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QUEUING SYSTEMS FOR MULTIPLE FBM-BASED
TRAFFIC MODELS

MIHAELA T. MATACHE1 and VALENTIN MATACHE2

(Received Day Month Year; revised Day Month Year)

Abstract

A multiple Fractional Brownian Motion (FBM) based traffic model of the
following form is considered

A(t) = mt +

MX
j=1

σjB
Hj (t) + τW (t).

Here BHj (t) are independent FBMs with Hurst parameters 1/2 < Hj < 1 and
W (t) is a Brownian Motion independent of the FBMs. Various lower bounds
for the overflow probability of the associated queuing system are obtained.
Based on a probabilistic bound for the busy period of an ATM queuing system
associated to a multiple FBM-based input traffic, a minimal dynamic bufer
allocation function (DBAF) is obtained and a DBAF-allocation algorithm is
designed. The purpose is to create an upper bound for the queuing system
associated with the traffic. This upper bound, called DBAF, is a function of
time, dynamically bouncing with the traffic. An envelope process associated
to the multiple FBM-based traffic model is introduced and used to estimate
the queue size of the queuing system associated to that traffic model.

Key words. queuing systems, overflow probability, Fractional Brownian
Motion.
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1. Introduction

Over the last years many studies ([1], [3], [7], [10], [11], [13], [16], [19],
[20]) have shown that packet/cell traffic through telecommunication net-
works (like Ethernet, LAN, WAN, ISDN, ATM) exhibits long-range depen-
dence and self-similarity, i.e. the autocorrelation function decays asymptot-
ically as a power function with negative exponent, and the traffic looks the
same when measured over various time scales.

These studies also show that traditional models used in traffic modeling,
like Poisson models, cannot capture observed features of the telecommunica-
tion traffic. New parsimonious models are proposed in [5], [11], [14]. They
involve the fractional Brownian motion (FBM) process whose properties
make it a natural choice in modeling packet/cell traffic.

At the same time experimental and analytical studies ([5], [6], [12], [14])
show that the long-range dependence property can create big packet/cell
losses in queuing systems, and have an important impact on engineering
problems like buffer allocation or admission control. Most evidence is ob-
tained exclusively through simulation experiments using trace data, since
no queuing solution for fractional Brownian (FB) traffic models is known.
However, in [5], [12], [14], approximations and bounds for the overflow prob-
abilities in a queuing system driven by a FB traffic are presented. We will
refer to such a traffic model using the abbreviation FB traffic, as opposed
to the term multiple FBM-based traffic model which will designate a model
where a standard Brownian motion is added to a superposition of indepen-
dent FBMs.

On the other hand, when strongly variable but short-range dependent
traffic is aggregated with long-range dependent traffic, the mixture could be
described in a FB traffic only by reducing the available bandwidth, and the
model would not be satisfactory at small time scales. In order to avoid this
inflexibility, a possible solution would be to add a Brownian component to
the FB traffic model ([17]).

For a classical FB traffic model, the following authors: Norros, Duffield,
O’Connell, Mayor and Silvester ([5], [12], [14]), have performed analysis of
the associated queuing system and obtained results related to the estimation
of the busy period and the overflow probabilities.

In the sequel we extend these results to a multiple FBM-based traffic
model, (see equality (2) in Section 2 for its exact definition). In Section 2,
besides introducing the basic notions and setting up the notation, we obtain
a lower bound for the overflow probability of the associated queuing system,
(subsection 2.1). Also asymptotic lower bounds for the same probability are
obtained (Theorem 2, subsection 2.2). In Section 3, based on a probabilistic
upper bound for the busy period of an ATM queuing system with a multiple
FBM-based input traffic model we introduce the notion of dynamic buffer
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allocation function (DBAF) and show that a least DBAF exists (Proposition
2, subsection 3.1). In subsection 3.2 we use the least DBAF to design a
dynamic buffer allocation algorithm. The algorithm is illustrated by graphs
exhibiting MATLAB-simulated traffic (Figures 1 through 3). In Section 4 we
introduce an envelope process associated to the multiple FBM-based traffic
model and use it to obtain an upper bound for the busy period of an ATM
queuing system. We obtain an upper bound for the queue size using the
envelope process.

