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Ballistic Anisotropic Magnetoresistance
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Electronic transport in ferromagnetic ballistic conductors is predicted to exhibit ballistic anisotropic
magnetoresistance—a change in the ballistic conductance with the direction of magnetization. This
phenomenon originates from the effect of the spin-orbit interaction on the electronic band structure which
leads to a change in the number of bands crossing the Fermi energy when the magnetization direction
changes. We illustrate the significance of this phenomenon by performing ab initio calculations of the
ballistic conductance in ferromagnetic Ni and Fe nanowires which display a sizable ballistic anisotropic
magnetoresistance when magnetization changes direction from parallel to perpendicular to the wire axis.

DOI: 10.1103/PhysRevLett.94.127203 PACS numbers: 75.47.–m, 73.63.Nm, 73.63.Rt, 75.75.+a

The resistivity of bulk ferromagnetic metals depends on
the relative angle between the electric current and the
magnetization direction. This phenomenon was discovered
by Thomson in 1857 and was called anisotropic magneto-
resistance (AMR) [1]. The importance of this phenomenon
was recognized more than a century later in the 1970s
when AMR of a few percent at room temperature was
found in a number of alloys based on iron, cobalt, and
nickel which stimulated the development of AMR sensors
for magnetic recording (for reviews on AMR see
Refs. [2,3]).

Ferromagnetic metals exhibiting a normal AMR effect
show maximum resistivity when the current is parallel to
the magnetization direction, �k, and minimum resistivity
when the current is perpendicular to the magnetization
direction, �?. The magnitude of AMR can be defined by

AMR �
�k � �?

�?

: (1)

At intermediate angles between the current and magneti-
zation direction, �, the resistivity of an AMR material is
given by

���� � �? � ��k � �?�cos
2�: (2)

The origin of AMR stems from the anisotropy of scattering
produced by the spin-orbit interaction [4]. The stronger
scattering is expected for electrons traveling parallel to
magnetization, resulting in larger resistivity �k compared
to �? (see Refs. [2–4] for more details).

The mechanism of electronic transport changes dramati-
cally in constrained geometries of the nanometer scale
when the dimensions are reduced to less than the mean
free path of electrons. In this case electronic transport
becomes ballistic rather than diffusive, which is typical
for macroscopic samples [5,6]. When the constriction
width becomes comparable to the Fermi wavelength the
conductance is quantized in units of 2e2=h for nonmag-
netic materials and in units of e2=h for magnetic materials

in which the exchange interaction lifts the spin degeneracy.
The latter was observed in Ni break junctions [7], Ni
nanowires electrodeposited into pores of membranes [8],
and electrodeposited Ni nanocontacts grown between pre-
patterned electrodes [9]. Recent experiments performed on
Ni ballistic nanocontacts found a change of sign in the
magnetoresistance obtained for the field parallel and per-
pendicular to the current [10,11]. This behavior was inter-
preted as signature of AMR [11].

The origin of magnetoresistance anisotropy in the bal-
listic transport regime is very different compared to that in
the diffusive transport regime because there is no electron
scattering contributing to the conductance in the former. If
the constriction is formed by a slowly changing width of
the wire, the ballistic conductance is given by G � Ne2=h
[6], where N is the number of open conducting channels,
i.e., the number of transverse modes at the Fermi energy.
This quantity is affected by the spin-orbit interaction which
is known to be much stronger in open and constrained
geometries than in bulk materials. The effect is anisotropic
because the orbital momentum is coupled to the spin
causing the projection of the former to be different depend-
ing on the magnetization direction. By changing the mag-
netization direction one can, therefore, change the number
of bands crossing the Fermi energy and thereby affect the
ballistic conductance. We designate this phenomenon as
the ballistic anisotropic magnetoresistance (BAMR)
effect.

