

University of Nebraska at Omaha DigitalCommons@UNO

Mathematics Faculty Publications

Department of Mathematics

2005

A Short Proof of a Characterization of Inner Functions in Terms of the Composition Operators they Induce

Valentin Matache University of Nebraska at Omaha, vmatache@unomaha.edu

Follow this and additional works at: https://digitalcommons.unomaha.edu/mathfacpub

Part of the Mathematics Commons

Please take our feedback survey at: https://unomaha.az1.gualtrics.com/jfe/form/ SV_8cchtFmpDyGfBLE

Recommended Citation

Matache, Valentin, "A Short Proof of a Characterization of Inner Functions in Terms of the Composition Operators they Induce" (2005). Mathematics Faculty Publications. 30. https://digitalcommons.unomaha.edu/mathfacpub/30

This Article is brought to you for free and open access by the Department of Mathematics at DigitalCommons@UNO. It has been accepted for inclusion in Mathematics Faculty Publications by an authorized administrator of DigitalCommons@UNO. For more information, please contact unodigitalcommons@unomaha.edu.

A SHORT PROOF OF A CHARACTERIZATION OF INNER FUNCTIONS IN TERMS OF THE COMPOSITION OPERATORS THEY INDUCE

VALENTIN MATACHE

ABSTRACT. The paper contains a new proof for the sufficiency in Joel H. Shapiro's recent characterization of inner functions saying that an analytic self-map φ of the open unit disk is an inner function if and only if the essential norm of the composition operator of symbol φ is equal to $\sqrt{(1+|\varphi(0)|)/(1-|\varphi(0)|)}$. The main ingredient in the proof is a formula for the essential norm of a composition operator in terms of Aleksandrov measures obtained by Cima and Matheson. The necessity was originally proved by Joel Shapiro in 1987. A short proof of the necessity, by Aleksandrov measure techniques, was obtained by Jonathan E. Shapiro in 1998.

For each holomorphic self-map $\varphi: \mathbf{U} \to \mathbf{U}$ of the open unit disk \mathbf{U} , the composition operator C_{φ} of symbol φ is defined as follows $C_{\varphi}f = f \circ \varphi$, $f \in H^2$. In this definition H^2 is the Hilbert Hardy space on \mathbf{U} , i.e., the set of all analytic functions on \mathbf{U} with square summable Taylor coefficients. It is well known that each such φ induces a bounded composition operator C_{φ} on H^2 . Recently Joel Shapiro obtained the following characterization of inner functions [7], (that is of self-maps φ whose radial limit function is unimodular almost everywhere on the unit circle \mathbf{T}).

Theorem 1. The function $\varphi : \mathbf{U} \to \mathbf{U}$ is inner if and only if

(1)
$$||C_{\varphi}||_{e} = \sqrt{\frac{1 + |\varphi(0)|}{1 - |\varphi(0)|}},$$

where $\|C_{\varphi}\|_{e}$ denotes the essential norm of C_{φ} .

The necessity in the previous equivalence was originally proved in [6]. Jonathan Shapiro [5] observed that Aleksandrov measures can be used

Received by the editors on May 7, 2003, and in revised form on May 30, 2003.

Copyright ©2005 Rocky Mountain Mathematics Consortium

to give a very short proof of the aforementioned implication. In this note we provide a new, short proof of the sufficiency in Theorem 1. Our approach is also based on Aleksandrov measures and a formula obtained by Cima and Matheson [1]. For each $\alpha \in \mathbf{T}$ the Aleksandrov measure of index α of φ is the positive, finite measure τ_{α} on \mathbf{T} whose Poisson integral equals the positive harmonic function

(2)
$$F_{\alpha}(z) = \operatorname{Re} \frac{\alpha + \varphi(z)}{\alpha - \varphi(z)} = \frac{1 - |\varphi(z)|^2}{|\alpha - \varphi(z)|^2}, \quad z \in \mathbf{U}.$$

The fact that F_{α} is positive and harmonic is a direct consequence of its definition, while the existence and uniqueness of τ_{α} is an immediate consequence of the well-known Herglotz theorem [2, Theorem 11.19]. Another well-known fact about the Poisson integral of a measure on \mathbf{T} is that its radial limit function is the absolutely continuous part in its Lebesgue decomposition with respect to the normalized arc-length measure m on \mathbf{T} . Therefore, if we denote by σ_{α} the singular part of τ_{α} , we obtain the equality

(3)
$$d\tau_{\alpha}(\xi) = \frac{1 - |\varphi(\xi)|^2}{|\alpha - \varphi(\xi)|^2} dm(\xi) + d\sigma_{\alpha}(\xi).$$

The main result in [1] is the following formula

(4)
$$||C_{\varphi}||_{e} = \sup_{\alpha \in \mathbf{T}} \sqrt{||\sigma_{\alpha}||}.$$

Based on it and the rather evident equality

(5)
$$\sup_{\alpha \in \mathbf{T}} \operatorname{Re} \frac{\alpha + z}{\alpha - z} = \frac{1 + |z|}{1 - |z|},$$

valid for each $z \in \mathbf{U}$, we are able to give the following short proof to Theorem 1.

