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Abstract

Efficient analysis of complex networks is often a challenging task due to its large size and the noise inherent in the
system. One popular method of overcoming this problem is through graph sampling, that is extracting a representative
subgraph from the larger network. The accuracy of the sample is validated by comparing the combinatorial properties
of the subgraph and the original network. However, there has been little study in comparing networks based on the
applications that they represent. Furthermore, sampling methods are generally applied agnostically, without mapping
to the requirements of the underlying analysis.

In this paper,we introduce a parallel graph sampling algorithm focusing on gene correlation networks. Densely
connected subgraphs indicate important functional units of gene products. In our sampling algorithm, we emphasize
maintaining highly connected regions of the network through parallel sampling based on extracting the maximal
chordal subgraph of the network. We validate our methods by comparing both combinatorial properties and functional
units of the subgraphs and larger networks. Our results show that even with significant reduction of the network (on
average 20% to 40%), we obtain reliable samplings and many of the relevant combinatorial and functional properties
are retained in the subgraphs.

Keywords: chordal graphs, parallel graph sampling, gene correlation networks.

1. Introduction

Many disciplines such as social sciences and biology [1, 2], rely on the network analysis for understanding and ex-
ploring their experimental data. These data, typically represented as networks, are often very large and can potentially
include some noise. In order to obtain accurate information from these large-scale complex systems it is essential
to (i) handle the large volume of data efficiently and (ii) filter out a significant portion of the noise. Graph sampling
techniques can help achieve these goals.

Graph sampling involves extracting a representative subgraph that exhibits similar characteristics to the original,
larger network. The reliability of sampling techniques is generally measured by how closely combinatorial properties,
such as degree distribution and clustering coefficient, of the subgraph mimic the original network [3]. Since, the
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underlying purpose of network analysis is to extract meaningful data from an application, it is therefore important that
in addition to comparing combinatorial properties, we also verify whether the subgraphs retain the application-based
properties of the network. Ideally, graph sampling algorithms should be tuned to the requirements of the application
and analysis metrics. However, to date, there has been little research on application-based graph sampling techniques.

In this paper, we introduce a parallel graph sampling algorithm for identifying functional units within gene correla-
tion networks, which are used to identify functional cellular mechanisms in silico. Analysis of correlation networks is
particularly useful in examining relationships within high-throughput data that were previously impossible to explore
using laboratory-based methodology such as microarray analysis.

A correlation network is represented as a graph, where vertices represent genes and edges represent the correlation
between the expression levels of two genes. A primary analytical operation of correlation networks is identifying high
density clusters of genes, represented by tightly connected vertices in the network. In order to preserve these tightly
connected vertices, we designed a graph sampling algorithm based on extracting the maximal chordal subgraph of the
network. Structures like maximal chordal subgraphs retain the number of cliques from the original networks, which
are representative of high density clusters. Our experiments on correlation networks obtained from brain tissue of
different colonies of mice show that, in most cases, our sampling technique preserves both the important functional
clusters as well as the key combinatorial properties in the subnetworks, while significantly reducing the size of the
network. To the best of our knowledge, this is one of the first tightly coupled parallel implementation of graph
sampling.

This paper is organized as follows; In Section 2 we provide brief overviews of correlation networks and graph
sampling techniques. In Section 3 we describe our parallel graph sampling algorithm. In Section 4 we present
our experimental results and analysis which include comparing both combinatorial and functional properties of the
original and subnetworks. We conclude in Section 5 with a discussion of our future research plans.

2. Background and Previous Work

In this section we give a brief description of how gene correlation networks are generated and provide an overview
of research on graph sampling.

2.1. Generating Gene correlation Networks

Gene correlation networks are created based on the correlation between expression levels of different genes as
obtained from microarray data analysis. Different measurements of correlation have been used to build these networks,
such as the partial correlation coefficient [4], the Spearman correlation coefficient [5] and more commonly, the Pearson
correlation coefficient [6]. Analysis of correlation networks where all vertices (genes) are connected to each other is
computationally very expensive. In such cases, thresholding is used for network reduction by removing edges with
low correlations [7].