In this Letter, we illustrate the significance of the BAMR
effect by performing ab initio calculations of the ballistic
conductance of very thin ferromagnetic wires for magne-
tization parallel and perpendicular to the axis of the wire.
We find that there is a sizable difference in the conductance
for the two orientations of the magnetization giving rise to
an appreciable BAMR. The BAMR effect stems from the
spin-orbit interaction which lifts the degeneracy of the d
bands for the magnetization parallel but not perpendicular
to the wire axis. This changes the number of conducting
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channels if the degenerate levels lie close to the Fermi
energy. The BAMR is different from AMR observed in
bulk materials because no electron scattering is responsible
for it. We find that BAMR can be either positive or negative
and predict a very different angular dependence compared
to AMR.

We consider free standing, translationally invariant
nanowires made of ferromagnetic fcc-nickel and bcc-
iron, all having the tetragonal symmetry (except mona-
tomic wires which have the axial symmetry). The nano-
wires are built along the [001] direction (z axis) by periodic
repetition of a supercell made up of two (001) planes
(except for monatomic wires). We designate these wires
as m-n wires, where indexes m and n denote the number of
atoms on each of the two topologically different layers in
the (001) plane. The electronic structure of the ferromag-
netic nanowires in the presence of the spin-orbit interaction
is calculated using the pseudopotential plane-wave method
[12] implemented within the Vienna Ab Initio Simulation
Package (VASP) [13]. In order to use the advantage of the
k-space representation within this method, we consider a
periodic array of the wires separated by sufficiently large
empty space to eliminate the coupling between the wires.

First, we discuss a monoatomic Ni wire representing a
linear chain of Ni atoms with equilibrium lattice spacing of
2.17 Å. Figure 1 shows the calculated electronic structure
of this wire. In the absence of the spin-orbit coupling the
electronic bands can be classified with no preferred mag-
netization orientation as minority-spin and majority-spin
bands (the solid and dashed lines in Fig. 1(a), respectively).
Because of the axial symmetry of the monoatomic wire

these bands can be classified according to C1� group of the
wave vector. This field splits the majority and minority d
bands into three subbands, two of which are doubly degen-
erate, labeled as E1 and E2 in Fig. 1(a), and one is non-
degenerate, labeled as A1 in Fig. 1(a). The labels stand for
the irreducible representation of the group C1� given in
Table I. Note that the symmetry character of the bands is
preserved throughout the whole Brillouin zone. The ap-
pearance of these states can be easily understood if we take
into account that the crystal field of axial symmetry splits
the L � 2 multiplet of the d states into two doublets, fj �
1i � j � 1ig=

���

2
p

and fj � 2i � j � 2ig=
���

2
p

, and a singlet
j0i. The doublets have the E1 and E2 symmetry, respec-
tively, and the singlet, belonging to the A1 symmetry, is
hybridized with the s state yielding the two bands of the A1

symmetry.
The spin-orbit interaction lifts the degeneracy of the

doublets. However, the magnitude of the splitting is very
different depending on the magnetization orientation with
respect to the axis of the wire. In most general case the
spin-orbit coupling has the form HSO � �L � S, where the
constant � is of the order of a meV. However, since the
spin-orbit interaction is small compared to the spin split-
ting and the crystal field splitting of the bands, far from
band crossings the HSO can be taken into account in the
first order of perturbation theory. This gives rise to the
respective effective operator in the form HSO � � 1

2�LM.
Here LM is the component of the orbital momentum op-
erator along the magnetization direction, and positive sign
corresponds to majority spins, whereas negative sign cor-
responds to minority spins. If the magnetization is parallel
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FIG. 1. Calculated electronic structure of monoatomic Ni wire with equilibrium interatomic distance in the absence of spin-orbit
interaction (a) and in the presence of spin-orbit interaction for magnetization lying along the wire axis M k ẑ (b) and perpendicular to
the wire axis M ? ẑ (c). The solid and dashed lines in (a) show the minority-spin and majority-spin bands, respectively. The labels
stand for the irreducible representation of the group C1� and are displayed for minority-spin bands only.
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to the wire axis, M k ẑ, the spin-orbit coupling is given by
HSO � � 1

2�Lz. Diagonalizing a 2� 2 matrix of this op-
erator within the E1 doublet and the E2 doublet indepen-
dently, it is easy to find that the splitting of the E1 doublet is
�, and the splitting of the E2 doublet is 2�. These splittings
are clearly seen in Fig. 1(b), demonstrating the strong
influence of the spin-orbit interaction on the band structure
of the wire when the magnetization lies along the wire axis.