2. A Multiple FBM - Based Traffic Model

It has been observed that sometimes the FB traffic is not sufficient to
model the traffic at small time scales when strongly variable, but short-range
dependent traffic is mixed with long-range dependent traffic aggregated from
a large number of sources. To overcome this difficulty, a natural model
can be given by adding to the FB traffic model a short-range dependent
component as in the following stochastic process

(1) A(t) = mt +
√

maBH(t) +
√

mbW (t).

Here m, a, b are positive constants, {BH(t), t ≥ 0} is a standard FBM with
Hurst parameter H ∈ (1

2 , 1), and {W (t), t ≥ 0} is a standard BM, indepen-
dent of the FBM (see [17]). In this paper we will study a more general type
of model with several FBM’s given by the following equality

(2) A(t) = mt +
M∑

j=1

σjB
Hj (t) + τW (t).

As above m,σj , and τ are positive constants, {BHj (t), t ≥ 0}, j = 1, 2,
. . . , M are independent standard FBMs with Hurst parameters Hj , 1/2 <
Hj < 1, ∀j = 1, . . . , M respectively, and {W (t), t ≥ 0} is a standard BM
independent of the FBMs. We will refer to this traffic model as a multiple
FBM-based traffic model as opposed to the simple FBM-based traffic
model (1). Observe that the class of the stochastic processes of type (2) is
closed under superposition.

Remark. Let Ai(t), i = 1, 2, . . . N , be the i-th FBM-based input traffic
process defined as

Ai(t) = mit +
M∑

j=1

σijB
Hj

i (t) + τiWi(t), t ≥ 0,
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where mi, σij , τi are positive numbers, the processes {BHj

i (t), t ≥ 0} are
independent standard FBMs with Hurst parameters Hj, and {Wi(t), t ≥ 0}
are independent standard BMs which are also independent of the FBMs.
Then the superposition

A(t) :=
N∑

i=1

Ai(t)

can be written as

A(t) = mt +
M∑

j=1

σjB
Hj (t) + τW (t)

where m =
∑N

i=1 mi, σj =
√∑N

i=1 σ2
ij , τ =

√∑N
i=1 τ2

i , {BHj (t), t ≥ 0}, j =
1, 2, . . . , M are standard FBMs with parameters Hj, and {W (t), t ≥ 0} is a
standard BM independent of the FBMs.

The proof is a simple application of basic properties of independent
FBMs and BMs, and is left to the reader. It is known that the correspond-
ing stationary queuing model can be described by the process {V (t), t ≥ 0},
where

(3) V (t) = sup
s≤t

(A(t)−A(s)− C(t− s)), t ≥ 0.

In (3), C represents the constant service rate and satisfies C > m, and
m > 0 is the mean input rate given in (2). Formula (3) gives the workload
or the virtual waiting time in a FIFO (first in - first out) queuing system
with the previously described parameters.

2.1. Lower Bound for the Complementary Distribution Function
of the Queue Level In what follows we determine a lower bound for the
overflow probability of the queue. The overflow probability, or the cell loss
ratio is an important Quality of Service (QoS) parameter in telecommuni-
cations. The overflow probability ε, is defined as follows

ε := P(V (t) > x), t ≥ 0.

Here x denotes a given buffer size. In what follows we will use the notation

Φ̄(x) =
∫∞
x

1√
2π

e−
y2

2 dy, designating the complementary cumulative distri-
bution function of a standard normal random variable. We use Φ̄ to obtain
a lower estimate of the overflow probability.

