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A Random Boolean Network Model

and Deterministic Chaos

Mihaela T. Matache*

Jack Heidel

Department of Mathematics

University of Nebraska at Omaha

Omaha, NE 68182-0243, USA

*dmatache@mail.unomaha.edu

Abstract This paper considers a simple Boolean network with N nodes, each node’s state at time t

being determined by a certain number of parent nodes, which may vary from one node to another. This

is an extension of a model studied by Andrecut and Ali ( [5]) who consider the same number of parents

for all nodes. We make use of the same Boolean rule as the authors of [5], provide a generalization of

the formula for the probability of finding a node in state 1 at a time t and use simulation methods to

generate consecutive states of the network for both the real system and the model. The results match

well. We study the dynamics of the model through sensitivity of the orbits to initial values, bifurcation

diagrams, and fixed point analysis. We show that the route to chaos is due to a cascade of period-

doubling bifurcations which turn into reversed (period - halving) bifurcations for certain combinations of

parameter values.

1. Introduction

In recent years various studies ( [5], [16], [19], [20], [21], [22], [30], [31]) have shown that a large class of

biological networks and cellular automata can be modelled as Boolean networks. These models, besides

being easy to understand, are relatively easy to handle. The interest for Boolean networks and their appli-

cations in biology and automata networks has actually started much earlier ( [8], [13], [14], [15], [25], [29],

[32]), with publications such as the one of Kauffman ( [25]) whose work on the self-organization and adap-

tation in complex systems has inspired many other research endeavors. At the same time it has been

observed ( [1], [6]) that large complex networks (biological, social, www) exhibit a scale-free feature, that

is their connectivity distributions have a power-law form. It is important to understand and study the

dynamics of Boolean networks in order to use them for simulation and prediction of the real networks

they model.
1
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There is a close connection between Boolean networks and cellular automata. Each consists of a set

of nodes operated on by other nodes. For cellular automata there are an infinite number of nodes and

they have a spatial structure. Boolean networks have only a finite number of nodes but they are not

arranged in any spatial structure. Also cellular automata have the same up-date rule at each node while

for Boolean networks the up-date rule can vary from one node to another.

The present work is a significant generalization of previous work by Andrecut and Ali ( [5]) which

in turn generalizes rule 126 for elementary cellular automata ( [38]). Rule 126 is one of several which

exhibit randomly distributed triangular shapes of arbitrarily large size. This makes rule 126 a class III of

complexity generating rule ( [38]). The purpose of [5] is to show that this class III behavior has a simple

interpretation as a density function for a random Boolean network exhibiting deterministic chaos. But

we pause briefly to discuss Rule 126 itself.

Rule 126, most simply described as

¥¥¥ ¥¥¤ ¥¤¥ ¥¤¤ ¤¥¥ ¤¥¤ ¤¤¥ ¤¤¤
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
¤ ¥ ¥ ¥ ¥ ¥ ¥ ¤

where black is ON and white is OFF, has an important role amongst the 256 = 28 elementary cellular

automata, those with two states, ON and OFF, and neighborhood of size 3. Rule 126 is both ”legal”,

reflection symmetric with (0, 0, 0) → 0, and ”totalistic”, where the rule depends only on the relative

number of ON and OFF states and not their order ( [37]). There are 32 legal rules, and 16 totalistic

rules. Only 8 of these rules, including Rule 126, are in both classes. These eight thereby distinguished

rules are # 0, 22, 104, 126, 128, 150, 232, 254. They separate into Wolfram’s four classes as: Class I: 0,

128, 254; Class II: 104, 232; Class III: 22, 126, 150; Class IV: none. Besides the automata in Class I and

Class II which have relatively simple behavior ( [38]), this leaves only three: # 22, 126, and 150. But #

150 is additive (linear in algebraic form) which simplifies its analysis by transferring unusual effects from

the structure of the automata to the initial conditions only.

Let us look at the structure of Rule 22:

¥¥¥ ¥¥¤ ¥¤¥ ¥¤¤ ¤¥¥ ¤¥¤ ¤¤¥ ¤¤¤
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
¤ ¤ ¤ ¥ ¤ ¥ ¥ ¤

As well as Rule 22 and Rule 126 both being in Wolfram’s Class III, they are also both in the same κ = 2

in a new classification, regarding separating planes for the basic 8 point hypercube (along with # 104)

( [10]).

It is interesting that both Rule 126 and Rule 22 have a natural and simple interpretation in terms of

the growth of cell colonies. For Rule 126, complete crowding of live, ON, cells causes death, OFF, in the
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next generation. Complete isolation of a potential cell prevents birth in the next generation. A similar

interpretation holds for Rule 22, it just isn’t quite as complete. It would be natural to try to extend what

follows to a generalized Boolean network based on Rule 22. We have not yet figured out how to do this.

See also [9].

