARBNs which can update any number of nodes, picked at random, at each time

step. In this paper we analyze the dynamics of ARBNs and GARBNs, for cellular automata rule 126,

using various updating schemes. We provide a model for the probability p(t + 1) of finding a node in

state 1 at time t + 1 given p(t), and study the dynamics of the networks through sensitivity of the orbits

to initial values, bifurcation diagrams, and fixed point analysis.

In Section 2 we start with the study of the dynamics of ARBNs. We show that the formula for the

probability of finding a node in state 1 does not depend on the updating scheme, only on the fact that

exactly one node is updated at each time point. The formula is

p(t + 1) = p(t) +
1
N

[
1− p(t)− p(t)k+1 − (1− p(t))k+1

]

where k is the number of parents of each node, and N is the size of the network. We show that ARBNs

have a very ordered behavior under this model.

Section 3 is dedicated to a discussion of fixed points and bifurcation that comes to explain the observed

phenomena. In [32] the present authors extend the results of Andrecut and Ali [31], based on Elementary

Cellular Automata Rule 126, to networks with varying sizes of parent neighborhoods. In this particular

setting it is shown that ”high connectivity can erase all chaotic behavior in a synchronous network” (quote
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from an anonymous referee). The present paper, in a generalization of [31] to asynchronous networks,

shows that high connectivity (i.e. letting k → ∞) again swamps out chaos and periodicity and leaves

only stable fixed points. This regularity is shown to be quite general with exceptions occurring only for

a small number of neighborhood distributions.

In Section 4 we extend the study to GARBNs using several different random number generators for

the number xt of nodes to be updated at each time point t. The recursive formula for the probability of a

node being in state 1 is very similar to the one for ARBNs, except for the random term xt. The formula

is

p(t + 1) = p(t) +
xt

N

(
1− p(t)− (1− p(t))k+1 − p(t)k+1

)
.

We show that the random generator of xt has an impact on the behavior of the system which can pass

from chaos to order or vice versa with transition phases of various lengths depending on the underlying

parameters.

2. Asynchronous Random Boolean Networks

Consider a network with N nodes. Each node cn, n = 0, 1, 2, . . . , N − 1 can take on only two values 1

or 0. Often this is interpreted as a system in which each node can be either ON or OFF. At each time

point t the system can be in one of the 2N possible states. If all the nodes update their value at the

same time the network is synchronous, otherwise it is asynchronous. The evolution of the nodes from

time t to time t + 1 is given by a Boolean rule which is considered the same for all nodes. Each node cn

is assigned a random ”neighborhood” of parents, whose values at time t influence the value of cn at time

t + 1 through the following Boolean rule. If cn and all its parents have the same value at time t (that is

they are all either 0 or 1), then cn(t+1) = 0, otherwise cn(t+1) = 1. This generalizes rule 126 of cellular

automata ( [19], [32]). The parents of a node are chosen randomly from the remaining N − 1 nodes and

do not change thereafter. More precisely, if a node has k parents, then a set of k nodes is chosen from

the remaining N − 1 nodes with probability 1

(N−1
k ) .

This model is a description of a random Boolean cellular automaton. The system is described by the

number of parents of each node. Observe that the quantity

N1(t) :=
N−1∑
n=0

cn(t)

gives the number of nodes that are in state 1 at time t. The concentration of nodes in state 1 is given

by 1
N

∑N−1
n=0 cn(t). We are interested in finding the probability p(t + 1) that a node is in state 1 at time

t + 1. In [31] it is shown that p(t + 1) is given by

p(t + 1) = 1− p(t)k+1 − (1− p(t))k+1
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where k ≥ 1 is the number of parents of each node. (Note: we take the liberty to provide the formula

with k + 1 rather than k as it is misprinted in [31]).

We extend this result by allowing an asynchronous update rule for the N nodes. There are various

types of updating schemes in the literature such as the clock scheme ( [38], [39]), the cyclic scheme

( [30]), the random independent scheme ( [25]), and the random order scheme ( [25]). It has been shown

( [24]) that properties of the models are changed by the particular update scheme chosen. Based on the

various possible updating schemes the random Boolean networks have been classified by Gershenson [40].

According to him the class of Asynchronous Random Boolean Networks (ARBN) incorporates all the

cases in which at each time point a single node is selected in order to be updated. This case encompasses

all the previously mentioned updating schemes with the exception of the clock scheme. The node to

be updated can be chosen at random or according to a deterministic rule. Gershenson ( [40]) also

generalizes the class of ARBN to the Generalized Asynchronous Random Boolean Networks (GARBN)

defined as ARBNs which can update any number of nodes, picked at random, at each time step. This case

incorporates the previously mentioned clock scheme. In what follows we will start by looking at ARBNs

using the cyclic updating scheme. As we shall see, the model provided for this case can be generalized to

the entire ARBN class. Next we will focus on GARBNs using various random generators for the number

of nodes to be updated at each time point.