Theorem 2.1. Let {A(t), t ≥ 0}, A(t) = mt +
∑M

j=1 σjB
Hj (t) + τW (t)

be a multiple FBM-based traffic model and {V (t), t ≥ 0} be the stationary
queuing process defined in (3). Then
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P(V (t) > x) ≥ Φ̄(ψ(u1)), t ≥ 0

where

ψ(t) =
x− (m− C)t√∑M
j=1 σ2

j t
2Hj + τ2t

and u1 is the unique real root of the following equation

(C−m)
M∑

j=1

σ2
j (1−Hj)u2Hj +

1
2
(C−m)τ2u− 1

2
τ2x−x

M∑

j=1

σ2
j Hju

2Hj−1 = 0.

Proof. Observe that

{sup
s≤t

(A(t)−A(s)− C(t− s)) > x} =

=
⋃

s≤t

{A(t)−A(s)− C(t− s) > x}.

Using this equality we deduce that

P(sup
s≤t

(A(t)−A(s)− C(t− s)) > x) ≥

≥ sup
s≤t

P(A(t)−A(s)− C(t− s) > x) =

= sup
s≤t

P(A(t)−A(s)− C(t− s)− (m− C)(t− s) > x− (m− C)(t− s)) =

= sup
s≤t

∫ ∞

x−(m−C)(t−s)

1√
2πσ(s)

exp{− y2

2σ2(s)
}dy

where σ(s) =
√∑M

j=1 σ2
j (t− s)2Hj + τ2(t− s). By a change of variable

we obtain
P(sup

s≤t
(A(t)−A(s)− C(t− s)) > x) ≥

≥ sup
s≤t

Φ̄
(

x− (m− C)(t− s)
σ(s)

)
=

= Φ̄
(

inf
s≤t

x− (m− C)(t− s)
σ(s)

)
.

Thus we need to find infs≤t ξ(s), where

ξ(s) =
x− (m− C)(t− s)√∑M

j=1 σ2
j (t− s)2Hj + τ2(t− s)

.
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If we denote u = t− s, then by straightforward calculus considerations

ζ(u) =
x− (m− C)u√∑M
j=1 σ2

j u
2Hj + τ2u

has a global minimum at some point u1 ∈ (0,∞), decreases on (0, u1) and
increases on (u1,∞). Therefore, if t < u1, inf0≤u≤t ψ(u) = ψ(t), and if
t ≥ u1, inf0≤u≤t ψ(u) = ψ(u1). In conclusion, if t < u1

P(sup
s≤t

(A(t)−A(s)− C(t− s)) > x) ≥ Φ̄(ψ(t)) ≥ Φ̄(ψ(u1))

and if t ≥ u1

P(sup
s≤t

(A(t)−A(s)− C(t− s)) > x) ≥ Φ̄(ψ(u1)).

Clearly, u1 is the root of ζ ′(u) which, by a short computation, is the same
as the unique real root of the following equation

(C−m)
M∑

j=1

σ2
j (1−Hj)u2Hj +

1
2
(C−m)τ2u− 1

2
τ2x−x

M∑

j=1

σ2
j Hju

2Hj−1 = 0.

¤

2.2. Asymptotic Lower Bounds for the Overflow Probability

Theorem 2.2. Let {A(t), t ≥ 0} be the multiple FBM-based input traffic
process defined in (2), and {V (t), t ≥ 0} the workload process defined in (3).
Then

(a)

lim inf
x→∞

∑M
j=1 σ2

j x
2Hj + τ2x

x2
log P(V (t) > x) ≥ −1

2
(C −m)2H

H2H(1−H)2−2H

where H = max{Hj , j = 1, 2, . . . , M}.
(b)

lim inf
t→∞

∑M
j=1 σ2

j t
2Hj + τ2t

t2
log P(V (t) > x) ≥ −(x + C −m)2

2
.