The purpose of this discussion of Rule 126 is to provide the flavor for the general type of behavior which

is analyzed in what follows. Although we will be discussing random Boolean networks, it is worthwhile

to look briefly at the simplest nontrivial analogue in terms of a deterministic cellular automata.

In the paper [5] the authors consider a simple Boolean network with N nodes, each node being

influenced by exactly k other nodes at each step of the Boolean system. In other words each node has

exactly k parents, so that the Boolean rule for each node is determined only by the state of the k parents.

The number k is fixed. This feature makes the model restrictive. It is known that in real networks the

number of parents of a given node varies from one node to another. In this paper we extend that model

by allowing different number of parents per node. We make use of the same Boolean rule as the authors

of [5], namely if a node of the network and all its parents have the same value (0 or 1) at time t, then

the value of the node at the next time step t + 1 is 0; otherwise it is 1. We provide a generalization of

the formula for the probability of finding a node in state 1 at a time t in Section 2. The formula for the

probability p(t + 1) that a node is in state 1 at time t + 1 given p(t) is

p(t + 1) =
J∑

j=1

Mj

N

[
1− N

kj

0 (t)
Mj

(1− p(t))kj − N
kj

1 (t)
Mj

p(t)kj

]

where N is the size of the network, k1, k2, . . . , kJ the distinct values for the number of parents of the

nodes, Mj the number of nodes with kj parents, N
kj

0 the number of nodes with kj parents that are in

state 0, and N
kj

1 the number of nodes with kj parents that are in state 1. We use simulation methods to

generate consecutive states of the network for both the real system and the model. The results match very

well. In Section 3 we study the dynamics of the model through the analysis of the sensitivity of the orbits

to the initial values, bifurcation diagrams, and fixed points. We show that the route to chaos is due to a

cascade of period-doubling bifurcations which turn into reversed bifurcations for certain combinations of

parameter values. The reversed bifurcations are explained in more detail in Section 4. As is shown here,

a single large value for one of the kj , can have a dramatic effect in simplifying the behavior of the rest of

the network. Section 5 is dedicated to conclusions and possibilities for future work.

2. The Boolean Network Model

In this section we describe the Boolean model. Significant results from [5] are recalled to make the

paper self-contained.

Consider a network with N nodes. Each node cn, n = 1, 2, . . . , N can take on only two values 1 or 0.

Often this is interpreted as a system in which each node can be either ON of OFF. At each time point
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t the system can be in one of the 2N possible states. We assume that all the nodes update their value

at the same time, that is the network is synchronous. The evolution of the nodes from time t to time

t + 1 is given by a Boolean rule which is considered the same for all nodes. Each node cn is assigned a

random ”neighborhood” of parents, whose values at time t influence the value of cn at time t+1 through

the following Boolean rule. If cn(t) and all its parents have the same value at time t (that is they are all

either 0 or 1), then cn(t + 1) = 0, otherwise cn(t + 1) = 1. The parents of a node are chosen randomly

from the remaining N − 1 nodes and do not change thereafter. More precisely, if a node has k parents,

then a set of k nodes is chosen from the remaining N − 1 nodes with probability 1

(N−1
k ) .

This model is a description of a random Boolean cellular automaton. The system is described by the

number of parents of each node. Observe that the quantity

N1(t) :=
N∑

n=1

cn(t)

gives the number of cells that are in state 1 at time t. The concentration of nodes in state 1 is given by
1
N

∑N
n=1 cn(t). We are interested in finding the probability p(t+1) that a node is in state 1 at time t+1.

In the paper [5] the authors show that p(t + 1) is given by

(2.1) p(t + 1) = 1− p(t)k+1 − (1− p(t))k+1

where k ≥ 1 is the number of parents of each node (considered fixed in that paper). (Note: we take the

liberty to provide the formula with k + 1 rather than k as it is misprinted in [5]).

Our goal is to provide a similar formula for the case of variable number of parents. To this aim

we start by making the following notations. Let k1, k2, . . . , kJ be the distinct values for the number of

parents the nodes c1, c2, . . . , cN can have. Also let Cj be the collection of all nodes having kj parents,

and Mj be the number of nodes in each class Cj , j = 1, 2, . . . , J . To simplify the notation we will assume

that C1 = {c1, c2, . . . , cM1}, C2 = {cM1+1, cM1+2, . . . , cM1+M2} and so on. Also, let N
kj

0 (t) be number of

nodes of class Cj in state 0 at time t, and N
kj

1 (t) the number of nodes of class Cj in state 1 at time t,

j = 1, 2, . . . , J . It follows that
∑J

j=1(N
kj

0 (t) + N
kj

1 (t)) = N , and N
kj

0 + N
kj

1 = Mj , j = 1, 2, . . . , J . The

probability that a node is in state 1 at time t is given by p(t) = 1
N

∑J
j=1 N

kj

1 (t). We want to compute

the conditional probability that a node is in state 1 at t + 1, given the known probability p(t). Observe

that this is basically determined by the number of nodes that change from state 0 at time t to state 1 at

time t + 1 and the number of nodes that remain in state 1 from time t to t + 1.