We start with the cyclic scheme in which at each time step t only one node is updated. To simplify

the first look at the problem we fix the updating order to be the following: at time t we update the node

tmod N . Thus the nodes are updated in order from 0 to N − 1 every N time steps. Observe that from

time t to time t + 1 only one node may change its state, so the total number of nodes that are in state 1

at time t+1 cannot differ with more than one unit from N1(t). This means that for large N , p(t+1) and

p(t) are approximately the same. It would be of interest to look at p(t + T ), the probability of finding

a node in state 1 after T iterations of the system, where T is large enough so that all nodes have been

updated at least once.

Denote by N0(t) the number of nodes that are 0 at time t. Then N1(t)+N0(t) = N . We are interested

in how node tmodN changes from time t to time t+1 in order to determine N1(t+1), N0(t+1). Observe

that node tmodN is in state 1 at time t with probability p(t) and in state 0 with probability 1− p(t). If

node tmod N is 0 at time t then the number of nodes that change from 0 to 1 at time t + 1 is N0
0→1(t) =

1−(1−p(t))k given that only the node t modN could change and that would happen only if all the parents

of this node are 0 as well. Similarly, the number of nodes that remain 0 is N0
0→0(t) = N0(t)−1+(1−p(t))k,

the number of nodes that change from 1 to 0 is N0
1→0(t) = 0, and the number of nodes that remain 1 is

N0
1→1(t) = N1(t). Similarly, if the node tmod N is 1 at time t we obtain the corresponding number of

nodes N1
0→1(t) = 0, N1

0→0(t) = N0(t), N1
1→0(t) = p(t)k, N1

1→1(t) = N1(t)−1+(1−p(t)k) = N1(t)−p(t)k.
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Thus we may write the formulas for the number of nodes that either change or remain in the same

state from time t to time t + 1 as follows:

N0→1(t) = (1− p(t))(1− (1− p(t))k) = 1− p(t)− (1− p(t))k+1

N0→0(t) = (N0(t)− 1 + (1− p(t))k)(1− p(t)) + N0(t)p(t) = N0(t)− 1 + p(t) + (1− p(t))k+1

N1→0(t) = p(t)kp(t) = p(t)k+1

N1→1(t) = N1(t)(1− p(t)) + (N1(t)− p(t)k)p(t) = N1(t)− p(t)k+1

One can easily check that N0→1(t) + N0→0(t) + N1→0(t) + N1→1(t) = N . We include for comparison

the formulas obtained in [31] for the same quantities, following a synchronous updating rule: N0→1(t) =

N0(t)(1− (1− p(t))k), N0→0(t) = N0(t)(1− p(t))k, N1→0(t) = N1(t)p(t)k, N1→1(t) = N1(t)(1− p(t)k).

We can write now that

N1(t + 1) = N0→1(t) + N1→1(t) = N1(t) +
[
1− p(t)− p(t)k+1 − (1− p(t))k+1

]
,

N0(t + 1) = N0→0(t) + N1→0(t) = N0(t)−
[
1− p(t)− p(t)k+1 − (1− p(t))k+1

]
.

As a consequence, the probability of finding a node in state 1 at time t + 1 is given by

(1) p(t + 1) =
N1(t + 1)

N
= p(t) +

1
N

[
1− p(t)− p(t)k+1 − (1− p(t))k+1

]
.

Note that if all the nodes are 0 at time t, then p(t) = 0 so p(t + 1) = 0, which is to be expected

since by the Boolean rule all the nodes stay 0 at time t + 1. Similarly, if all the nodes are 1 at time t,

p(t + 1) = N−1
N by the formula, as well as by the Boolean rule.

To study the behavior of this model we construct the map

f(p) = p +
1
N

(1− p− pk+1 − (1− p)k+1)

and observe that p(t + T ) = fT (p(t)), where fT represents f ◦ f ◦ · · · ◦ f , T times.

Observe that the updating scheme given by tmod N has not been explicitly used in generating the

model, only the fact that at a given time point exactly one node is updated. Thus, the model is suitable

for any scheme in which the nodes are updated one by one in a certain order, fixed or random. The

most common schemes in this category are the random order scheme and the interlaced order scheme

( [30]). According to the fixed random order scheme, a permutation of the first N natural numbers is

performed. The nodes are updated by repeating this order every N time steps ( [30]). In the case of a

more general random order scheme a new permutation is selected every N time steps ( [25]). Another

version of the random order scheme assumes that at each time point t a uniform number u between 1 and

N is generated and the u-th node is updated ([30]). For the interlaced order scheme, an integer number

C > 0 relatively prime to N is generated and at time t the (Ct)modN node is updated. In other words,

every other C-th node is updated at consecutive time points.
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The reason for the above discussion on ARBN updating schemes is to show how many cases are

encompassed by the model (1).