Proof. (a) It is known from [5], that

lim inf
x→∞ h(x)−1 log P(V (t) > x) ≥ − inf

u>0
g(u)λ?(u+).
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if the following hypotheses are satisfied.
(i) There exist functions a, v : [0,∞) → [0,∞) that increase to infinity,

such that for each θ ∈R, the cumulant generating function defined as the
limit

λ(θ) := lim
t→∞ v(t)−1 log E[exp{θv(t)U(t)

a(t)
}]

exists in [−∞,∞]. Moreover, λ(θ) is essentially smooth and lower semi-
continuous. Here U(s) := A(t) − A(t − s) − Cs for some t ≥ 0 and for
0 ≤ s ≤ t.

Note that V (t) can be written as V (t) = sup0≤s≤t U(s).
(ii) There exists θ > 0 for which λ(θ) < 0.
(iii) There exists an increasing function h : [0,∞) → [0,∞) such that

the limit

g(u) := lim
t→∞

v(a−1( t
u))

h(t)

exists for each u > 0, where a−1(t) := sups≥0{a(s) ≤ t}. λ? represents the
Fenchel - Legendre transform of λ, i.e. the function defined as λ?(x) :=
supθ≥0{θx− λ(θ)}.

The three hypotheses are satisfied using the following functions

a, v : [0,∞) → [0,∞), a(s) = s, v(s) = h(s) =
s2

∑M
j=1 σ2

j s
2Hj + τ2s

.

Under these conditions the conclusion in [5] holds, and

lim inf
x→∞

1
v(x)

log P(V (t) > x) ≥ − inf
u>0

g(u)λ?(u).

Observe that λ?(x) := supθ≥0{θx−λ(θ)} = supθ≥0{−1
2θ2 +θ(x+C−m)} =

(x+C−m)2

2 . Thus

− inf
u>0

g(u)λ?(u) = −1
2

inf
u>0

(u + C −m)2

u2−2H
= −1

2
(C −m)2H

H2H(1−H)2−2H
.

In conclusion,

lim inf
x→∞

∑M
j=1 σ2

j x
2Hj + τ2x

x2
log P(V (t) > x) ≥ −1

2
(C −m)2H

H2H(1−H)2−2H
.

(b) For the second part of the theorem, let a(t), v(t), λ(θ), and λ?(x) be as
above. Since λ? is continuous, one has that

−λ?(x) = lim
t→∞

log P(U(t)
a(t) > x)

v(t)
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by the Gärtner-Ellis Theorem (see for example [4], Theorem 2.3.6, or [5]).
Observe that P(V (t) > x) ≥ P(U(t) > x) ≥ P(U(t) > tx) = P(U(t)

t > x)
for all t ≥ 1. Therefore

log P(V (t) > x)
v(t)

≥
log P(U(t)

a(t) > x)

v(t)

for all t ≥ 1. Letting t →∞ in the expression above, one gets

lim inf
t→∞

∑M
j=1 σ2

j t
2Hj + τ2t

t2
log P(V (t) > x) ≥ −λ?(x) = −(x + C −m)2

2
.

¤

3. Dynamic Buffer Allocation

3.1. A Probabilistic Bound The maximum busy period of an ATM
queuing system is very important since it provides a bound for the delay of
the ATM cells in the queue ([18]).

If we define
d̂H := inf{t ≥ 1 : P(Q(t) > 0) ≤ ε}

with ε ¿ 1, then the busy period will exceed d̂H with probability ε ¿ 1.
For more about this quantity we refer to [2] or [12]. Here Q(t) = A(t)−Ct,
{A(t), t ≥ 0} is the input traffic process (2), and C the positive service rate.

Proposition 3.1. d̂H can be calculated by the following formula

d̂H = η−1

(
Φ̄−1(ε)
C −m

)

where

(4) η(t) =
t√∑M

j=1 σ2
j t

2Hj + τ2t
.

Proof. We have
P(Q(t) > 0) =

= P




∑M
j=1 σjB

Hj (t) + τW (t)√∑M
j=1 σ2

j t
2Hj + τ2t

>
(C −m)t√∑M

j=1 σ2
j t

2Hj + τ2t


 =

= Φ̄


 (C −m)t√∑M

j=1 σ2
j t

2Hj + τ2t


 .
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So

d̂H = inf{t ≥ 1 : Φ̄


 (C −m)t√∑M

j=1 σ2
j t

2Hj + τ2t


 ≤ ε} =

= inf{t ≥ 1 :
t√∑M

j=1 σ2
j t

2Hj + τ2t
≥ Φ̄−1(ε)

C −m
}.