We will start with the derivation of N
kj

0→1(t) which will denote the number of nodes of class Cj that

are 0 at time t and become 1 at time t + 1. We will use the notation P for the probability of an event,

but we will keep the notation p(t) for the probability of a node being in state 1 at time t throughout the

paper. If cn(t) = 0 then

P(cn(t + 1) = 1|cn(t) = 0) = P(at least one of the parents of node cn is 1 at time t) =
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= 1−P(all parents of node cn are 0 at time t) = 1− (1− p(t))k.

Here k denotes the number of parents of the node cn and could be any of the numbers k1, k2, . . . , kJ .

We assume independence of the parents, in other words, the parents themselves can be in state 0 or 1

independently of each other. At time t+1 we could have 0, 1, 2, . . . , or N
kj

0 (t) nodes going from state 0 at

time t to state 1 at t+1. We define the discrete random variable X given by the probability distribution

function

P(X = l) = P(l nodes of class Cj go from state 0 at time t to state 1 at time t + 1) =

=
(

N
kj

0 (t)
l

) [
1− (1− p(t))kj

]l [
(1− p(t))kj

]N
kj
0 (t)−l

, l = 0, 1, 2, . . . , N
kj

0 (t).

One can check by a straightforward computation that
∑N

kj
0 (t)

l=0 P(X = l) = 1. Then N
kj

0→1(t) will be the

expected value of X, that is

(2.2) N
kj

0→1(t) =
N

kj
0 (t)∑

l=0

l P(X = l) = N
kj

0 (t)
[
1− (1− p(t))kj

]
.

Although this number might not be an integer, we will not make any adjustments given that our final

goal is to compute a probability, which is anyway a number between 0 and 1. It is important to note

that if the number of parents is the same for all nodes, say k, then kj = k, for all j = 1, 2, . . . , J and the

total number of nodes going from state 0 at time t to state 1 at time t + 1 is given by

N0→1(t) = N0(t)
(
1− (1− p(t))k

)
, N0(t) =

J∑

j=1

N
kj

0 (t).

This represents exactly the formula obtained in [5] for N0→1(t).

By a similar argument, one can write the following formulas for N
kj

1→1(t), the number of nodes of class

Cj that remain 1 from time t to t + 1, N
kj

0→0(t) the number of nodes of class Cj that remain 0, and

N
kj

1→0(t), the number of nodes of class Cj that change from 1 to 0. In each case an appropriate random

variable is defined as above, and the number of nodes going from one state at time t to the next state at

time t + 1 is defined as the expected value of that random variable. Thus we obtain the following:

N
kj

1→1(t) = N
kj

1 (t)(1− p(t)kj ), N
kj

0→0(t) = N
kj

0 (t)(1− p(t))kj , and N
kj

1→0(t) = N
kj

1 (t)p(t)kj .

Again, by setting all numbers kj equal to k and performing the computations we get the formulas obtained

in [5], namely

N1→1(t) = N1(t)(1− p(t)k), N0→0(t) = N0(t)(1− p(t))k, and N1→0(t) = N1(t)p(t)k

where N0(t) =
∑J

j=1 N
kj

0 (t), N1(t) =
∑J

j=1 N
kj

1 (t).

It is important to check that the sum of all these quantities is equal to N .
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Remark The following holds

N0→1(t) + N1→1(t) + N0→0(t) + N1→0(t) = N.

Proof. Observe that N
kj

0→1(t) + N
kj

0→0(t) = N
kj

0 (t), j = 1, 2, . . . , J . Similarly, observe that N
kj

1→1(t) +

N
kj

1→0(t) = N
kj

1 (t), j = 1, 2, . . . , J . These results are to be expected and they immediately imply that

N0→1(t) + N1→1(t) + N0→0(t) + N1→0(t) = N .

¤

We can now construct the quantities pj(t + 1) = 1
N

[
N

kj

0→1(t) + N
kj

1→1(t)
]

where j = 1, 2, . . . , J , repre-

senting the probabilities of finding a node of class Cj in state 1 at time t + 1. Observe that

pj(t + 1) =
Mj

N
− N

kj

0 (t)
N

(1− p(t))kj − N
kj

1 (t)
N

p(t)kj =
Mj

N

[
1− N

kj

0 (t)
Mj

(1− p(t))kj − N
kj

1 (t)
Mj

p(t)kj

]
.

The quantities N
kj
0 (t)
Mj

and N
kj
1 (t)
Mj

represent the proportion of nodes of class Cj that are 0, respectively 1,

at time t. Thus we can write the final formula for the probability that a node is in state 1 at time t + 1

(2.3) p(t + 1) =
J∑

j=1

pj(t + 1) =
J∑

j=1

Mj

N

[
1− N

kj

0 (t)
Mj

(1− p(t))kj − N
kj

1 (t)
Mj

p(t)kj

]
.