The degree distribution of correlation network (filtered to remove low level expression edges) follow a power-law
distribution that indicates a scale-free network structure [2]. This indicates that there are many vertices in the network
that are poorly connected and a few vertices that are very well connected (hubs). Hubs have been found in the yeast
interactome to correspond to essential genes [8] and have been found to be critical for maintenance of structure in
other biological networks. Biologically relevant network characteristics such as hubs or clustering coefficient can be
found using combinatorial algorithms and more importantly, without the help of extra biological data. However, this
is only plausible for smaller networks. Networks built from microarray data are too large to analyze in reasonable time
creating the need for efficient sampling mechanisms. Furthermore, correlation networks can have noise or unnecessary
edges, [9] which can adversely impact the accuracy of the results.

2.2. Combinatorial Terminology and Graph Sampling Techniques

We now define some terms used in graph theory. Unless mentioned otherwise, the terms used here are as they are
defined in [10]. A graph G = (V, E) is defined as a set of vertices V and a set of edges E. An edge e ∈ E is associated
with two vertices u, v which are called its endpoints. A vertex u is a neighbor of v if they are joined by an edge. The
degree of a vertex u is the number of its neighbors. Vertices with high degrees are termed as hubs. A path, of length l,
in a graph G is an alternating sequence of v0, e1, v1, e2, . . . , el, vl vertices and edges, such that for j = 1, . . . , l; v j−1 and
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v j are the endpoints of edge e j, with no edges or internal vertices repeated. A cycle is a path whose initial and final
vertices are identical. A clique is a set of vertices which all are connected (neighbors to) each other.

We define high density subgraphs or modules as set of vertices in a graph which have a high percentage of edges
between them. Two important combinatorial measures of graph modularity are clustering coefficient and core number.
The clustering coefficient of a vertex is computed as the ratio of the edges between the neighbors of a vertex to the
total possible connections between the neighbors. A large clustering coefficient indicates presence of dense modules.
The core number of a vertex is defined as the largest integer c such that the vertex exists in a graph where all degrees
are greater than equal to c. This metric relates to how closely high degree vertices are connected.

Graph sampling encompasses many different algorithms and applications ranging from generating spanning tree
based support graph preconditioners for faster linear system solution [11] to network reduction for improved visual-
ization [12]. Most sampling methods for large scale-free networks are based on random sampling, such random node
selection [13] or random walks on the network [14]. A comprehensive comparison of different randomized sampling
algorithms can be found in [3]. Most sampling algorithms assume that the network is connected, which in the case
of correlation networks, may not always be true. Parallel random walk implementations generally involve starting
simultaneous multiple walks [15]. To the best of our knowledge, our algorithm is one of the few tightly coupled
parallel implementations of graph sampling.

Our sampling technique is based on a polynomial time algorithm for extracting the maximal chordal subgraphs
introduced in [16]. A chordal graph is a graph where there are no cycles greater than length three. The algorithm
builds the maximal chordal subgraph using a modified version of the maximum cardinality search method. Initially
the chordal subgraph consists of the starting vertex and its associated edges. In the subsequent steps, the vertex with
the maximum number of visited neighbors (which are in the chordal subgraph) is selected. An edge from the current
selected vertex a, (a, b) is added to the chordal subgraph if the number of visited neighbors of b is a subset of the
number of visited neighbors of a. The complexity of this algorithmic is O(Ed), where E is the number of edges in the
graph and d is the maximum degree. A detailed description of this method can be found in [16].

3. Parallel Algorithm for Sampling by Extracting Quasi-Chordal Subgraphs of Networks

Figure 1: Left Figure: Pseudocode for extracting quasi-chordal subgraphs. Right Figure: Steps in applying the parallel
graph sampling algorithm to a small graph. Step 1 shows the original network partitioned into two processors. Step
2 shows how the maximal chordal subgraph is obtained in each individual partition. The solid lines show the chordal
edges and the dotted lines the border edges. In Step 3, the border edges that form a triangle with one chordal edge
are selected. In this example, they are the pair (4,7) and (5, 7) and the pair (5,8) and (6,8). Step 4 shows the final
quasi-chordal subgraph. There is now a cycle of length 5, (5,7,10,11,8), in the subgraph.

The objective of our sampling algorithm is to maintain the highly connected subgraphs from the original network,
while removing some of the associated noise. We assume that the effect of noise is more likely to be prevalent in
structures formed by loosely connected vertices, since even the addition of a small number of edges can significantly
affect their clustering coefficient. Based on this assumption, we have developed a parallel algorithm for extracting the
maximal chordal subgraphs from the network. Since, chordal subgraphs retain properties like the number of cliques
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Figure 2: Visualization of Networks from the Creatine Treated Mice. A: Original Network. B: QCS with 1 Partition.
C: QCS with 2 Partitions. D: Left Figure: QCS with 4 Partitions. E: QCS with 8 Partitions. F: QCS with 16 Partitions.

of the original network while increasing the distance between vertices, we anticipate that this method of sampling
would be effective in preserving the high density clusters and eliminating the low density ones.