If we define

(4) η(t) =
t√∑M

j=1 σ2
j t

2Hj + τ2t
,

it can be easily seen that η(t) is invertible so that we can write

d̂H = inf{t ≥ 1 : t ≥ η−1

(
Φ̄−1(ε)
C −m

)
} = η−1

(
Φ̄−1(ε)
C −m

)
.

Note that since ε ¿ 1, we can assume that ε < 1
2 , so that Φ̄−1(ε) > 0. This

is required since η : [0,∞) → [0,∞). ¤

For fixed δ > 0 we want to determine a positive function M(t), which
will be called a dynamic buffer allocation function, such that

P(Q(t) > M(t)) ≤ δ, δ > 0.

Of course, we are interested in δ ¿ 1, which means that there is a very
small overflow probability. On the other hand, this analysis is significant for
a time interval where the queuing process {V (t), t ≥ 0} can be approximated
by the related process {Q(t), t ≥ 0}. By our introductory comments in this
subsection, this time interval is given by d̂H .

Proposition 3.2. There is a least dynamic buffer allocation function
and it is given by

ξ(t) = Φ̄−1(δ)

√√√√
M∑

j=1

σ2
j t

2Hj + τ2t− (C −m)t.

Proof. Observe that

P(Q(t) > M(t)) = P(A(t) > M(t) + Ct) =

= Φ̄


 M(t) + (C −m)t√∑M

j=1 σ2
j t

2Hj + τ2t
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so P(Q(t) > M(t)) ≤ δ is equivalent to

Φ̄


 M(t) + (C −m)t√∑M

j=1 σ2
j t

2Hj + τ2t


 ≤ δ ⇔

⇔ M(t) ≥ Φ̄−1(δ)

√√√√
M∑

j=1

σ2
j t

2Hj + τ2t− (C −m)t.

Then if we define

ξ(t) := Φ̄−1(δ)

√√√√
M∑

j=1

σ2
j t

2Hj + τ2t− (C −m)t

this function is the least dynamic buffer allocation function, since M(t) ≥
ξ(t).

¤

Elementary calculus considerations can be used to see that ξ(t) has a
unique positive root t0. We would like to have d̂H ≤ t0 in order to maintain
a nonnegative buffer allocation function.

Remark. d̂H ≤ t0 if and only if δ ≤ ε.

Proof.

d̂H ≤ t0 ⇔ η−1

(
Φ̄−1(ε)
C −m

)
≤ t0

where η(t) is the function given in (4). Since
√√√√

M∑

j=1

σ2
j t

2Hj

0 + τ2t0 =
(C −m)t0

Φ̄−1(δ)

we obtain
Φ̄−1(ε) ≤ Φ̄−1(δ) ⇒ δ ≤ ε.

¤

In Figure 1 a multiple FBM-based traffic queue is simulated using MAT-
LAB. The corresponding Dynamic Buffer Allocation Function is graphed to
illustrate how it bounds the queue from above. The traffic utilized was of
the form

A(t) = mt + σ1B
H1(t) + σ2B

H2(t) + τW (t).
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The parameters a, b, and c which are specified in the figure have the following
significance

σ1 =
√

ma, σ2 =
√

mc, τ =
√

mb.