Note that if all the nodes are 0 at time t, then N
kj

0 (t) = N, N
kj

1 (t) = 0, for all j = 1, 2, . . . J , so that

p(t+1) = 0, which is to be expected since by the Boolean rule all the nodes stay 0 at time t+1. Similarly,

if all the nodes are 1 at time t, p(t + 1) = 0 by the formula, as well as by the Boolean rule.

Given all of the above, we propose the following simulation algorithm for the Boolean network under

consideration. The algorithm provides the computation of p(t) for all t = 0, 1, 2, . . . .

• For t = 0 choose arbitrary numbers pj(0) ∈ [0,
Mj

N ], j = 1, 2, . . . , J , and let

p(0) =
J∑

j=1

pj(0).

• For each t = 0, 1, 2, . . . compute

pj(t + 1) =
Mj

N

[
1−

(
1− pj(t)

Mj

N

)
(1− p(t))kj − pj(t)

Mj

N

p(t)kj

]
=

(2.4) =
Mj

N

[
1− (1− p(t))kj +

pj(t)
Mj

N

(
(1− p(t))kj − p(t)kj

)]

where j = 1, 2, . . . , J , and let

p(t + 1) =
J∑

j=1

pj(t).
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The formula for pj(t) in (2.4) is similar to the summands for pj(t) in (2.3).

It is useful to provide some simulations to see how well does the model match the real system. Of

course, we will be able to provide visual output only for the case when J = 2, that is we only have 2

possible number of parents for each node. The simulations that follow in this paper have been obtained

by running Matlab and Maple programs. The next graphs (Figure 1) represent simulations of the model

and the actual Boolean system when k1 = 4, k2 = 16, M1
N = M2

N = 1
2 . Figure 1 represents the first four

iterations of the model and the system, that is p(t+1), respectively p(t+2), p(t+3), p(t+4) versus p1(t)

and p2(t). For the model we obtain surfaces that are graphed as a mesh, while for the simulated Boolean

system we obtain only isolated points, generalizing figure 1 in [5].

Figure 1. Simulation of the Boolean system and the model. The four graphs are the first four

iterations, representing p(t + 1), p(t + 2), p(t + 3), p(t + 4) respectively, versus p1(t) and p2(t).

In all the figures, the number of nodes is N = 160, the proportion of nodes with k1 = 4 parents

is M1
N

= 1
2
, and the proportion of nodes with k2 = 16 parents is M2

N
= 1

2
. The iterations of the

system are graphed with points, whereas the iterations of the model are surfaces graphed as a

mesh.

As one can see, although there is no perfect match, the model is a very good approximation for the

Boolean system. We note that the graphs are few of many simulations run by the authors for various

parameter combinations. The results of the simulations were always similar to the ones in the graphs

of Figure 1. The running time for the program is rather long due to complex computations. Therefore
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we kept the number of nodes at a reasonable magnitude (160 in the graphs mentioned above). But the

larger the number of nodes, the better the match between the model and the Boolean system.

In the next section we are interested in studying the dynamics of a system governed by the rules in

the model (2.3).

3. Model Dynamics

We point out to begin with that the dynamics of higher dimensional analogues of [5] may be quite

compatible with the one dimensional behavior [5], p. 21, as illustrated in Figure 2.

p
(t

)

Figure 2. Bifurcation diagrams for the two dimensional map of the model (2.3). The two

values for the number of parents are determined as functions of a parameter k graphed on the

horizontal axis. In the first graph k1 = k, k2 =
√

k, while in the second graph, k1 = k, k2 = ln k.

In both graphs the proportion of nodes having k1 parents is M1
N

= 3
4
, and the proportion of

nodes having k2 parents is M2
N

= 1
4
.

We now turn to a more extensive analysis of the map dynamics which will vividly illustrate the

reverse bifurcations which we discuss in the next section. To this aim we first study the sensitivity

of the orbits to the initial values. We consider the case of only two distinct values for the number of

parents for simplicity. We fix the parameters M1
N , M2

N , k1, k2, and choose two initial pairs (p1(0), p2(0))

and (q1(0), q2(0)) as starting points for the orbits. We iterate many times the equations of the model

and compute p(t) = p1(t) + p2(t) and q(t) = q1(t) + q2(t) for each time point t. Then we plot the error

E(t) = |p(t)− q(t)| versus t. In Figure 3 we show the case of M1
N = M2

N = 1
2 , k1 = 5 and k2 = 3, 4, 95, and

100 respectively, for illustration of the error behavior as k2 increases. In all these graphs p(0) = 0.5 and



9

q(0) = 0.5002, so the starting values are very close. For values of k2 smaller than 3 or larger than 100

the graphs are similar to the one for k2 = 3.