Our initial implementation was based on the sequential algorithm described in [16]. We adapted the original
algorithm to be applied to networks with disconnected components, like the correlation networks. We, however,
discovered that a completely chordal subgraph is a very strict restriction, and such sampling may disintegrate some of
the clusters, which are almost, but not exact, cliques. To counteract this effect we modified the algorithm to extract
quasi-chordal subgraphs, which include some cycles of length greater than three as follows;

We divide the network into P partitions. Within each partition, we obtain a maximal chordal subgraph formed
only of the edges, called chordal edges, whose endpoints lie completely within the partition. The edges that lie across
the partitions, called border edges, are included in the subgraph only if two border edges, with a common vertex,
combine with a perviously marked chordal edge to form a triangle. Since the other neighbors of the border edges are
not further checked, part of the network falling across the partitions may contain cycles larger than three. Figure 1
provides the pseudocode and demonstrates how our parallel algorithm obtains quasi-chordal subgraphs (QCS).

This algorithm can be effectively implemented in parallel, by substituting the number of partitions by the number
of processors. Also note that the condition for inclusion of border edges requires comparison only across two proces-
sors. This pair-wise communication lowers the complexity and improves the scalability of the algorithm. For each
possible pair of processors we designated one processor as sender and the other as receiver. The sender processor
Pi sends the border edges to the receiver processor Pj. The receiver processor then checks whether the vertices form
a triangle with a chordal edge. The pairs of senders and receivers are assigned such that every processor sends and
receives border edges from an almost equal number of processors. Assuming nearly equal distribution of edges across
processors, this ensures that the computation load is balanced across processors.

The scalability of our parallel algorithm can be computed as follows; Let the number of edges in the network be
E, the maximum degree of the network be d and the number of processors involved be p. The complexity of the
sequential algorithm is given by Tseq(E) = O(Ed). The parallel overhead Tover(E, p) consists of communicating the
border nodes from each processor, denoted by b, and subsequently checking, for each pair of border nodes, if they
form a triangle with a chordal edge. Assuming equal distribution of border nodes, the total communication volume is
O(bp) and the computation volume over all processors is O(b2 p). Therefore, Tover(E, p) = O(b2 p). In order maintain
isoefficiency, Tseq(E) ≥ Tover(E, p), which implies E ≥ Cb2 p/d, where C is a constant.

The memory required by to store the network is approximately O(E). Therefore, the scalability function for this
algorithm can be computed as Cb2 p

dp = O(b2/d). Thus, the parallel overhead increases with the number of border edges
which in turn increases proprotional to the number of processors. We see in Section 4 that more partitions lead to
better sampling, so there exists a trade-off between algorithmic efficiency and quality of solution. Since the quasi-
chordal subgraph (QCS) includes only border edges that are part of at least one triangle, we believe that more tightly
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Figure 3: Time for sampling subgraphs in parallel. Left: Time for GSE5078. Right: Time for GSE5140.

coupled structures (not necessarily cliques) are included while loosely coupled structures (which can include noise)
are potentially eliminated. Figure 2 shows the QCS generated from one of our sample networks.

4. Experimental Results

We evaluated the effectiveness of our sampling algorithm by comparing the combinatorial and functional proper-
ties of the original and subnetworks. The data sets for our experiments were obtained from NCBIs Gene Expression
Omnibus (GEO) website (http://www.ncbi.nlm.nih.gov/geo/) [17]. The first dataset is the GSE5078 series generated
by Verbitsky et al. [18], and is derived from hippocampal samples of young and middle-aged mice (2 months and 15
months, respectively). The second dataset is the GSE5140 series generated by Bender et al. [19], and is derived from
the brain tissue of middle aged mice, treated with oral supplementation of creatine and an untreated control group.
Networks were created by pairwise computation of the Pearson correlation coefficient for each possible pairing of the
genes and thresholding was applied to eliminate low correlation edges.

We obtained quasi-chordal subgraphs for these four networks, by the process described in Section 3 on 1,2,4,8 and
16 processors on a distributed memory system using MPI. The codes were executed on the University of Nebraska at
Omahas Blackforest linux computing cluster, consisting of subclusters of Intel Pentium D, Dual-core Opteron and 2
Quad-core AMD Opteron processors. As shown in Figure 3, our algorithm is highly scalable upto 8 processors. The
execution time on 16 processors increases due the presence of more border edges.