The probabilistic precisions ε and δ are specified as well. Overflows like the
one in Figure 1 are rather hard to obtain even when coarser precisions like
the one we utilized there are used. In most cases the queue is much smaller
than the DBAF and it took hours of simulations to produce graphs where
overflows occur (which would be natural, given the probabilistic methods
used). In Figure 1 the DBAF is graphed over the time interval between its
two roots. We wish to observe that changing parameters result in dramatic
changes in the DBAF. For instance increasing the probabilistic degree of
precision ε and δ results in very large DBAFs with large values of d̂H , the
comment being that in practice the size of the buffer one can use is limited,
so one might want to trade between quality of service and sparing buffer-
space. We use this function to create an upper bound, that is a function of
time, larger than the queue associated to the traffic, usable for the whole
duration of the process, and dynamically bouncing with the traffic so that
buffer-space could be spared and, say allotted to a different queue. We do
this in the next subsection, and illustrate our construction in Figures 2 and
3.

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
0

1

2

3

4

5

6
x 10

4 DBAF algorithm with multiple FBM−based model

t − time

Q
(t

) 
an

d 
X

i(t
)

m=700, a=10, b=30, c=20, C=760

epsilon = 0.001, delta = 0.001

Max buffer = 100,000

Queue, H1=0.7, H2=0.8
DBAF

Figure 1. Single DBAF Function

3.2. The DBAF-Algorithm Given that the DBAF is a curve which
can be used as an upper bound for the queue on a limited time-interval we
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propose the following algorithm where we partition the time-interval and
concatenate copies of the DBAF shifted by the size of the queue. Here is
the description in detail of our algorithm.

• Establish the time interval over which the queue is observed. Say this
interval is [0, T ].

• Choose ε and δ such that 0 < δ ≤ ε << 1.

• Compute

d̂H = η−1

(
Φ̄−1(ε)
C −m

)

where
η(t) =

t√∑M
j=1 σ2

j t
2Hj + τ2t

.

• Partition the time interval [0, T ] in adjacent intervals of standard length
d̂H , namely [nd̂H , (n + 1)d̂H) for n = 0, 1, 2, . . . , N − 1, where N =

[
T
d̂H

]
,

i.e. the integer part of T
d̂H

.

• Define the DBAF as follows

M(t) := Q(nd̂H)+ξ(t−nd̂H), t ∈ [nd̂H , (n+1)d̂H), n = 0, 1, 2, . . . , N −1,

where ξ(t) = Φ̄−1(δ)
√∑M

j=1 σ2
j t

2Hj + τ2t− (C −m)t.

Thus, at the beginning of each time interval we reset the clock to 0
and we shift the initial DBAF upwards by the size of the queue at the left
end-point of each time subinterval. On each of these subintervals we have

P(Q(t) > M(t)) ≤ δ.

We illustrate the algorithm in Figures 2 and 3. In Figure 2 we produce
a sample path of traffic generated with the parameters a, b, c, C, m, H1,
and H2 specified. The value of d̂H is about 1000 time-units. We apply the
algorithm to a trace of about 4000 time-units. Observe that the peak of
the DBAF is about 9000. We also provide simulation of more intense traffic
in Figure 3 where the mean input rate m is 740 (in Figure 2 it was 700).
The resulting DBAF has a peak of about 30, 000. Had we maintained the
high precision in probability as in Figure 2 (where ε = δ = 0.00001), this
would have made the DBAF much larger. In Figure 3 we chose to relax the
precision by taking a δ = 0.001 and ε = 0.01. This generates a lower DBAF
and some cell-loss as it can be seen. We wish to note that the graphs in
this paper are few of many similar ones obtained by the authors for various
parameter combinations.
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4. An Upper Bound for the Busy Period Using an Envelope
Process

4.1. The Envelope Process In [12], the authors introduce a traffic
model based on a FBM probabilistic envelope process

Â(t) = mt + k
√

matH

13



and use this process to determine approximations for the overflow proba-
bilities of an ATM queuing system. The input traffic in their case is a FB
traffic. It is stated that the same framework can be applied for other arrival
processes, as long as a ”suitable envelope process” {Â(t), t ≥ 0} could be
defined. Suitable means that the following condition must hold

P(A(t) > Â(t)) = Φ̄(k).

In the sequel we solve the problem suggested by the authors of [12].
To this aim we introduce the envelope process associated with a multiple
FBM-based traffic as follows.