0 10 20 30 40 50
0

0.5

1

1.5

x 10
−6

t

E
(t

)

k
2
 = 3

0 500 1000
0

0.2

0.4

0.6

0.8

1

t
E

(t
)

k
2
 = 4

0 500 1000
0

0.01

0.02

0.03

0.04

0.05

t

E
(t

)

k
2
 = 95

0 200 400 600
0

2

4

6

8

x 10
−6

t

E
(t

)

k
2
 = 100

Figure 3. Sensitivity of the orbits to the initial values. The following parameters are fixed

in each graph: M1
N

= 1
2
, M2

N
= 1

2
, k1 = 5, k2 = 3, 4, 95, and 100 respectively. Two initial pairs

(p1(0), p2(0)) and (q1(0), q2(0)) are chosen as starting points for the orbits. The equations of

the model are iterated and the values p(t) = p1(t) + p2(t) and q(t) = q1(t) + q2(t) are computed

for each time point t. Then the error E(t) = |p(t)− q(t)| is plotted versus t. In all these graphs

p(0) = 0.5 and q(0) = 0.5002, so the starting values are very close. In each graph the scale is

chosen for clarity purposes. For values of k2 smaller than 3 or larger than 100 the graphs are

similar to the one for k2 = 3.

The range of t is not necessarily the same for all the graphs, but it is chosen so that one can see easily

the behavior.

The results are similar for any choice of the fixed parameters and initial values. The authors have

checked the behavior in tens of cases. In general, we observe that for small values of k2 the error converges

to zero. For larger values of k2 the error does not settle suggesting that the initial perturbations propagate

across the entire system which exhibits a chaotic behavior. In most cases, for k2 very large the error

converges to 0 again. The rate of convergence to zero may differ from one case to another. This suggests

that the chaos is transient and the larger the k2 the more likely it is that the system will become insensitive
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to initial perturbations and will exhibit an ordered behavior. The range of k2 corresponding to chaos

changes from case to case, and depends on the parameter values. In general, the range becomes larger as

k1 increases. In the case illustrated here this range for k2 is the interval [4, 95] (we only show the cases

of k2 = 4 and k2 = 95 in Figure 3. For all the other values in this interval the graphs are similar.).

These sensitivity graphs showing little sensitivity for small k2 or large k2, are consistent with the

bifurcation diagrams to follow. Similar graphs and behavior are noticed also for cases with more than

two distinct values for the number of parents.

In order to clarify even more the situation suggested by the sensitivity of the orbits to the initial

values, we construct bifurcation diagrams with integer values for the parameters k. We consider the two

dimensional case and fix the parameters M1
N , M2

N . It is important to observe that the model depends

on M1,M2, and N only through the proportions M1
N , M2

N , representing the fraction of nodes having k1

or k2 parents. In Figure 4 we graph bifurcation maps for M1
N = M2

N = 1
2 , k1 = 1, 2, 3, 4, 5 and let k2

increase freely. Thus the diagrams represent p vs. (k1, k2) for only a few values of k1, which allows one to

understand how the diagrams change from one value of k1 to another. We note here that the initial values

(p1, p2) are the same for all the ”slices” shown in the graph. In these diagrams k2 is the parameter that

increases freely, and given the fact that only the proportions M1
N , M2

N matter, not the actual number of

nodes, one can allow a wide range of values for the free parameter. One can observe that as k1 increases

from 1 to 5 period-doubling bifurcations occur and the map exhibits chaos. However, when looking at,

for example, slices k1 = 4 and k1 = 5 one can see that the bifurcation is reversed as k2 becomes larger,

and the point where the bifurcation is reversed is shifted to the right on the k2 axis.

For more clarity we attach the two dimensional slice for k1 = 5 in the first graph of Figure 5. The

graph is over a significantly wider range of k2 values than the three dimensional graph. The bifurcation

is reversed around k2 = 10 when k1 = 4, around k2 = 25 when k1 = 5, and around k2 = 1100 when

k1 = 10 (not shown). Other than that, the graphs are similar. So it is observed that as k1 increases the

point of reversed bifurcation moves towards ∞ when graphing the bifurcation diagrams for p vs k2. In

the second graph of Figure 5 we provide a zoom in on a small range of k2 values for k1 = 5, to see that

the route to chaos is due to a cascade of period-doubling bifurcations. This process is reversed for large

k2 values. We note here that this situation is similar as k1 takes values beyond the ones shown in the

figures.

On the other hand, if one looks at a fixed k1 and changes the proportion M1
N (that is the proportion

of nodes having k1 parents) the same thing happens; the reversed bifurcation occurs for larger values of

k2 as the proportion gets larger. However, the graphs are similar in shape with any of the other ones

presented here. Similar situations are obtained for more than two distinct values of k.