It is useful to provide some simulations to see how well does the model match the real system. The

simulations that follow in this paper have been obtained by running Matlab and Maple programs. Al-

though we present only a few graphs in this paper, the conclusions have been drawn from numerous

simulations run by the authors. In general we present only typical graphs.

We restrict our attention to the tmod N cyclic scheme. The graphs are similar in other cases of ARBNs

as expected. The graphs in Figure 1 represent simulations of the model and the actual Boolean system

for the case of N = 128 with k = 32. There are 9 different graphs representing iterations of the system

and the model, namely we graph p(t + iteration) versus p(t) for iteration = 2i, i = 0, 1, 2, . . . , 8. We

can deduce the behavior of the system and the model for other cases from these graphs, since all the

other simulations obtained by the authors for various parameter combinations are quite similar to those

in Figure 1.
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Figure 1. Iterations of the system and the model for ARBNs, with N = 128 and k = 32.

We plot some of the first 256 iterations of the system and the model as specified in the

labels. We observe the perfect match for the first 32 iterations followed by a transition

phase in which the system and the model do not match perfectly for iterations up to

approximately 256 when the model and the system reach a steady behavior with a very

good match.

We make the following observations. There is an excellent match between the model and the system

for iterations that go up to order 25− 27 depending on the situation. For higher number of iterations the

match is also good, and both the system and the model settle around a certain value of p(t) suggesting

that no matter what the initial conditions are, in the long run there is either an absorbing state or cycles
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of states that differ only slightly in terms of the number of nodes that are 1. That is, in the long run,

the probability of finding a node in state 1 is approximately the same regardless of the initial state of

the system. We observe also that the model has a slower rate of convergence towards this probability

than the system in the range of 25 − 27 iterations, so there is a transient phase in which the model is

not a perfect match for the system. This behavior is observed to be independent of the number of nodes

or parents of a node, however the transient phase holds for a longer time period for higher values of the

number of parents k, and occurs later as the number of nodes increases. Theoretical justification for

these remarks is provided in the next section.

We note that the graphs are very close to the first diagonal for the first few iterates, as the number of

nodes in state 1 does not change more than one from one time point to the next.

The situation suggested by the previous graphs is clarified even more by the sensitivity of the orbits

to the initial values for the model. We fix the parameters N and k and choose two initial values p(0)

and q(0) as starting points for the orbits. We iterate many times the equation of the model and compute

p(t) and q(t) for each time point t. Then we plot the error E(t) = |p(t)− q(t)| versus t. Figure 2 shows

the case of N = 128 and k = 4. This graph is typical and very similar for any other combinations of

parameters considered in the experiments, including small or large values for both N and k. We observe

that the error converges to zero at a faster rate for smaller values of k and a slower rate for larger values

of k for a fixed N . Also, as N increases the behavior is the same, but in general the convergence rates

are slower. For the three graphs in the figure p(0)− q(0) = 0.5, 0.01, 0.0001 respectively. We see that it

does not matter how far apart the initial values are, since the error will eventually converge to zero.
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Figure 2. Error plot for the ARBN model with N = 128 and k = 4. In each graph we

plot the error E(t) = |p(t) − q(t)| versus t. We start with initial values p(0) and q(0)

that are 0.5, 0.01, and 0.0001 apart respectively. The error converges to zero in all cases.
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In order to clarify even more the situation suggested by the sensitivity of the orbits to the initial

values, we construct bifurcation diagrams with integer values for the parameter k. We fix the number of

nodes N = 512 in Figure 3, and we iterate the function f(p) a number of times for various initial values

of p and plot the iterations N/2, N, 2N, and 5N . We observe that there is a transient period for reduced

number of iterations, but after significant iterations the bifurcation map converges to a value that gets

closer and closer to 1 as N and k increase. Thus in the long run, the system exhibits a very ordered

behavior.
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Figure 3. Bifurcation diagram for the ARBN model, with N = 512. The model is

iterated a number of times, as specified in each graph, before plotting the values of p(t),

to understand how the transient phase behaves. We observe the ordered behavior of the

system.

Finally, to end the analysis of the above updating cyclic scheme we look at the map

f(p) = p +
1
N

(1− p− pk+1 − (1− p)k+1)

and find its fixed points, that is we solve the equation f(p) = p. This leads to the equation in p

1− p− pk+1 − (1− p)k+1 = 0.

It is clear that if k → ∞ in the above equation, we obtain p = 1. Also, p = 0 is obviously a fixed point

of the map. Figure 4 shows this fact.

3. Digression on Fixed Points and Bifurcation

The map

f(p) = p +
1
N

(1− p− pk+1 − (1− p)k+1)
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Figure 4. Fixed points for the ARBN model f(p) = p + 1
N (1− p− pk+1 − (1− p)k+1).

The fixed points converge to 1 as k increases.

from the ARBN scheme has the characteristic shape for all positive integers N, k as the first iteration of

Figure 5.
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Figure 5. Plot of the first two iterations of the map f(p) = p+ 1
N (1−p−pk+1−(1−p)k+1)

in the case N = 10, k = 5.