Proof. If φ is inner, then by (3) $\tau_{\alpha} = \sigma_{\alpha}$ for any $\alpha \in \mathbf{T}$. Therefore,

$$\|\sigma_{\alpha}\| = \|\tau_{\alpha}\| = F_{\alpha}(0) = \operatorname{Re} \frac{\alpha + \varphi(0)}{\alpha - \varphi(0)}.$$

By formula (4) and equality (5) one deduces that (1) holds. This implication is proved by essentially this method in [5]. We included it for the sake of rendering this note self contained. Our original contribution is giving a short proof to the reverse implication, (which was only recently proved, [7]).

Assume (1) holds. For the beginning, we will work under the particular assumption $\varphi(0) = 0$. By (4) there exists a sequence (α_n) in **T** such that

$$\|\sigma_{\alpha_n}\|^2 \longrightarrow \frac{1 + |\varphi(0)|}{1 - |\varphi(0)|} = 1.$$

Since **T** is compact we will not reduce the generality by assuming that (α_n) is convergent to some $\alpha_0 \in \mathbf{T}$. Since

$$\|\tau_{\alpha_n}\| = \operatorname{Re} \frac{\alpha_n + \varphi(0)}{\alpha_n - \varphi(0)} = 1, \quad n = 1, 2, \dots,$$

one deduces by (3) that

$$\lim_{n \to \infty} \int_{\mathbf{T}} \frac{1 - |\varphi(\xi)|^2}{|\alpha_n - \varphi(\xi)|^2} dm(\xi) = 0.$$

Now, by applying the classical Fatou lemma in integration theory, [2, Lemma 1.28], to the sequence

$$\left(\frac{1-|\varphi(\xi)|^2}{|\alpha_n-\varphi(\xi)|^2}\right)$$

one obtains

$$0 \leq \int_{\mathbf{T}} \frac{1 - |\varphi(\xi)|^2}{|\alpha_0 - \varphi(\xi)|^2} \, dm(\xi) \leq \liminf_{n \to \infty} \int_{\mathbf{T}} \frac{1 - |\varphi(\xi)|^2}{|\alpha_n - \varphi(\xi)|^2} \, dm(\xi) = 0.$$

Hence $|\varphi(\xi)| = 1$ m-almost everywhere on **T**, i.e., φ is an inner function. To finish the proof, assume that

$$\varphi(0) = p \neq 0$$
 and $\|C_{\varphi}\|_{e} = \sqrt{\frac{1 + |\varphi(0)|}{1 - |\varphi(0)|}}$.

Denote by α_p the self-inverse, disk automorphism

$$\alpha_p(z) = \frac{p-z}{1-\bar{p}z},$$

and set $\psi = \alpha_p \circ \varphi$. Since α_p is inner we have that $\|C_{\alpha_p}\|_e = \sqrt{(1+|p|)/(1-|p|)} = \|C_{\varphi}\|_e$. Observe that $\psi(0) = 0$, $C_{\psi} = C_{\varphi}C_{\alpha_p}$ and $C_{\psi}C_{\alpha_p} = C_{\varphi}$, since α_p is equal to its inverse. Therefore one obtains

$$||C_{\varphi}||_{e} \le ||C_{\psi}||_{e} ||C_{\alpha_{p}}||_{e}.$$

We deduce $\|C_{\psi}\|_{e} \geq 1$; hence, $\|C_{\psi}\|_{e} = 1$ because composition operators whose symbol fixes 0 are contractions. By what we proved for symbols fixing 0, it follows that ψ is an inner function and hence φ is also inner because α_{p} is a disk automorphism. \square

As a final comment we would like to note that, once the essential norm characterization of inner functions in Theorem 1 is proved, one can use it to obtain an operator norm characterization, see [7].

REFERENCES

- 1. J.A. Cima and A. Matheson, Essential norms of composition operators and Aleksandrov measures, Pacific J. Math. 179 (1997), 59–64.
 - 2. W. Rudin, Real and complex analysis, McGraw-Hill, New York, 1966.
- 3. D. Sarason, Composition operators as integral operators, in Analysis and partial differential equations, Marcel Dekker, New York, 1990.
- 4. ———, Sub-Hardy Hilbert spaces in the unit disk, Univ. of Arkansas Lecture Notes in Math. Sci., vol. 10, John Wiley & Sons, Inc., New York, 1994.
- 5. J.E. Shapiro, Aleksandrov measures used in essential norm inequalities for composition operators, J. Operator Theory 40 (1998), 133–146.
- **6.** J.H. Shapiro, *The essential norm of a composition operator*, Ann. of Math. **125** (1987), 375–404.
- 7. ———, What do composition operators know about inner functions?, Monatsh. Math. ${\bf 130}~(2000),~57-70.$

Department of Mathematics, University of Nebraska, Omaha, NE 68182-0243

E-mail address: vmatache@mail.unomaha.edu