Thus the bifurcation diagrams emphasize the situation observed in the error plot. The system exhibits

chaotic behavior due to period-doubling bifurcations as one parameter is fixed and the other one increases
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Figure 4. Bifurcation diagrams for k1 = 1, 2, 3, 4, 5 graphed as functions of k2. The propor-

tions of nodes with k1 and k2 parents are equal, that is M1
N

= M2
N

= 1
2
. The equations of the

model are iterated 100 times to eliminate any transient behavior. As k1 increases from 1 to 5

period-doubling bifurcations occur and the map exhibits chaos. For k1 = 4, 5 the bifurcations

are reversed, and the point of reversed bifurcations occurs for larger k2 as k1 increases.

to ∞. However, for larger values of the free parameter the chaos is reversed through a cascade of period-

halving bifurcations. Reverse bifurcations are discussed in Section 4.

To complete the study of the dynamics of the model, we consider also the fixed points of the maps

(2.4), by solving the system

(3.1) pi =
Mi

N


1−


1−

J∑

j=1

pj




ki

+
pi

Mi

N





1−

J∑

j=1

pj




ki

−



J∑

j=1

pj




ki






where i = 1, 2, . . . , J . Of course, we do this numerically for various parameters. In what follows we

provide for illustration the case M1
N = M2

N = 1
2 , k1 = 1, 4, letting k2 free (so J = 2). The first two graphs

in Figure 6 provide the fixed points (p1, p2) vs. k2. We observe that p1 → 1
4 , and p2 → 1

2 . The rate

of convergence is slower for larger k1. Due to the complexity of the computations for large powers k we

could only graph 30 values of k2 in the case k1 = 4, but it is apparent from the graph that for k2 → ∞
the fixed points converge to the specified values.

We rewrite the equations (3.1) as follows

(3.2) pi =

Mi

N

[
1−

(
1−∑J

j=1 pj

)ki
]

1−
(
1−∑J

j=1 pj

)ki

+
(∑J

j=1 pj

)ki
.
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Figure 5. Bifurcation diagrams for k1 = 5 in more detail. The proportions of nodes with k1

and k2 parents are equal, that is M1
N

= M2
N

= 1
2
. The first graph indicates that the chaotic

behavior is reversed through a cascade of period-halving bifurcations, while the second graph

shows that the map exhibits chaos through a cascade of period-doubling bifurcations. The

second graph is a zoom-in on the first graph over a small range of k2 values. Similar graphs are

obtained for other values of k1.

Observe that if ki = 1 the equation can be solved and pi = 1
2 · Mi

N . This means that for the illustrated

case of M1
N = 1

2 , we get p1 = 1
4 , which is clearly shown in Figure 6. Also, if in the right term of (3.2) we

let ki →∞, assuming all the other quantities fixed, we get pi → Mi

N . This coincides with our simulation

result in Figure 6 of p2 → 1
2 . To illustrate this even better we generate the simulation of fixed points for

the case of three distinct number of parents and fix M1
N = 0.3, M2

N = 0.6, M3
N = 0.1, k1 = 1, and k2 = 1

and let k3 move freely, we obtain that p1 = 0.15, p2 = 0.3, p3 → 0.1, shown in the last graph of Figure 6.

Figure 6 corresponds to figure 2 (bottom) in [5].

We make the remark that in the previous simulations we studied mainly cases with only two distinct

values for the number of parents. However, the conclusions hold for other cases with more than two

values for the number of parents, and have been checked by the authors through numerous simulations.

4. Reverse Bifurcations

It was shown in the last section that by holding k1 fixed and letting k2 increase in the two dimensional

model, a sequence of reversed bifurcations occurs. Before examining the phenomenon more closely, it is

useful to examine reverse bifurcations in a more general way.
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Figure 6. Fixed points of the maps (2.4) obtained numerically by solving the system (3.1).

The first two graphs illustrate the case M1
N

= M2
N

= 1
2
, k1 = 1, and 4 respectively, letting k2

free. The third graph illustrates the case M1
N

= 0.3, M2
N

= 0.6, M3
N

= 0.1, k1 = 1, k2 = 1, and

k3 moving freely. The convergence of the p’s to the values obtained by the equation (3.2) are

apparent from the graphs.

The familiar one dimensional quadratic map

xn+1 = axn(1− xn)

has only period doubling bifurcations on 0 ≤ a ≤ 4. However, replacing the linear parameter a by the

tent shaped parameter 4− |a− 4|, 0 ≤ a ≤ 8, gives the map

xn+1 = (4− |a− 4|) xn(1− xn),

which leads to a bifurcation diagram on 0 ≤ a ≤ 8 extended by mirror symmetry as in Figure 7.

However, it is possible to have a period halving bifurcation sequence in a one dimensional unimodal

(one-hump) map even with the parameter appearing as linear multiplier ( [27], [33], [34]). Alternately,

relaxing the unimodality can also introduce reverse bifurcation sequence ( [17]). These papers suggest

and even provide a rough outline for a general theory of when reverse bifurcations will appear in one

dimensional maps.