A so called cobweb stability diagram [41] shows immediately that the nonzero fixed point at p ∼= 0.8 is

stable on the p interval (0, 1]. The general theory of one dimensional maps then shows that there are no

nontrivial period 2 or higher period orbits. This, of course is also indicated in the second iteration graph

of the same map, as in Figure 5. In Figure 6 we show the collection of the first 30 iterations to clarify

even more this situation, for N = 10, k = 5. We observe that the behavior is similar for larger values of

N , and even for a larger number of iterations when transient phases have passed.

Thus the ARBN scheme exhibits no bifurcations to high order periodic orbits.
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Figure 6. Plot of the first 30 iterations of the map f(p) = p+ 1
N (1−p−pk+1−(1−p)k+1)

in the case N = 10, k = 5.

For future reference (the GARBN scheme), we now generalize the following discussion by considering

(2) f(p) = p + α(1− p− pk+1 − (1− p)k+1).

Then we find that

f ′(p) = 1− α− α(k + 1)pk + α(k + 1)(1− p)k.

Since a bifurcation from a fixed point to a period two point occurs only when f ′(p) = −1 at a fixed point,

we then set f ′(p) = −1 in the above equation to get

α + α(k + 1)pk − α(k + 1)(1− p)k = 2

or

(3) α =
2

1 + (k + 1)pk − (k + 1)(1− p)k
.

Thus the value of α where a bifurcation occurs depends on both p and k. However the fixed point

condition

(4) p + pk+1 + (1− p)k+1 = 1

means that p is a function of k. This means that α is also a function of k and in fact we get the graph

in Figure 7.

As a matter of fact, by denoting g(p) = f(f(p)) and solving the system of equations g(p) = p, g′(p) =

−1 we are able to obtain the value of α where the second set of bifurcations occur, for period 4 cycles.

In Figure 8 we graph α versus k for the period 2 and 4 cycles for comparison. Due to the complicated

computations for solving the system of equations we restricted our attention to values of k from 1 to 6 .
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Figure 7. Plot of the α = 2
1+(k+1)pk−(k+1)(1−p)k as a function of k, where p + pk+1 +

(1− p)k+1 = 1. The function approaches zero as k increases.
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Figure 8. Plot of the α = 2
1+(k+1)pk−(k+1)(1−p)k as a function of k, for period 2 and

period 4 cycles.

It is interesting to look at some three dimensional bifurcation diagrams for p as a function of α and

k. The system is iterated 100 times to obtain the graphs in Figures 9-12. Similar results occur for more

than 100 iterations. Figures 9-10 show slices along α, whereas Figures 11-12 show slices along k. We

observe that the more complex behavior occurs for generally large values of α. At the same time, as k

increases the complex behavior occurs for smaller and smaller values of α.

We now show that the function α(k) defined in (3) under the condition (4) satisfies the inequality

α(k) ≥ 1
k . This will allow us to prove that there are only stable fixed points for the cyclic scheme. First

observe that (4) is equivalent to

(1− p)k = 1− pk+1

1− p
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Figure 9. Bifurcation surface of p as a function of k and α. The slices correspond to

a few k values (1 through 6) and the bifurcations occur along α. We observe that the

complex behavior occurs for larger values of k and for smaller values of α as k increases.
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Figure 10. Bifurcation surface of p as a function of k and α. The slices correspond to k

values and the bifurcations occur along α. This is a different view of the previous figure

to show that the values of α for which the bifurcations occur move towards zero as k

increases.

where p cannot be equal to 1 since 1 does not satisfy (4). Using this one can see that the inequality

α(k) ≥ 1
k is equivalent to

2k ≥ 1 + (k + 1)pk − (k + 1)
(

1− pk+1

1− p

)
⇔ 3k

k + 1
≥ pk

1− p
.

Thus it is enough to show that this last inequality holds. We have the following result.

Proposition 1 Let k ∈ N, k > 0. If p ∈ [0, 1] and p + pk+1 + (1− p)k+1 = 1 then

3k

k + 1
≥ pk

1− p
.
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Figure 12. Bifurcation diagram for p as a function of k for α = 0.9. This is a zoom in

on a slice of the previous figure.

Proof Clearly p 6= 1 since 1 does not satisfy the hypothesis. The only value in [0, 1
2 ) that satisfies the

hypothesis is p = 0 for k ≥ 2. Observe that for k = 1 the hypothesis is equivalent to p2 +(1− p)2 = 1− p

which has roots 0 and 1
2 . We claim that for k > 1 the only value that satisfies the equation is 0.

Clearly 0 satisfies the equation for all k. If 0 < p < 1
2 then 0 < p < 1 and 0 < 1− p < 1 so one has

pk+1 + (1− p)k+1 < pk + (1− p)k < · · · < p2 + (1− p)2.