This behavior changes dramatically when the magneti-
zation is oriented perpendicular to the wire axis, say M k
x̂. In this case the effective spin-orbit coupling is given by
HSO � � 1

2�Lx. It is easy to see that in this case the first
order perturbation theory gives no contribution to the band
splitting because the Lx operator has zero matrix elements
within the E1 and E2 doublets. The splitting occurs only in
the second order and is, therefore, much smaller than for
M k ẑ. This is evident from Fig. 1(c) which shows not
much difference compared to Fig. 1(a) where no spin-orbit
interaction is taken into account. Only near the band cross-
ing points in Fig. 1(c) the splitting of the bands occurs,
reflecting the effect of the spin-orbit coupling.

The influence of the magnetization orientation on the
electronic band structure of the wire leads to BAMR. The
ballistic conductance is controlled by the number of bands
crossing the Fermi energy. As is seen from Fig. 1(a), near
the edge of the Brillouin zone the doubly degenerate E2

band lies very close to the Fermi energy. The splitting of
this band by the spin-orbit interaction, evident from
Fig. 1(b), removes one band from the Fermi surface, re-
ducing the number of conducting channels. Thus, one
channel becomes closed for conduction as the magnetiza-
tion orientation changes from M ? ẑ to M k ẑ. This re-
duces the ballistic conductance by one quantum e2=h and
hence results in positive BAMR. Using the BAMR ratio
similar to Eq. (1) and keeping in mind that the total number
of conducting channels for M k ẑ is equal to 6, we find that
the magnitude of BAMR in this case is 1=6 (or � 17%).

Similar to the result for a monoatomic wire, our calcu-
lations performed for Ni wires of a larger cross sectional
area show a tendency to have positive BAMR. For ex-
ample, for a 5-4 Ni wire we find an increase in the con-
ductance by one quantum when the magnetization
orientation changes from the ẑ ([001]) to x̂ ([100]) direc-
tion, resulting in BAMR of 1=7 (�14%). This value, as
well as the value of 17% obtained for a monoatomic Ni
wire, is much larger than values of AMR in bulk materials
being of the order of a few percent at room temperature. At
the same time they are comparable to the magnetoresis-

tance values observed in the experiments [11]. The pre-
dicted change in the conductance by one quantum due to
the applied magnetic field is also consistent with these
experiments.

The mechanism of BAMR in nanowires of a larger cross
section can be understood using arguments of the group
theory. The group of the wave vector is now C4� whose
irreducible representations are given in Table II [14]. As is
seen from this Table, there is a doubly degenerate E state
corresponding to the zx and yz orbitals. In the first order of
perturbation theory this state splits into singlets when the
magnetization is parallel to the wire axis, but it does not
split if the magnetization is perpendicular to the axis.
Indeed, if M k ẑ the spin-orbit coupling is given by HSO �

� 1
2�Lz. According to Table II the orbital momentum

projection Lz is transformed according to the A2 represen-
tation. It has therefore nonzero matrix elements between
the states of the E doublet because the direct product E�
E � A1 � A2 � B1 � B2 contains the A2 representation.
This is opposite to the case of M k x̂ when the spin-orbit
coupling is given by HSO � � 1

2�Lx. In this case, as fol-
lows from Table II, the orbital momentum projection Lx
transforms according to the E representation which is not
contained in the direct product E� E. Therefore, there is
no splitting of the doubly degenerate E band when M k x̂.

Though the different band splittings for M k ẑ compared
to M k x̂ are responsible for BAMR, they say nothing
about the sign of BAMR. The splittings can both enhance
and reduce the ballistic conductance depending on whether
bands are added to or removed from the Fermi surface.
This fact is evident from our calculations of BAMR in Fe
wires. Contrary to Ni wires, we find that Fe wires have a
tendency for a negative BAMR. For both 4-1 and 9-4 Fe
wires we find an opening of one additional conducting
channel as the magnetization orientation changes from
M k x̂ to M k ẑ. The BAMR ratio in these cases is nega-
tive, equal to �1=10 (�10%) and to �1=16 (� �6%) for
4-1 and 9-4 Fe wires, respectively. Note that a monoatomic
Fe wire with the equilibrium lattice constant of 2.25 Å
shows no BAMR.