Not surprisingly the situation is much more complicated for multidimensional maps. It has been

observed that the two dimensional Henon map does have both orbit creation and orbit annihilation

parameter values ( [23]). In fact these authors give a very general result for dissipative maps of the

plane into itself. However most specific examples discussed in the literature are neither conservative nor

dissipative ( [12], [28], [36], [39]).
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Figure 7. Bifurcation diagram for the one dimensional map xn+1 = (4− |a− 4|) xn(1− xn).

A cascade of period doubling bifurcations is followed by a cascade of period halving bifurcations.

The easiest way to understand the appearance of reverse bifurcations in our generalization of the

Andrecut and Ali map [5] is to consider the two dimensional case, that is with two distinct k values, k1

and k2, and take the limit as k2 →∞ in the expressions for p1 and p2

(4.1) p1(t + 1) =
M1

N

[
1− (1− p1(t)− p2(t))

k1 +
p1(t)

M1
N

(
(1− p1(t)− p2(t))

k1 − (p1(t) + p2(t))
k1

) ]

p2(t + 1) =
M2

N

[
1− (1− p1(t)− p2(t))

k2 +
p2(t)

M2
N

(
(1− p1(t)− p2(t))

k2 − (p1(t) + p2(t))
k2

) ]

to obtain (with all the other variables and parameters held fixed)

p2(t + 1) =
M2

N
.

It is assumed here that p1(t) + p2(t) is bounded away from zero, justified because (0, 0) is an unstable

equilibrium point for (4.1).

Assuming again for simplicity that M1
N = M2

N = 1
2 , we can take p2(t) = 1

2 and (4.1) becomes

(4.2) p1(t + 1) =
1
2
−

(
1
2
− p1(t)

)k1+1

− p1(t)
(

1
2

+ p1(t)
)k1

p2(t + 1) =
1
2

as k2 →∞. Or, with p = p1 + p2,

(4.3) p(t + 1) = p1(t + 1) + p2(t + 1) = 1− (1− p(t))k1+1 −
(

p(t)− 1
2

)
p(t)k1 .
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This map represents the behavior for large k2 of the three dimensional bifurcation diagram in Figure 4

of the previous section.

But the limiting behavior can also be described by the bifurcation diagram of the map (4.3) itself as

in Figure 8. Thus, for 0 ≤ k1 ≤ 2 there is a single stable fixed point and for k1 > 2 a single stable period

two orbit. This is, of course, exactly what shows up in the two dimensional bifurcation diagram for (k2, p)

for different values of k1 (Figure 5).
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1
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Figure 8. Bifurcation diagram for the map p(t + 1) = 1− (1− p(t))k1+1 − �p(t)− 1
2

�
p(t)k1 .

It is also of interest to look at the reduced map (4.2) directly, but now simplified by removing p2(t+1) =
1
2 and k2 →∞ by viewing it entirely as a map for p1 with a single parameter k1 as in the first equation

of (4.2). This map is viewed first as a surface p1(t + 1) vs. (p1(t), k1) as in the first graph of Figure 9.

Now, the graph of the map (4.2) itself (with k1 = 5) and its first six iterates show that the higher

iterates introduce essentially no new complexity and therefore only the simplest periodic, and no chaotic,

behavior is observed (Figure 10). Of course, the bifurcation diagram for (p1(t), k1) is that of (p(t), k1)

reduced by 1
2 .

We now show that a similar phenomenon occurs in higher dimensions than two. Start with the 3

dimensional system:

p1(t + 1) =
M1

N

[
1− (1− p1 − p2 − p3)k1

]
+ p1

[
(1− p1 − p2 − p3)k1 − (p1 + p2 + p3)k1

]

p2(t + 1) =
M2

N

[
1− (1− p1 − p2 − p3)k2

]
+ p2

[
(1− p1 − p2 − p3)k2 − (p1 + p2 + p3)k2

]

p3(t + 1) =
M3

N

[
1− (1− p1 − p2 − p3)k3

]
+ p3

[
(1− p1 − p2 − p3)k3 − (p1 + p2 + p3)k3

]
.
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Figure 9. The first graph represents the surface map for p1(t + 1) vs (k1, p1(t)) from

(4.2), p1(t + 1) = 1
2 −

(
1
2 − p1(t)

)k1+1 − p1(t)
(

1
2 + p1(t)

)k1 . The second graph repre-

sents p1(t + 1) vs (p1(t), p2(t)) from (4.4), p1(t + 1) = 1
4 +

(
p1 − 1

4

) (
1
2 − p1 − p2

)k1 −
p1

(
1
2 + p1 + p2

)k1 , p2(t + 1) = 1
4 +

(
p2 − 1

4

) (
1
2 − p1 − p2

)k2 − p2

(
1
2 + p1 + p2

)k2 .