Â(t) = mt + k

√√√√
M∑

j=1

σ2
j t

2Hj + τ2t

The parameter k determines the probability that A(t) be larger than Â(t)
at time t. More precisely

P(A(t) > Â(t)) = P




∑M
j=1 σjB

Hj (t) + τW (t)√∑M
j=1 σ2

j t
2Hj + τ2t

> k


 = Φ̄(k).

Thus, if we require that P (A(t) > Â(t)) ≤ ε, for some ε > 0, meaning that
we are looking for a big probability that the envelope be an upper bound
for the input process, then we get k ≥ Φ̄−1(ε).

In Figure 4 a simple FBM-Based traffic-model A(t) of type (1) is consid-
ered. The Hurst parameter is H = 0.8. For ε = 0.0001 the envelope process
is seen to be an upper bound for the traffic. It is observed that if one relaxes
the precision in probability the traffic doesn’t stay below the envelope at all
times.

It is important to have an increasing subadditive envelope process Â(t)
in order to use the following well-known property of such functions

inf
t≥1

Â(t)
t

= lim
t→∞

Â(t)
t

(see [2]). Therefore, we wish to prove that the envelope we introduced has
these properties.

Proposition 4.1. The envelope function Â(t) is increasing and subad-
ditive.

Proof. Monotonicity is obvious. To show that Â(t + s) ≤ Â(t) + Â(s),
we need to show that

M∑

j=1

σ2
j (t + s)2Hj ≤

14
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≤
M∑

j=1

σ2
j t

2Hj +
M∑

j=1

σ2
j s

2Hj + 2

√√√√(
M∑

j=1

σ2
j t

2Hj + τ2t)(
M∑

j=1

σ2
j s

2Hj + τ2s).

We will show that actually the following inequality holds.
√√√√

M∑

j=1

σ2
j (t + s)2Hj ≤

√√√√
M∑

j=1

σ2
j t

2Hj +

√√√√
M∑

j=1

σ2
j s

2Hj

Obviously, this inequality implies the previous one. Consider the space
X = {1, 2, . . . ,M}, the σ-algebra of all parts on the space X, and the
weighted counting measure determined by

µ({j}) := σ2
j , j = 1, 2, . . . ,M.

Set f ∈ L2(X), f(j) := t2Hj for j = 1, 2, . . . , M , and similarly set g ∈ L2(X),
g(j) := s2Hj , for j = 1, 2, . . . ,M . The Minkowski inequality

||f + g||2 ≤ ||f ||2 + ||g||2
produces

√√√√
M∑

j=1

σ2
j (t + s)2Hj ≤

√√√√
M∑

j=1

σ2
j t

2Hj +

√√√√
M∑

j=1

σ2
j s

2Hj

¤

As in [2], we set

d := inf{t ≥ 1 : Â(t)− Ct ≤ 0}.
The following proposition exhibits the relation between d and the least dy-
namic buffer allocation function ξ(t).
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Proposition 4.2. If Â(1) ≤ C then d = 1. Otherwise, d is the unique
positive root of the equation ζ(t) = 0, where

ζ(t) = k

√√√√
M∑

j=1

σ2
j t

2Hj + τ2t− (C −m)t.

For k = Φ̄−1(ε), i. e. ζ = ξ the minimal dynamic buffer allocation function,

and if m + k
√∑M

j=1 σ2
j + τ2 > C, we have that d = d̂H .

Proof. Clearly, {t ≥ 1 : Â(t)− Ct ≤ 0} 6= ∅ since

lim
t→∞

Â(t)
t

= m < C.

If Â(1) − C ≤ 0 ⇔ m + k
√∑M

j=1 σ2
j + τ2 ≤ C, it follows that d = 1.