Now p2 +(1− p)2 < 1− p since this is equivalent to 2p2 < p ⇔ p < 1
2 which is true. Thus for k = 2, 3, . . .

there is only one value of p satisfying p + pk+1 + (1− p)k+1 = 1 and situated in [0, 1
2 ], namely p = 0.
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Now we show that even more is true. There is a unique p in [ 12 , 1] satisfying p+ pk+1 +(1− p)k+1 = 1,

and actually 2
3 < p < 1. Indeed, define the function φ(x) = xk+1 + (1 − x)k+1 + x − 1. Its derivative

is φ′(x) = (k + 1)[xk − (1 − x)k] + 1 > 0 if x ≥ 1
2 . This is because if x ≥ 1

2 then x > 1 − x, so

φ′(x) ≥ 1 > 0. Thus φ is strictly increasing on [ 12 , 1] so it can have at most one root. But φ(1) = 1 > 0

and φ( 2
3 ) = 2k+1+1−3k

3k+1 < 0. This last fact is true since 2k+1+1−3k

3k+1 < 0 ⇔ 1 < 3k − 2k+1 which is true for

k = 2, 3, . . . . So φ being continuous and strictly increasing there is a unique root p ∈ (2
3 , 1).

Now, since p is a root of p + pk+1 + (1− p)k+1 = 1 we have that pk+1 = (1− p)[1− (1− p)k] so

pk

1− p
=

1− (1− p)k

p
<

1
p

<
3
2

=
3 · 1
1 + 1

≤ 3k

k + 1
for k = 2, 3, . . . .

Thus
pk

1− p
≤ 3k

k + 1
so the result is proven.

¥
We can now completely resolve the behavior of fixed points for ARBN updating.

Theorem 1 For the cyclic scheme α = 1
N there are only stable fixed points, i.e. no period doubling

bifurcations.

Proof Note that we always have k ≤ N and thus α = 1
N ≤ 1

k . Since it has been shown above that

α > 1
k for α(k) representing a k value of fixed point bifurcation, then no such point can exist.

¥
Now we turn our attention to the GARBN scheme.

Theorem 2 When a fixed number of two or more nodes update at once, so that α = 2
N , 3

N , etc. then

there can only be stable fixed points for sufficiently large k, i.e. any periodicity or chaos disappear as

k →∞.

In order to start the proof we need a few lemmas.

Lemma 1 The stable fixed point pk satisfies pk → 1 as k →∞.

Proof This is a consequence of a lim sup, lim inf argument in the fixed point condition

pk + pk+1
k + (1− pk)k+1 = 1.

For example suppose there is a sequence of pk’s, pk1 , pk2 , . . . such that pkn → ε < 1 as n → ∞. Then

pkn
kn → 0 and (1− pkn)kn+1 → 0 as n →∞ which is a contradiction.

¥
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Lemma 2 pk+1
k → 0 and (1− pk)k+1 → 0 as k →∞.

Lemma 3 pk
k → 0 as k →∞.

Lemma 4 (1− pk)k → 0 as k →∞.

Proof Suppose lim supk→∞(1− pk)k = ε > 0. Then lim supk→∞(1− pk) = lim supk→∞ ε
1
k = 1, which

is a contradiction.

¥

Proof of Theorem 2 We assume α = 2
N since the other cases are similar. Again it follows immediately

that since k ≤ N we have α = 2
N ≤ 2

k . But now suppose that

2
k

= α(k) =
2

1 + (k + 1)pk
k − (k + 1)(1− pk)k

.

Then

1 + (k + 1)pk
k − (k + 1)(1− pk)k = k

or

pk
k − (1− pk)k =

k − 1
k + 1

.

But the left hand side converges to 0 as k →∞ while the right hand side converges to 1 as k →∞. This

is a contradiction.

¥

4. Generalized Asynchronous Random Boolean Networks

In this section we describe a mathematical model for a GARBN. One familiar updating scheme for

GARBNs is the clock scheme ( [24], [38], [39]). This scheme allows more than one node to be updated

at each time step, by assigning a timer to each node and setting the period of each timer at random.

Observe that although the periods of timers are chosen at random, they are fixed from the very beginning

and do not change thereafter. Thus the number of nodes to be updated at each time point is fixed. We

provide a more general view by allowing a random number of nodes to be updated at each time point.

We use the same Boolean rule as in section 2, and the same notation. We will focus on a few probability

distributions to generate the number of nodes to be updated at each time point.

