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A Pseudo- Nearest Neighbor Approach for Missing Data Recovery on 

Gaussian Random Data Sets 
 

 

Abstract 

Missing data handling is an important preparation step for most data discrimination or 

mining tasks. Inappropriate treatment of missing data may cause large errors or false 

results. In this paper, we study the effect of a missing data recovery method, namely the 

pseudo- nearest neighbor substitution approach, on Gaussian distributed data sets that 

represent typical cases in data discrimination and data mining applications. The error rate 

of the proposed recovery method is evaluated by comparing the clustering results of the 

recovered data sets to the clustering results obtained on the originally complete data sets. 

The results are also compared with that obtained by applying two other missing data 

handling methods, the constant default value substitution and the missing data ignorance 

(non-substitution) methods. The experiment results provided a valuable insight to the 

improvement of the accuracy for data discrimination and knowledge discovery on large 

data sets containing missing values.  

 

Key words:  Missing data, Missing data recovery, Data imputation, Data Clustering, 

Gaussian data distribution, Data mining 

 

 

1. Introduction 

 

The ever-growing data sets stored in large amount of databases and data warehouses are treasure 

mines with precious information (knowledge) hidden in them. In order to retrieve those 

information, tools for data mining and knowledge discovery such as On-line Analysis Process 

(OLAP), statistical analyzers, and hierarchical clustering are widely used by businesses, 

government and scientific research institutions [2].  
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In most databases and data warehouses, row data are not ready to be processed by data mining 

tools because they may contain a lot of irrelevant, inconsistent, or missing data items. Therefore, 

data discrimination and mining is often a multistage process in which people use some formal or 

informal methods to evaluate the appropriateness of the problems, define processing stages and 

expected solutions, implement technical approaches and strategies, and produce measurable 

results. For example, in bio-informatics a typical process for gene expression data discrimination 

and mining involves roughly the stages of data collection and preparation, cleansing and 

filtering, clustering and synthesizing, and then the stages of knowledge extraction and 

representation. Each of these stages has a specific objective and a set of functions to perform.  

 

The data preparation stage aims to getting rid of erroneous data and find the most accurate ways 

to represent the uncertain information. The absence of certain values for relevant data attributes 

in data items can seriously affect the accuracy of data mining results. Missing data handling is 

one of the main issues often dealt with in the data preparation steps. In most cases, missing data 

should be pre-processed (recovered) so as to allow the whole data set to be processed by a data-

mining tool. It has also been known that data preparation and filtering steps take considerable 

amount of processing time in many data mining projects [11]. 

 

While attributes in most data sets can be distinguished in categories of randomly distributed or 

non-randomly distributed, the missing data can also be distinguished in these two categories: (1) 

non-randomly distributed, and (2) randomly distributed. That is, the mechanisms underlying the 

situations of certain data being missing can be characterized as either random or non-random. 

But this randomness is by no means related to the randomness of the attribute in the original data 

set, or at least we do not assume that in this study.  

 

Randomly distributed missing data are the most commonly encountered cases in scientific, 

economic and business data mining applications [1]. In this paper, we focus on the methods for 

handling the randomly distributed missing data only. We also focus on the kind of data sets that 

are in Gaussian random distributions. That is, we study the effects of randomly distributed 

missing data handling methods on randomly distributed data set.  However, it must be pointed 
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out that the randomness of the missing data is unknown in our study and is possibly totally 

different from the randomness of the original data set.  

 

According to Little and Rubin [7], the procedures for treating the randomly missing data can be 

grouped into four categories in general:  

1). Ignorance-based Procedures. This is a non-recovery method and is the most trivial approach. 

When some variables are not recorded for some of the data attributes, a simple expedient is 

to discard the incompletely recorded units entirely and to analyze only the units with 

complete data. It is generally easy to carry out and may be satisfactory with certain data 

analysis tasks. However, it can lead to serious biases, especially when missing data are 

randomly distributed. Moreover, it is usually very difficult to evaluate the errors caused by 

the discarded data records [1]. Notice that this method is different from the non-substitution 

methods. It throws out the entire data point rather than just ignore the missing data values.  

2). Weighting-based Procedures. This is also a non-substitution (also non-recovery) procedure 

and is most commonly used in the inferences from sample survey data that contains non-

response answers. The weights are designed such that they are inversely proportional to the 

probability of data presence in selections according to some empirical results. The purpose of 

the method is to reduce the effect of attributes with large percentage of missing values. The 

procedure is more applicable to non-randomly distributed missing data [9].  