Otherwise d > 1.
Obviously, Â(d) − Cd ≤ 0. If we assume that Â(d) − Cd < 0, by the

continuity of Â(t) there is a d′ ∈ (1, d) such that Â(d′)−Cd′ ≤ 0, which is a
contradiction with the definition of d. Thus, Â(d) = Cd which means that

k

√√√√
M∑

j=1

σ2
j d

2Hj + τ2d− (C −m)d = 0.

If we set ζ(t) = k
√∑M

j=1 σ2
j t

2Hj + τ2t−(C−m)t, then by the considerations
about the function ξ(t) defined in Section 3, it follows that there is a unique
d > 0 satisfying the previous equality. Observe also that we are in the case

where m + k
√∑M

j=1 σ2
j + τ2 > C, which implies d > 1.

According to [2], under these conditions, any busy period is bounded
above by d.

Now, recall that

d̂H = η−1

(
Φ̄−1(ε)
C −m

)

where
η(t) =

t√∑M
j=1 σ2

j t
2Hj + τ2t

.

Then

η(d̂H) =
Φ̄−1(ε)
C −m

⇔ d̂H√∑M
j=1 σ2

j d̂
2Hj

H + τ2d̂H

=
Φ̄−1(ε)
C −m
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which means that d̂H is a root of

Φ̄−1(ε)

√√√√
M∑

j=1

σ2
j t

2Hj + τ2t− (C −m)t = 0.

If k = Φ̄−1(ε), by the first part of the proof, this root is exactly d. So
d = d̂H , since the root is unique. ¤

4.2. An Upper Bound for the Queue Size Using the Envelope
Process We have seen that the stationary queuing process {V (t), t ≥ 0}
can be approximated by the easier to handle process {Q(t), t ≥ 0} during
the busy period of an ATM queuing system. Recall that

V (t) = sup
s≤t

(A(t)−A(s)− C(t− s))

and
Q(t) = A(t)− Ct.

At the same time, if we consider the envelope process defined in the previous
subsection by

Â(t) = mt + k

√√√√
M∑

j=1

σ2
j t

2Hj + τ2t,

then we could require that P(A(t) > Â(t)) = ε, where ε = Φ̄(k). But

P(A(t) > Â(t)) = P(A(t)− Ct > Â(t)− Ct) = P(Q(t) > Q̂(t))

where Q̂(t) := Â(t) − Ct. Thus, P(Q(t) > Q̂(t)) = ε, and with probability
1− ε the maximum value of Q(t) is bounded by the maximum value of Q̂(t).
We want to find the maximum of

Q̂(t) = (m− C)t + k

√√√√
M∑

j=1

σ2
j t

2Hj + τ2t.

This function has a global maximum at t0 > 0, so that

Q̂max = Q̂(t0)

and with probability 1− ε this is an upper bound for the queue size Q(t).
Now we would like to determine the service rate C > 0 that yields

Q̂max = x, where x is a given buffer size. In this case, the buffer will
overflow with probability ε. This is obtained from

Q̂max = x ⇔ (m− C)t0 + k

√√√√
M∑

j=1

σ2
j t

2Hj

0 + τ2t0 = x,
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and t0 is the solution of Q̂′(t) = 0, that is the solution of the following
equation

(5) (m− C)

√√√√
M∑

j=1

σ2
j t

2Hj + τ2t +
1
2
k(2

M∑

j=1

σ2
j Hjt

2Hj−1 + τ2) = 0.

Thus t0 and C will satisfy the system formed by the equations (5) and (6).

(6) (m− C)t0 + k

√√√√
M∑

j=1

σ2
j t

2Hj

0 + τ2t0 = x

For a traffic-model with parameters identical to those in Figure 1 we
solve the system (5), (6) geometrically first (Figure 5). The buffer-size
chosen for this example is 15000. Using a numerical solver one gets the
solution t0 = 406.21654274 and C = 828.73281605. We used MAPLE to
solve the problem geometrically as shown in Figure 5 and MATLAB to solve
it numerically. The results obtained are consistent. The traffic-simulations
and in general, all figures except 5 were produced using MATLAB.
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Figure 5. Geometric Solution of (5) and (6)
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