At time t we generate xt, the number of nodes to be updated at time t, according to a given discrete

random variable X with values 1, 2, . . . , N . Then we select the xt nodes randomly (that is any collection of

xt nodes has the same probability of being chosen). Observe that now we can write N1(t) = Nu
1 (t)+Ns

1 (t)

where Nu
1 (t) is the number of nodes in state 1 to be updated at time t, and Ns

1 (t) is the number of nodes

in state 1 that do not change at time t and therefore will be in state 1 at time t + 1 as well. Similarly,
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we can write a formula for N0(t) = Nu
0 (t) + Ns

0 (t). Thus Nu
1 (t) + Nu

0 (t) = xt. Observe that if p(t) is

the probability of finding a node in state 1 at time t, then Nu
1 (t) = xtp(t) and Nu

0 (t) = xt(1− p(t)), and

consequently Ns
1 (t) = N1(t)− xtp(t), Ns

0 (t) = N0(t)− xt(1− p(t)). Given these quantities we can write

the formulae for the number of nodes that change or not from time t to time t + 1 as follows.

N0→1(t) = xt(1− p(t))(1− (1− p(t))k)

N1→0(t) = xtp(t)k+1

N0→0(t) = N0(t)− xt(1− p(t)) + xt(1− p(t)k+1

N1→1(t) = N1(t)− xtp(t)k+1

The sum of all these quantities is N as expected. Then the probability of finding a node in state 1 at

time t + 1 is

(5) p(t + 1) =
N0→1(t) + N1→1(t)

N
= p(t) +

xt

N

(
1− p(t)− (1− p(t))k+1 − p(t)k+1

)
.

If all the nodes are 0 at time t, then p(t) = 0 so p(t + 1) = 0, which is to be expected since by the

Boolean rule all the nodes stay 0 at time t+1. Similarly, if all the nodes are 1 at time t, p(t+1) = 1− xt

N

by the formula, as well as by the Boolean rule. Observe that in this last case if xt is close to 0, p(t+1) is

close to 1, and if xt is close to N , p(t + 1) is close to 0. Therefore the actual shape of a graph of p(t + 1)

versus p(t) could be quite diverse.

Thus we want to study the behavior of the maps

ft(p) = p +
xt

N

(
1− p− (1− p)k+1 − pk+1

)
t = 1, 2, 3, . . . .

Observe that although the formula (5) is very similar to the formula for the cyclic scheme (1), there is a

basic difference between them. The formula for the GARBNs depends on xt which may change at each

time point t, thus the iterations of the model do not represent simple compositions of a map f with itself.

Simulations of iterations of the system and the model show that the model is in general a good

approximation for the Boolean system with a possible transitional phase as in the case of the cyclic

scheme. We provide in Figures 13-14 some simulations in which the values xt are generated according to

the discrete uniform distribution on {1, 2, 3, . . . , N} with N = 256, k = 128 (Figure 13), and the binomial

distribution with number of trials N = 128, probability of a success 0.9, and k = 64 (Figure 14). Other

distributions have also been studied such as negative binomial, Poisson, power law on {1, 2, 3, . . . , N} for

various parameters. The results for these distributions are similar to Figure 1 for the cyclic scheme.

A few comments are in order. A general feature is that the model is a good approximation for the

system. In some cases there is a transition phase, but after enough iterations the model and the system

become close regardless of the underlying distribution of xt. The only distribution for which it could

potentially take a long time to reach a steady state is the binomial distribution with a large probability
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Figure 13. Iterations of the GARBN system and model for the case when xt is discrete

uniform on {1, 2, . . . N}, N = 256, k = 128. We plot some of the first 256 iterations of

the system and the model as specified in the labels. After about 25 iterations the model

reaches a steady range of values for p(t). There is a transient phase in which the model

and the system do not match perfectly, but after several iterations, the match becomes

quite clear. This figure is typical for the case of the uniform distribution.
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Figure 14. Iterations of the GARBN system and model for the case when xt is binomial

with number of trials N = 128 and probability of a success 0.9. Here the number of

parents is k = 64. We plot some of the first 256 iterations of the system and the model

as specified in the labels. It is clear that in this case the model does not seem to converge

to a fixed value of p(t), but rather oscillates in a certain range of values of p(t). On the

other hand the system does not settle either. This kind of situation occurs for large

values of the probability of a success. Note that the mean value of the distribution,

115.2, is almost as large as N .
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of a success (Figure 14). In this case the system may not reach a steady state behavior for the amount of

iterations considered. Another common feature is that p(t) approaches a value p as t →∞ for the model

in most cases (exceptions were observed for the uniform distribution and the binomial distribution), which

suggests that the system is reaching an equilibrium with the probability of finding a node in state 1 close

to p. Again this is a feature encountered in the cases under study, with the comment that in the case

of the binomial distribution, the values p(t) do not settle into a value, but oscillate within an interval

of values. The value of p has a wide range depending on the distribution and on the parameters of the

distribution and the number of parents k. In general, the larger the number of parents k, the larger the

probability p. The rate of convergence toward the probability p may differ from one case to another.

But it is observed that if the number of nodes xt to be updated at times t is large (that is a significant

number of nodes is updated at most time points), the convergence is faster.

To complete these observations, we note that the iteration graphs can have various shapes for various

distributions, especially during the transition phase.

Since the model is a good match for the system, we can use it to understand the behavior of the system

under various scenarios. To do this we present again a study of the sensitivity of the orbits to initial

values, bifurcation diagrams, and fixed point analysis.