4.1. Analysis of Combinatorial Properties

Our first set of analysis involved comparing the combinatorial properties of the networks and the subgraphs.
Since the primary purpose of gene correlation networks is to identify clusters of similar genes, we emphasize the
retention of properties related to cluster membership such as highly connected vertices or hubs, average clustering
coefficients and core numbers. We compared the following properties between the networks using the MatlabBGL
library(http://www.stanford.edu/dgleich/programs/matlab bgl/).

1. Number of Edges: The subgraphs will have a lower number of edges. The percentage reduction is computed by
1-(Edges in Subgraph/Edges in Original Network). The higher the number the more the reduction.

2. Degree Distribution: Degree distribution is computed as number of vertices with degree d. Degree distributions
in the correlation networks follow the power law. The subgraphs should maintain a similar pattern.

3. Clustering Coefficient: We compare the average clustering coefficients per degree between the networks. The
average clustering coefficient of the subgraphs should be close to the original network.

4. High Degree Vertices: We compare how many of the same vertices appear as hubs (top 1% of the highest
connected vertices) in both the original and the sub-networks. The percentage of common hubs is computed as
Common Vertices/Total Vertices in the Original Network. The higher the number, the better the sampling.

5. Core Number Distribution: We selected the vertices in the top 5 core number groups and identified the vertices
that are grouped together both in the original network and the subgraphs. The percentage for core numbers is
computed as the ratio of the number of vertices grouped together both in the subgraph and the original network
by the total number of vertices in the top 5 core number group of the original network. The higher the value,
the better the clustering property should be maintained.
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Figure 4: Degree distribution (left figures) and average clustering coefficient (right figures) of the original network
(solid line) and the reduced networks (dotted lines). Y-axis gives the number of vertices (left figures) and average
clustering coefficient per degree (right figures). The X-axis plots the degrees in the network. A: Middle Aged Mice,
B: Young Mice, C: Control Group Mice, D: Creatine Treated Mice.
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Combinatorial Original Quasi-Chordal Subgraphs with
Properties Network 1 Partition 2 Partitions 4 Partitions 8 Partitions 16 Partitions

Middle-Aged Mice (GSE5078) (Vertices: 5,549)
Number of Edges 7,178 5,206 (27.4) 4,127 (42.5) 3,878 (45.9) 3,637 (49.3) 3,362 (53.1)
Mean Clust. Coeff. .46 .45 .31 .38 .44 .41
High Degree Vertices 144 83 (57) 60 (41) 77 (53) 80 (55) 92 (63)
Core Numbers 50 30 (60) 26 (52) 26 (52) 28 (56) 44 (88)

Young Mice (GSE5078) (Vertices: 5,349)
Number of Edges 7,277 4,949 (31.9) 4,269 (41.3) 4, 029 (44.6) 3,657 (49.7) 3,753 (48.4)
Mean Clust. Coeff. .48 .39 .47 .40 .41 .41
High Degree Vertices 146 73 (50) 106 (72) 96 (65) 86 (58) 95 (65)
Core Numbers 46 26 (56) 25 (54) 39 (84) 36 (78) 26 (56)

Control Group (GSE5140) (Vertices: 27,320)
Number of Edges 29,719 25,281 (14.9) 22,284 (25) 22,986 (22.6) 22,272 (25) 21,898 (26.3)
Mean Clust. Coeff. .54 .47 .50 .49 .51 .52
High Degree Vertices 595 368 (61) 335 (56) 451 (75) 430 (72) 431 (72)
Core Numbers 200 34(17) 37 (18) 106 (53) 112 (56) 106 ( 53)

Creatine Treated Mice (GSE5140) (Vertices: 28,161)
Number of Edges 33,099 27,278 (17.5) 23,867 (27.8) 25,268 (23.6) 24,719 (25.3) 24,641 (25.5)
Mean Clust. Coeff. .46 .45 .43 .45 .44 .48
High Degree Vertices 662 387 (58) 360 (54) 478 (72) 494 (74) 502 (76)
Core Numbers 187 58 (31) 45 (24) 101 (54) 98 (52) 117 (62)

Table 1: Comparison of combinatorial properties between the original networks and subgraphs. The numbers in the
parenthesis denote the reduction percentages. The best values of edge reduction, and hub and core number retaintion,
for each network, have been marked in bold.