Taking M1
N = M2

N = 1
4 and M3

N = 1
2 for simplicity and letting k3 →∞, we obtain p3(t) ≡ 1

2 . Then the

first two equations can be simplified to obtain

(4.4) p1(t + 1) =
1
4

+
(

p1 − 1
4

)(
1
2
− p1 − p2

)k1

− p1

(
1
2

+ p1 + p2

)k1

p2(t + 1) =
1
4

+
(

p2 − 1
4

)(
1
2
− p1 − p2

)k2

− p2

(
1
2

+ p1 + p2

)k2

.

Then

p(t + 1) = p1(t + 1) + p2(t + 1)

produces a monotone graph (k1 = 5, k2 = 10 for definiteness) as in the second part of Figure 9 similar to

the one dimensional case (first graph in Figure 9).

By analogy with the two dimensional case, this shows that a very high connectivity value k for even

one of the classes of nodes swamps out any possible chaos in the network and results in only the simplest

steady state or period two behavior for the entire system.



17

0 0.1 0.2 0.3 0.4
0

0.2

0.4

p
1
(t

+
1
)

0 0.1 0.2 0.3 0.4
0

0.2

0.4

p
1
(t

+
2
)

0 0.1 0.2 0.3 0.4
0

0.2

0.4

p
1
(t

+
3
)

0 0.1 0.2 0.3 0.4
0

0.2

0.4

p
1
(t

+
4
)

0 0.1 0.2 0.3 0.4
0

0.2

0.4

p
1
(t)

p
1
(t

+
5
)

0 0.1 0.2 0.3 0.4
0

0.2

0.4

p
1
(t)

p
1
(t

+
6
)

Figure 10. The first 6 iterates of the map (4.2), p1(t + 1) = 1
2 −

(
1
2 − p1(t)

)k1+1 −
p1(t)

(
1
2 + p1(t)

)k1 . Here k1 = 5.

5. Conclusions

The original motivation for the probability density equation (2.1) is that it generalizes the elementary

cellular automata rule 126. Rule 126 says that a node is turned off if and only if its precursors are either

all on or all are off. If a more general one-dimensional periodic cellular automata is set up in the same

manner, each node being turned off if and only if each of its k (constant) nearest neighbors are all on

or all off, then it is easy to show that its density function either approaches a limiting value or a period

two orbit. This is exactly the behavior exhibited in Figure 8 for random Boolean networks. We have just

shown that if a network is operating under a generalized rule 126 and one segment of nodes has a very

large set of precursors, then the rest of the network, at least in toto, has a greatly simplified behavior (at

most two different modes).

This paper generalizes a cellular automaton model proposed in [5] for a Boolean network with a unique

Boolean rule for all nodes. The number of parents of a node is considered fixed in the earlier paper, while

in this paper we allow for a variable number of parents for each node. The model proposed is a natural

extension of the one in [5] and it is shown that in the particular case when all nodes have the same number

of parents, the model coincides with theirs. An algorithm for the simulation of the model is introduced

and simulation results show that the model fits the real Boolean system well. The dynamics of the model

show that the route to chaos is due to a cascade of period-doubling bifurcations, followed by a cascade

of period-halving bifurcations.
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It would be of interest to continue the study of this model under the assumption of a power-law

distribution of the number of parents of the nodes, in light of the recent studies on scale-free networks

( [1], [2], [3], [6]). Under such an assumption, the number of parents is chosen randomly from a distribution

with a probability distribution function of the type

Pγ(k) =
1

ζ(γ,N) kγ
, k = 1, 2, . . . , N

where N is the network size, ζ(γ, N) =
∑N

k=1
1

kγ is the incomplete Riemann Zeta function, and γ is

a parameter whose values have a heavy influence on the behavior of the system (see [1], [2], or [6] for

example). Analyzing the attractors and the basins of attraction would be of great interest, as well as the

transient time to reach an attractor. Also, introducing ”noise” in the system would allow one to study

the stability of the system to perturbations. In scale-free networks perturbing a very highly connected

node is expected to have a much bigger impact than perturbing a node with low connectivity.

Another topic for further investigations is to consider an asynchronous update of the Boolean rule, since

this is of importance in modeling systems composed of multiple interacting components. For example, in

certain biological systems, an ordered asynchronous (OAS) state update has a role in emergent modularity,

which in turn may contribute to the formation of dynamical hierarchies in these biological systems

( [7], [11]). It will be interesting to look at four different types of updating schemes, namely the clock

scheme ( [26], [35]), the cyclic scheme ( [24]), the random independent scheme ( [18]), and the random

order scheme ( [18]). It has been shown ( [11]) that properties of the models are changed by the particular

update scheme chosen.

It would also be of interest to go one step further in this paper’s generalization and allow for multiple

Boolean rules to be used in the iterations of the system, thus surpassing the case of cellular automata.

This would require a change in the approach, given that the Boolean rule was heavily used in generating

the model. On the other hand, only changing the unique Boolean rule to be used based on other

cellular automata rules ( [38]) could lead to interesting new models and dynamic behaviors. The area of

exploration is wide open.

This research has been partially supported by NIH grant # 1R016M672-01.
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