3). Model-Based Procedures. This is a missing data recovery method. A missing data 

replacement is generated by defining a model for the partially missing data and biasing 

inferences on the likelihood under that model, with parameters estimated by procedures such 

as maximum likelihood. Advantages of this approach are the flexibility and divergence. One 

example of the application of this approach is seen in Krishnamoorthy and Pannala’s [4], 

where they proposed three simple exact tests as alternatives to the traditional likelihood ratio 

test to assess the accuracy of this missing data reconstruction procedures. However, the 

complexity of these procedures prevented their applications to data mining that deal with 

very large data sets. It has also been known that the Model-Based Procedures are more 

suitable to data that maintain certain non-static regularities, such as the time series data sets 

that are not common to most data mining applications [6].   
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4). Imputation-Based Procedures. This is the type of missing data substitution methods we 

discuss in this paper. In this approach, the missing values are filled in by certain means of 

approximation and the resultant completed data are analyzed by standard statistical analytical 

methods [3]. Commonly used procedures for imputation include: (a) Hot deck imputation, 

where recorded units in the sample are substituted by a value obtained from the present data 

set following certain rules, for example the value from the nearest data record [12]. (b) 

Default value imputation, where a constant is used to substitute the missing values, for 

example all missing values being replaced by value zero or the median of the value range [1]. 

(c) Statistical imputation, where the missing values are substituted by a statistically inspired 

value that has a high likelihood for the true occurrence, for example the mean values 

computed from the set of non-missing data records [13]. (d) Regression imputation, where 

the missing variables for a unit are estimated by values derived from the known variables 

according to a given function or some functional forms [10]. One example of the application 

of regression imputation based missing data handling approach is V. Letfus’s paper [5]. 

Problem with the regression imputation is that it raises another critical issue of how to verify 

the legitimacy of the underlying function assumed for the regression.  

 

Besides the above four procedures, there are also some other missing data handling methods, 

such as the induction substitution approaches and technically skipping missing data approaches. 

Strictly speaking, induction substitution approaches also belong to imputation-based procedures 

[12, 13]. However, induction substitution approaches are more individual data object specific 

among the missing data handling approaches. In this paper, we will focus our study on the 

above-mentioned imputation-based procedures for missing data recovery.  

 

In a previous study on the effect of missing data, Zhu has derived an analytic form for estimating 

the error probability of classifications made on the partially available data sets versus that on the 

complete sets by using the Bhattacharyya bounds [14]. It has been shown that an upper bound of 

minimum probability of error, under the condition that the data attributes are independently 

distributed, is established at 
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Where a complete data item is given as x = [x1, x2, …, xk, xk+1, …, xn] and a data item with 

missing attribute values is given as xk = [x1, x2, …, xk]. The ω1 and ω2 are two symbols denoting 

two distinct classes of the data sets. In the cases that the data attributes are in independent 

Gaussian distributions, the minimum probability of error of classification with data item xk 

versus x is bounded by  
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Where (µi1, µi2) and (σi1, σi2) are the mean and variance values of the ith attributes for the data 

items in classes ω1 and ω2 respectively. We need to mention that the assumption for attribute 

independence is quite strong in many data discrimination and mining applications. It is common 

that for data in real applications most of them have correlated features.  So the above metric may 

not be measurable directly and precisely in real applications. As indicated, the metric only gives 

a theoretically minimum probability of error under the independence assumption. When dealing 

with real applications, the error rate varies depending on the correlativeness of the data attributes 

and methods used to handle the missing data, such as the proposed approaches discussed in this 

paper.   

 

In this paper, we study the practical effects of the data processing errors when some missing data 

recovery methods are applied to the data sets. Assumptions in our study include: (1) the locations 

of the missing data in the data set are random with an unknown distribution, (2) the values of the 

missing data are random with an unknown distribution, (3) the data records are not labeled, i.e., 

no categorical information about the data items is given, (4) the missing data are numerically 

valued, and (5) the data attributes of the data sets are uncorrelated. That is, each data attribute has 

its own distribution of possible values. However, the values of each attribute may be governed 

by a Gaussian or non-Gaussian distribution (the exact parameters of these distributions are 

unknown). In other words, each data attribute is governed by a univariate Gaussian distribution 
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in case that the data set is Gaussian randomly distributed. The assumption (5) can be relaxed if 

we concentrate on the comparisons of the missing data handling methods, rather than a 

quantitative measurement of the probability of error of each method precisely. In fact, the 

correlativeness of data attributes could be used to assist the missing data recovery, especially for 

the model-based and regression methods. But these are not the main concentration of this paper. 