The tendency of BAMR to have definite sign can be
attributed to the position of flat degenerate bands with
respect to the Fermi surface. We find that in case of Ni
there are flat degenerate bands lying just above the Fermi
energy and crossing the Fermi energy. Splitting of these
bands by the spin-orbit interaction removes some bands
from the Fermi surface and hence reduces the ballistic
conductance leading to a positive BAMR. On the other

TABLE II. Symmetry character of atomic orbitals in the group
C4�.

xy zx, yz, Lx, Ly x2 � y2 3z2 � r2 Lz

B2 E B1 A1 A2

TABLE I. Symmetry character of the atomic orbitals in the
group C1�.

zx, yz xy, x2 � y2 3z2 � r2

E1 E2 A1
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hand, in Fe there are flat degenerate bands lying below the
Fermi energy and not crossing the Fermi energy. The
splitting of these bands by the spin-orbit interaction adds
bands at the Fermi surface and hence enhances the ballistic
conductance leading to a positive BAMR. This explains the
tendency of opposite sign of BAMR in cases of Ni and Fe.
We note, however, that the complexity of the band structure
and the appearance of band crossings near the Fermi
energy might in certain cases change this tendency leading
to a different sign of BAMR for wires of same material but
different geometry.

The angular dependence of BAMR is very different
compared to AMR. Since the ballistic conductance is an
integer times e2=h, the BAMR is a step function of the
magnetization angle. For example, in case of monoatomic
Ni wire we find that the conductance changes from 6 e2=h
to 7 e2=h at angle �1 � 57 � and from 7 e2=h to 6 e2=h at
angle �2 � 180 � � �1 � 123 � with respect to the wire
axis, as is shown in Fig. 2. This behavior departs from the
angular dependence known for AMR in bulk samples given
by Eq. (2). The predicted angular dependence of BAMR
could be detected experimentally in ballistic magnetic
nanocontacts, displaying conductance quantization, by
measuring the conductance as a function of an angle of
the applied magnetic field at saturation. Recent experi-
ments performed on ballistic break junctions [15] and
electrodeposited nanocontacts [16] have found anisotropy
in magnetoresistance, supporting our predictions.

Finally, we note that BAMR is different from ballistic
magnetoresistance (BMR) [17]. Large values of BMR have
recently triggered a lot of interest in the magnetism com-
munity and have created significant controversy [18].
While the BMR is believed to be due to the reorientation
of magnetic moments of the electrodes relative to one

another under the application of an external magnetic field,
the BAMR is predicted for the uniform saturation magne-
tization rotated about the axis of the constriction.

In conclusion, we have predicted the existence of bal-
listic anisotropic magnetoresistance (BAMR)—a change
in the ballistic conductance with the direction of magneti-
zation. This phenomenon originates from the effect of the
spin-orbit interaction on the electronic band structure
which leads to the change in the number of bands crossing
the Fermi energy when the magnetization direction
changes. This phenomenon is different from AMR ob-
served in bulk materials because no electron scattering is
responsible for it. Calculations performed for ferromag-
netic Ni and Fe nanowires show a sizable change in the
ballistic conductance when the magnetization changes di-
rection from parallel to perpendicular to the wire illustrat-
ing the BAMR effect. We find that BAMR can be either
positive or negative and predict a very different angular
dependence compared to AMR which can be detected
experimentally.

The authors thank Bernard Doudin for useful discus-
sions. This work is supported by NSF (grants no. MRSEC:
DMR-0213808 and no. DMR-0203359) and the Nebraska
Research Initiative. Computations are performed using the
Research Computing Facility at the University of
Nebraska-Lincoln.
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FIG. 2. Conductance G of a monoatomic Ni wire as a function
of angle � between the magnetization and the wire axis (solid
line). The dashed line shows the angular dependence of AMR
according to Eq. (2).
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