Figure 4 plots the degree distribution and the distribution of the average clustering coefficient per degree of the
four networks and their subgraphs. As can be seen from the figures, for both metrics, barring slight fluctuations, the
subgraphs follow the same pattern as the original network.

Table 1 compares the other combinatorial properties including reduction in edges, mean clustering coefficient over
the entire network, hubs and core numbers. The reduction patterns are similar within the same group, i.e. the GSE5078
or the GSE5140 networks, but changes across groups. For the smaller networks in GSE5078, the sampling technique
achieves high reductions from 27% to as much as 53%, while still maintaining nearly 50% or more of the hubs and
the core number grouping. For the larger networks in GSE5140, the reduction is around 14% to 26%. The percentage
of hubs retained is 50% to as much as 75%. The core number grouping is higher ( above 50%) for subgraphs having
larger partitions (4-16). The mean clustering coefficients of all the subgraphs are very close to the corresponding
original network. In general, the results are better when there are more partitions. We conjecture that this is because
by increasing the number of partitions we include more almost-clique structures (by keeping the triangles at border
edges), as well as filter out noise (by removing border edges that do not form any triangle).

4.2. Analysis of Biological Properties

We now compare the functional units in the correlation networks. We used the Cytoscape plug-in MCODE
(http://baderlab.org/Software) [20] on each network to identify clusters, which can potentially overlap. We ex-
tracted the top five clusters of the original network and subgraphs and compared the clusters based on maximum
common genes in each set. The names of genes in each cluster were given to the PANTHER Classification System
(http://www.pantherdb.org/) [21] to identify common molecular functions. The results contain only the most repre-
sented Gene Ontology (GO) molecular function terms per cluster. A large number of the common vertices within
each cluster may not yet have a known molecular function. Therefore, to ascertain biological relevance, it is critical to
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Figure 5: Comparison of functional units of the networks of GSE5078. The leftmost column of funtionalities is from
the original network, proceeding to the functionalities obtained for QCS with 1,2,4,8 and 16 partitions respectively.
Similar color within each cluster represents similar functionality.

determine if these clusters have common function(s). If this is the case, then unknown vertices in the cluster become
targets for future experimentation. The top three functions per cluster are reported in Figure 5and 6.

We define clusters to be overlapped if the same vertex (gene) is classified as being in more than one cluster. There
were no overlapping clusters in the GSE5140 series. There was one small overlap of two clusters in the middle-aged
mice network. However, the young mice network exhibited significant overlap of more than two clusters, which
affected the comparison of the functional units. We conjecture that was because the gene pathways of the young mice
are in a more fluid and volatile state than the more fixed gene pathways of older mice. One of our future research
plans is to investigate further into the biological relevance of this phenomena.

Except for the young mice network (due to high overlap), most clusters from the original network are present in
the subgraphs. The results show that sampling from the larger networks from the GSE5140 match to more functional
units than the smaller networks, and the matching improves with larger number of partitions. We also note that several
subgraphs show common functional units (such as in cluster 3 of the middle aged mice and in cluster 1 of the creatine
treated mice) which are not present in the original cluster. We conjecture that the removal of noisy edges has exposed
these functional units previously hidden in the original network.
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Figure 6: Comparison of functional units of the networks of GSE5140. The leftmost column of funtionalities is from
the original network, proceeding to the functionalities obtained for QCS with 1,2,4,8 and 16 partitions respectively.
Similar color within each cluster represents similar functionality.
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5. Discussion and Future Research

In this paper we introduced a scalable parallel graph sampling algorithm based on extracting the maximal chordal
subgraphs from large networks. We showed that our sampled subgraphs retain most of the combinatorial and func-
tional properties of the original network. In the case of networks with significant overlap of clusters, fewer functional
units were retained in the subgraphs, despite good mapping of the combinatorial characteristics. This observation
highlights that focusing only on combinatorial metrics might in some cases be misleading. Our future research plans,
therefore, include investigating sampling techniques that can accurately represent graphs with multiple overlapping
clusters. Also we currently can not identify any strong mapping between the combinatorial and functional properties,
which would allow us to predict preservance of function units based on graph properties and therefore plan research
on other combinatorial metrics that provide greater insight to the gene cluster functionality. We also observe that sam-
pling sometimes reveals new clusters in the reduced networks. We believe that this occurs due to the elimination of
noise in the graphs. In our next projects we plan to look into noise reducing sampling techniques for large networks.
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