Our work is focused on the missing data substitution methods. In the methods we studied, the 

correlativeness has less effect. The main reason we list the assumption (5) is to indicate that our 

methods do not make use of the attribute correlations.   

 

The results of our missing data recovery methods are evaluated by comparing the clustering 

results to that obtained by employing certain other missing data recovery techniques. These 

methods include that making the use of constant default and statistical imputations, as well as 

skipping (ignoring) the attributes that have missing values. The method is also evaluated on the 

basis of the clustering results made on the complete set of the data items (non-missing data sets). 

Three major parameters are used to generate the testing data sets in the evaluation: (1) missing 

data rate, ranging from 5% to 40% measured on the data set, (2) number of classes (or clusters) 

in the data set, and (3) the ranges of Gaussian variances in the experimental Gaussian distributed 

data sets.  

 

The paper is organized as follows. Section two describes the basis of the pseudo- nearest 

neighbor substitution method and the procedure. Section three presents our experimental results 

of the proposed method and compares it with three other missing data imputation and 

recovery/non-recovery methods. Section four contains conclusion remarks. 

 

 

2. Computation of pseudo- nearest neighbor  

 

To derive the pseudo- nearest neighbor method for missing data recovery, here we are going to 

first introduce the concept of pseudo-similarity (or dissimilarity measurement) between a data 

record x with missing values and a data record without missing values, as well as between two 

data records with different number of missing values.  
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Let x = [x1, x2, …, xn] be a data record in a data set {x}. A data record x with missing values 

means that some of the elements xi ∈  x, i = 1, …, n, have no valid attribute values present at the 

time the vector x is to be processed as an input to a data mining system. To facilitate the 

expression and computation, we use a “NULL” symbol to represent the missing value of xi. That 

is, when the value of an attribute xi is missing, we say that it has a value NULL. Note that in 

random missing cases, any one of the n elements of x could have a NULL value. Without losing 

generality and for convenience of expression and computation, we use xk = [x1, x2, …, xk, 

NULLk+1, …, NULLn], k < n, to represent a data record x with (n-k) missing attribute values. 

That is, we always move the missing elements of x to its right end and assume that the missing 

values of xk with respect to x are [xk+1, …, xn]. In brief, we write xk = [x1, x2, …, xk], which 

stands for a vector x with k non-missing elements. We also say xk is an incomplete data record.  

 

Let {c} be a set of categorical centers of data set {x}. That is, {c} is a set of complete data 

record, c = [c1, c2, …, cn].  With the same re-ordering of data elements as xk for c, a pseudo- 

similarity between a data record x with missing values (here actually the xk) and a complete data 

record c can be defined as  

Sp(xk, c) = ∑
=

k

i 1

Φ(xi
k, ci).       (2.1) 

Where Φ(.) is a certain kind of similarity (or distance metric) measurement function. The Sp(xk, 

c) is useful in data clustering. When performing clustering of the data set {x}, the Sp(xk, c) with 

respect to each cluster center c in the collection is compared with each other to determine the 

belonging of xk. Note that the categorical center c always has a complete set of attributes that can 

be computed on the basis of the presented values of data records or by an initial random 

selection.   

 

Let xk and xl be two incomplete data records of data set {x}. Again, we can re-arrange the order 

of the data elements in xk and xl, in such a way respectively, that (1) if an element has its value 

missing in both xk and xl, then it is placed toward the right end of the vectors, (2) if an element 

has its value present (i.e, non-missing) in both xk and xl, then it is placed toward the left end of 

the vector. Let us use a symbol “#” to represent the value that is missing in one of the vectors xk 
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and xl but not in both, then we can have the xk and xl be expressed as xk = [x1, x2, …, xd, #d+1, …, 

#k, NULLk+1, …, NULLn] and xl = [x1, x2, …, xd, #d+1, …, #l, NULLl+1, …, NULLn], where d ≤ 

min(k, l). Note that it does not matter whether k equals to l or not. The pseudo-similarity between 

xk and xl is defined as     

Sp(xk, xl) = ∑
=

d

i 1

Φ(xi
k, xi

l) = d*∑
=

d

i 1

(

∑
=

d

1i

k
i

k
i

k
i

xx

x

∑
=

d

1i

l
i

l
i

l
i

xx

x ).    (2.2) 

 

The measurement is actually a weighted correlation value between the two vectors with partially 

missing element values. It takes count of (1) the number of commonly present elements, and 

gives more weight on the vectors having more present elements, and (2) the correlation on the 

present element values. Thus, if two vectors have the same correlation value, then a larger 

Pseudo similarity Sp(xk, xl) is given to the vectors having less missing elements. Table 2.1 shows 

some examples of the Sp(xk, xl) measurements.  