The study of the sensitivity of the orbits to initial values shows that for the cases when xt is obtained

from the Poisson, negative binomial, or power law distributions, the error converges to zero rather fast. It

is observed that as the number of nodes N increases the rate of convergence decreases, and as the number

of parents k increases for a fixed N , the rate of convergence increases too. Intuitively this makes sense

since the more nodes are in the network the more time seems to be needed to reach a steady state. At

the same time, for a fixed N , if the nodes have more parents, then the node interaction is more elaborate

and speeds up the process of reaching a steady behavior.

The case of xt from a discrete uniform distribution on {1, 2, . . . , N} shows that if the number of nodes

N is relatively small, the error converges to zero fast. When N is large, the error converges to zero faster

for smaller values of k, but in most cases, depending on initial conditions, does settle only after many

iterations, as shown in Figure 15.

Finally, in case xt is from a binomial distribution, for small probabilities of success, the error converges

to zero. Otherwise, the simulations performed show that the error may or may not converge to zero.

Even for a relatively small number of nodes with small or large number of parents, or for large number

of nodes with small number of parents, the error may not converge to zero.

We make the observation that the study of the error is related to the analysis of the robustness of the

system, indicating how sensitive the system is to perturbations. The error plot in this paper is an analog

of the Hamming distance analysis of other authors ( [42]). The Hamming distance gives the proportion

of nodes that are different in two states of the network.



21

0 2 4 6 8 10 12

x 10
4

0
0.2
0.4
0.6
0.8

t
E

(t
)

p(0) = 0.55083, q(0) = 0.050825

0 2 4 6 8 10 12

x 10
4

0
0.2
0.4
0.6
0.8

t

E
(t

)

p(0) = 0.79212, q(0) = 0.80212

0 2 4 6 8 10 12

x 10
4

0

0.2

0.4

0.6

0.8

t

E
(t

)

p(0) = 0.19263, q(0) = 0.19273

Figure 15. Error plot for the GARBN model in the case when xt is a discrete uniform

distribution on {1, 2, . . . , N}, N = 4096, k = 2048. The error settles to zero after many

iterations.

The bifurcation diagrams support the behavior observed so far. For the uniform distribution the

bifurcation diagram suggests that the system may reach a more ordered behavior after many iterations

as shown in Figure 16, where N = 512.
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Figure 16. Bifurcation diagram for the GARBN model where xt is from a uniform

distribution on {1, 2, . . . , N}, N = 512. We observe that after 20N iterations the diagram

suggests a chaotic behavior, but in the long run it settles in an ordered behavior.

We note that the bifurcation diagram in Figure 16 is typical also for the case of a binomial distribution

with a probability of success small or medium. For probability of a success relatively close to 1, the
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bifurcation diagrams suggest a chaotic behavior for larger values of k, as in Figure 17. We note that the

graphs are similar for a much larger number of iterations.
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Figure 17. Bifurcation diagram for the GARBN model where xt is from a binomial

distribution with N = 128 trials and probability of a success 0.9. For certain values of

the parameter k the system can exhibit order, for other values it can exhibit chaos. The

mean value, 115.2, is large.

For the Poisson, negative binomial, and power law distributions, the bifurcation diagrams are similar

to the one in Figure 3 for the ARBN, with the observations that the ordered behavior could be reached

sooner or later, depending on the parameters.

Observe that the fixed points of the map

f(p) = p +
xt

N
(1− p− pk+1 − (1− p)k+1)

are the same as in the case of the cyclic scheme since the factor xt does not change the equation which

gives the fixed points, therefore Figure 4 is valid also in this case.

In conclusion, when random parameters dictate the evolution of the system, its behavior can be quite

diverse, ranging from order to chaos.

Now we look more closely at the map

ft(p) = p +
xt

N
(1− p− pk+1 − (1− p)k+1)

in which xt is the value of a random variable X taking values in {1, 2, . . . , N}. The shape of this map is

dependent on the random term and can exhibit a variety of features. We study the iterations of this map

using the following random variables: discrete uniform, continuous uniform, Poisson, binomial, negative

binomial, power law, exponential, chi-square, and normal. As observed, we have extended our study from

just discrete random variables to both discrete and continuous, thus allowing also fractional values for
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xt, for a more in depth analysis. In each case, the parameters of the distributions are selected so that

the probability of generating values outside the interval [1, N ] is practically zero.

It is observed that in many cases the behavior is not very complex, and there is a sometimes slow, but

clear tendency to a steady state. In the cases of the following distributions: uniform, Poisson, binomial

with small probability of success, negative binomial, power law, exponential, chi-square with small number

of degrees of freedom, and normal with small mean, the iteration graphs are approximately similar to those

in Figure 6, with the observation that sometimes the iterations may exhibit some degree of complexity

which vanishes after a short while. However, in the other cases, namely the chi-square with larger number

of degrees of freedom, binomial with large probability of success, or normal with large mean distributions,

the iterations suggest either ”distributional periodicity” (Figure 18) or ”distributional chaos” (Figure 19).