 

Nearest neighbor substitution is a typical hot deck imputation method to handle missing data. Let 

xk = [x1, x2, …, xk, NULLk+1, …, NULLn] be the data record with missing values to be 

recovered. The method first searches for a data record xl within the data set {x} such that (1) xl 

has the presence of value xk+1, (2) xl has the largest Pseudo-similarity value, based on the present 

data attribute values, (3) the present value xk+1 of xl is used to replace the NULLk+1 in xk. Since 

the pseudo-similarity measurement is used in this evaluation, we call the xk and xl pseudo-

nearest-neighbors, and thus the name for the missing data recovery method. It needs to point out 

that the term “pseudo-nearest-neighbor” was also used by Mojirsheibani [8] to describe an 

approach for combining different classifiers in order to construct more effective classification 

rules. The principle of the technique used there is actually the same as we use here, except that it 

is used here to identify the most similar data points for missing data recovery.   

 

A procedure of the pseudo-nearest-neighbors substitution method for missing data recovery is 

presented as follows.  

 

Procedure pseudo- nearest neighbor method for missing-data recovery 
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Pre-condition:  a data set {x} with members in format of xk = [x1, x2, …, xk, NULLk+1, …, NULLn]  
Post-condition: a data set {x} with members in format of xk = [x1, x2, …, xn], i.e., the missing values 

being substituted by corresponding values of the pseudo-nearest-neighbors.   
Computation: 
 For each vector xk  
 { For each NULL valued element xik of xk   

  { For each xl ∈  {x} - xk  

   ( If the xil value is non-missing 
     Compute Sp(xk, xl)   
   } 
   Find the xl* that has the largest value of Sp(xk, xl) among all xl examined  
  } 
  Replace the element xik of xk by the xil value of xl*   
 } 

 

 

3. Experimental results  

 

3.1 Compared methods 

We experimented with three imputation methods for recovery of randomly distributed missing 

data. (1) In hot deck imputation, the randomly distributed missing data at a dimension of a data 

object is filled with the non-null value from the pseudo-nearest-neighbor of the data set, as 

described above. The procedure is named “mneighbor.” (2) In default value imputation, the 

randomly distributed missing data at a dimension of a data object is filled with the median value 

of the whole data set. A procedure is named “mmedian” for the median value substitution. The 

programs are composed of two steps: in the first part, the median values of the attributes are 

computed according to the present values in the data records. In the second step, it converts all 

the missing data in the data set into the median value of the data set. (3) In statistical imputation, 

the randomly distributed missing data at a dimension of a data object is filled with dimension 

mean of the whole data set, calculated as such: 
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∑
=

=
T

i
kjj nVM

1
/         (3.1) 

where T is the total number of data objects in a data set; Vkj is the valid data value of the k’s data 

object at dimension j; Nj is the total number of data objects that have data missing at j’s 

dimension, n =T-Nj. A procedure is named “mgmean” to carry out this computation.   

 

The performances of above methods are also compared with a missing data ignorance (non-

substitution) approach. In this approach, a set of categorical centers {c} for the data set {x} is 

assumed where, each member of {c} is a complete data record c = [c1, c2, …, cn] of a data set 

{x}. When performing clustering of the data set, the Sp(xk, c) on the presented data values of the 

x are computed with respect to c instead of computing Sp(x, c), where xk is a data point of {x} 

with n-k missing attribute values. That is, the missing values are skipped (ignored) in computing 

the similarity of the data point with respect to the cluster centers. A procedure named 

“mskipping” carries this computation.  