Figures 18-19 are from a binomial distribution, but the other two cases mentioned previously produce

graphs similar to those in Figure 18. The behavior is similar even after a much larger number of iterations

of the model.
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Figure 18. Plot of the iterations 1 − 30, 2500 − 2530, and 5000 − 5030 of the map

f(p) = p+ xt

N (1−p−pk+1− (1−p)k+1) in the case N = 1024, k = 16. Here xt are values

of a binomial distribution with number of trials N = 1024 and probability of success in

a trial θ = 0.9.

Observe that the complex behavior exhibited by the iterations of the model, such as in the case of the

binomial distribution with probability of success 0.9 corresponds mainly to large values of xt. In terms

of the network, this means that a large number of nodes are updated at each time point. The larger

the number of nodes updated, the more complex the behavior and the slower a potential steady state

is reached. Observe that a large number of nodes updated at each time point brings the system closer

to a synchronous random Boolean network which can exhibit chaos [31]. In fact, if one allows α → 1

in (2) the resulting function represents exactly the corresponding one obtained in [31] for synchronous

networks. This emphasizes previous results showing that asynchrony could simplify the behavior of the
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Figure 19. Plot of the iterations 1 − 30, 2500 − 2530, and 5000 − 5030 of the map

f(p) = p+ xt

N (1−p−pk+1− (1−p)k+1) in the case N = 1024, k = 64. Here xt are values

of a binomial distribution with number of trials N = 1024 and probability of success in

a trial θ = 0.9.

system in some cases, while synchrony can generate a more sophisticated behavior [25]. At the same

time it becomes clear that randomness or noise in the system can generate various types of dynamics,

emphasizing previous remarks [30].

The above discussion with distributions generalizes the observed behavior of the map

f(p) = p + α(1− p− pk+1 − (1− p)k+1)

studied in Section 3, because the constant α, 0 < α < 1, can be interpreted as the mean value of the

distribution divided by N .

5. Conclusions

In this paper we consider a Boolean network with N nodes, each node having k parents. We use

a unique Boolean rule for all the nodes, which generalizes rule 126 of cellular automata. We study the

behavior of the system in the case of Asynchronous Random Boolean Networks (ARBNs) and Generalized

Asynchronous Random Boolean Networks (GARBNs) providing a model for the probability of a node

being in state 1. We use the model to describe the system behavior through error plots, bifurcation

diagrams and fixed point analysis. We show that the ARBN scheme generates an ordered behavior,

while the GARBN scheme generates mainly order but possibly chaos depending on the distributions used

to generate the number of nodes to be updated at each time point, as well as the parameters of these

distributions.

One possibility for future work consists on enlarging the class of random number generators for the

number of nodes to be updated at each time point. Considering various stochastic processes as potential
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random number generators would be of interest, including some processes such as Markov processes,

Poisson processes, Brownian motion or fractional Brownian motion.

Further directions of investigation will include a generalization of the work in this paper to the case of

a nonconstant number of parents studied by the authors in [32] under the assumption of a synchronous

network. Various distributions of the number of parents could be considered, including power-law rules.

It would be interesting to analyze the given Boolean system and its behavior using asynchronous

updating by finding potential critical values for the number of parents k, that is values of k for which the

system is at ”the edge between order and chaos”. It has been shown [43] that for general synchronous

Boolean networks the critical value is k = 2, while for a certain class of asynchronous Boolean networks

such critical values do not exist [29]. It is important to understand how a certain approach toward

identification of the dynamics of the system influence the final result. For example in [29] the authors do

not find a phase transition (from order to chaos) for GARBN’s due to the usage of the so-called annealed

approximation method. On the other hand the author of [42] questions their findings due to a different

approach using the normalized Hamming distance which suggests a phase transition for 1 < k < 3

regardless of the updating scheme. Considering a more in-depth analysis of the Hamming distance of

states obtained by small perturbations, to identify regions where the critical values may lay, is also a

subject for future work.

The study of ARBNs and its variants is in its early stages. However, it has already been observed

that many processes in natural or artificial networks, could be both asynchronous and ordered [26].

Asynchrony can happen at a local level, but the global system exhibits modularity. The authors of [26]

propose the spotlight model in which the Boolean network is divided into modules, each module being

associated to a regulator node which controls the updates of the module, depending on its own state. The

amount of asynchronicity is obtained by altering the number of modules used. Applying the spotlight

model to the work described in this paper could generate some interesting results.

Last, but not least, considering various Boolean rules for the nodes is of interest, since nodes of real

systems usually do not behave according to a fixed rule. In this respect, the authors intend to extend

the present work in the direction of cellular automata rule 22 ( [19], [32]), as well as other legalistic and

totalistic rules.
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