 

3.2. Data sets  

We evaluate the missing data recovery schemes with respect to data sets having an underlying 

Gaussian distribution. The Gaussian distributed data sets are generated using random number 

generators with the following given parameters: (a) the number of clusters (2 - 50), (b) the 

number of data attributes (dimensions) in each cluster (2 – 500), (c) the number of data objects 

(points) to be generated for each cluster (150 – 15000), and (d) the ranges of the Gaussian mean 

and Gaussian variance values for each dimension of the cluster. Table 3.1 gives an example of 

the selected Gaussian Means and Gaussian Variances for a data set with 10 clusters and 20 

attributes, where capital letters A, B, C, … are class labels. The data set has the mean range from 

10 to 50 and variance range from 0.02 to 10. The test data generation procedure then does the 

following: (1) Generate a data file that contains the original (no missing values) data sets 

generated according to the parameters above. Each data object also contains a label to indicate 

the original cluster the data object belongs to (e.g, A, B, C, …, etc); and (2) Convert the data sets 

in the original file to data sets that contains 5%, 10%, 15%, 20%, 25%, 30%, 35%, and up to 

40%, respectively, of randomly distributed null values as the data sets of missing values.   
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3.3 Results 

We used a k-means clustering algorithm as a means to qualitatively and quantitatively evaluate 

the above approaches. We first examine the experimental results on Gaussian distributed data 

sets with relatively larger mean value ranges so that the clusters in the data sets are relatively 

separated. That is, the distributions of the data sets of different clusters have only little 

overlapping regions in the data space. Each test case is done with respect to varying missing data 

rate that ranges from 5% up to 40%. Figure 3.1 shows the clustering errors for each of the 

missing data handling method with respect to the percentage of missing values. The horizontal 

axis denotes the percentage of data values absent in the records, while the vertical axis denotes 

the clustering error percentage compared with the original labels of the data set.  

 

We then examine the experimental results on Gaussian distributed data sets with relatively 

smaller mean value ranges so that the clusters in the data sets are relatively mixed, that is, there 

are some considerable amount of regions in the data space where data distributions of different 

clusters have overlapped. Again the tests are done with respect to varying missing data rate that 

ranges from 5% up to 40%. Figure 3.2 shows the clustering errors for each of the missing data 

handling method with respect to the percentage of missing values.   

 

The experimental results show that the median, neighbor and mean substitution methods all 

outperformed the skipping methods. Among the three substitution methods, the nearest neighbor 

substitution has the best performance. The median substitution and mean substitution has almost 

the same amount of clustering error. This is understandable because of the closeness of these two 

values in the data sets of Gaussian distributions.  

 

Figure 3.3 shows the experimental results of the missing data handling methods with respect to 

the percentage of missing values on Gaussian distributed data sets of the same mean positions 

but different variance values. The notation ug002_10b, ug5_10b, and ug10_10b stand for 

uniform Gaussian distributions of 10 clusters with variance value ranges of 2, 5 and 10, 

respectively. The missing data rate changes from 5% up to 40% for each of the test data set. 

Again, it shows that the pseudo-nearest neighbor method has the best performance than the other 
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methods because the pseudo-nearest neighbor method captures the essence of pattern similarities 

in the original data set.  

 

 

4. Conclusions 

 

In this paper, we studied a new method, namely the pseudo- nearest neighbor substitution, for 

missing data handling in preparation of data sets for data discrimination and mining applications. 

Performance of the method is compared with other substitution and non-substitution approaches 

for dealing with data sets containing randomly missing data attribute values. The 

experimentation results have provided following insights: (1) there is a tendency of increasing 

classification error rate along the increase of the cluster number k in the data set for all the 

missing data handling approaches; (2) there is a tendency of increasing classification error rate 

along the increase of the Gaussian variance ratio for all the missing data handling approaches; 

(3) The non-substitution (ignorance by skipping the attribute) approach is an inferior missing 

data handling approach in dealing with Gaussian randomly distributed data sets, and (4) the 

pseudo- nearest neighbor approach provides the best results to Gaussian random data sets among 

the substitution and non-substitution methods evaluated in our experiments. The application of 

these results to data mining and knowledge discovery could help the selection of missing data 

handling method during the data preparation step for different data structures and enable a more 

reliable and efficient decision making under uncertainties and incompleteness of data collections 

presented.  
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Tables and Figures 
 

Table 2.1 Examples of Pseudo-similarity measurement Sp(xk, xl)  
xk xl Sp(xk, xl) 

1 1 # # # # # # 1 1 # # # # # # 2 
1 0 # # # # # # 1 1 # # # # # # 1.41 
1 0 1 # # # # # 1 1 0 # # # # # 1.5 
1 1 0 # # # # # 1 1 1 # # # # # 2.45 
1 1 0 1 # # # # 1 1 1 0 # # # # 2.67 
1 1 0 1 # # # # 1 1 1 1 # # # # 3.46 
1 1 0 1 1 # # # 1 1 1 1 0 # # # 3.75 
1 1 0 1 1 # # # 1 1 1 1 1 # # # 4.47 

 
 

Table 3.1. An example of Gaussain Means and Gaussain Variances of a data set 

 

Cluster A Cluster B Cluster C Cluster D Cluster E Cluster F Cluster G Cluster H Cluster I Cluster JDimen-
sion µ σ2 µ σ2 µ σ2 µ σ2 µ σ2 µ σ2 µ σ2 µ σ2 µ σ2 µ   σ2 

1  19 7.00 37 10.00 17 10.00 10 0.02 35 5.00 40 7.00 10 10.00 42 5.00 42 0.02 16 10.00

2  12 7.00 29 7.00 33 0.02 38 5.00 44 7.00 19 0.02 40 0.02 24 5.00 18 10.00 11 7.00

3  27 5.00 39 10.00 17 7.00 23 10.00 24 10.00 21 7.00 22 0.02 23 0.02 22 10.00 34 0.02

4  42 10.00 23 5.00 16 5.00 35 7.00 49 5.00 34 5.00 16 5.00 22 10.00 48 0.02 25 7.00

5  42 10.00 24 5.00 48 10.00 32 5.00 22 7.00 37 10.00 37 5.00 32 5.00 25 5.00 48 0.02

6  18 0.02 27 5.00 44 0.02 21 7.00 41 10.00 20 7.00 46 5.00 31 5.00 28 7.00 23 7.00

7  21 7.00 36 0.02 45 7.00 18 5.00 14 5.00 43 10.00 17 0.02 40 5.00 35 10.00 25 0.02

8  17 0.02 17 0.02 23 10.00 34 10.00 24 7.00 32 5.00 23 5.00 45 7.00 40 5.00 36 0.02

9  11 7.00 41 10.00 48 10.00 45 0.02 37 7.00 27 10.00 32 5.00 40 10.00 23 7.00 36 7.00

10  14 5.00 41 7.00 46 0.02 39 5.00 23 5.00 29 10.00 34 0.02 42 10.00 37 0.02 15 10.00

11  18 5.00 37 5.00 48 5.00 37 0.02 42 0.02 12 0.02 19 5.00 29 5.00 23 5.00 25 5.00

12  37 7.00 21 5.00 38 7.00 16 5.00 27 5.00 11 5.00 33 10.00 49 5.00 15 10.00 40 7.00

13  29 5.00 30 7.00 40 10.00 47 10.00 25 10.00 10 0.02 48 10.00 17 10.00 38 10.00 43 7.00

14  40 10.00 41 0.02 38 10.00 38 5.00 22 10.00 26 7.00 42 10.00 13 0.02 13 5.00 12 0.02

15  40 7.00 24 10.00 34 7.00 16 7.00 32 10.00 47 10.00 25 5.00 33 10.00 42 0.02 48 10.00

16  46 0.02 45 10.00 12 7.00 13 10.00 31 5.00 24 7.00 20 5.00 42 0.02 38 5.00 28 5.00

17  20 5.00 24 0.02 19 5.00 12 5.00 36 7.00 12 0.02 33 5.00 27 0.02 43 5.00 11 7.00

18  29 0.02 48 5.00 31 0.02 13 5.00 13 0.02 28 7.00 43 10.00 48 7.00 17 0.02 11 10.00

19  40 7.00 31 0.02 21 10.00 46 7.00 35 7.00 39 0.02 43 7.00 21 10.00 26 10.00 24 7.00

20   44 10.00 38 7.00 39 0.02 46 0.02 46 0.02 24 5.00 31 0.02 21 7.00 29 5.00 19 10.00
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Figure 3.1. Experimental results showing clustering errors versus the percentage of missing 
values for the missing data handling methods on a data set with 10 clusters of fixed mean values 

but different variances: (a) variance range of 5, (b) variance range of 10.  
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Figure 3.2. Experimental results showing clustering errors versus the percentage of missing 
values for the missing data handling methods on a data set with different cluster numbers and 
varying mean and variance values. (a) 5 clusters with variance range of 5, (b) 10 clusters with 

variance range of 10. 
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kgmean method
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kskipping method
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Figure 3.3. Experimental results showing clustering errors versus the percentage of missing 
values for the missing data handling methods on a data set with fixed cluster numbers and mean 

values but varying variance value ranges. 
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