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OPERATOR SELF-SIMILAR PROCESSES ON BANACH SPACES

MIHAELA T. MATACHE AND VALENTIN MATACHE

Received 22 March 2005; Revised 21 July 2005; Accepted 30 July 2005

Operator self-similar (OSS) stochastic processes on arbitrary Banach spaces are consid-
ered. If the family of expectations of such a process is a spanning subset of the space,
it is proved that the scaling family of operators of the process under consideration is a
uniquely determined multiplicative group of operators. If the expectation-function of the
process is continuous, it is proved that the expectations of the process have power-growth
with exponent greater than or equal to 0, that is, their norm is less than a nonnegative
constant times such a power-function, provided that the linear space spanned by the ex-
pectations has category 2 (in the sense of Baire) in its closure. It is shown that OSS pro-
cesses whose expectation-function is differentiable on an interval (s0,∞), for some s0 ≥ 1,
have a unique scaling family of operators of the form {sH : s > 0}, if the expectations of
the process span a dense linear subspace of category 2. The existence of a scaling family
of the form {sH : s > 0} is proved for proper Hilbert space OSS processes with an Abelian
scaling family of positive operators.

Copyright © 2006 M. T. Matache and V. Matache. This is an open access article distrib-
uted under the Creative Commons Attribution License, which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly
cited.

1. Introduction

Let � denote a Banach space and let �(�) be the algebra of all linear bounded operators
on �. Let (Ω,�,P) be a probability space. Throughout this paper, given a random variable
X : Ω→ �, the measure PX−1 denotes the distribution of X , that is, the following Borel
probability measure:

PX−1(S)= P(X−1(S)
)
. (1.1)

The fact that two stochastic processes {X(t) : t > 0} and {Y(t) : t > 0} are identically
distributed, that is, all their finite-dimensional distributions are equal, will be designated

by the notation {X(t)} d= {Y(t)}.
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2 Operator self-similar processes on Banach spaces

Definition 1.1. An operator self-similar process is a stochastic process {X(t) : t > 0} on
� with a scaling family of operators {A(s) : s > 0}, that is, a process such that there is a
family {A(s) : s > 0} in �(�) with the property that for each s > 0,

{
X(st)

} d= {A(s)X(t)
}
. (1.2)

The property above will be referred to as the self-similarity of the process {X(t) : t > 0}
under the scaling family of operators {A(s) : s > 0}. The term operator self-similar will be
designated by the acronym OSS throughout this paper. If the process has a scaling family
of the particular form

A(s)= sHI , s > 0, (1.3)

where H is some fixed scalar and I denotes the identity operator, then it is called self-
similar instead of OSS.

Self-similar processes were introduced by Lamperti, in 1962 [10]. OSS processes ap-
peared later [9]. In this paper we consider and study OSS processes valued in (possibly
infinite-dimensional) Banach spaces. Our main idea is to obtain information about such
processes by using the theory of one-parameter semigroups and groups of operators (see
Definitions 1.2 and 1.3 below for these notions).

This section is dedicated to summarizing the main results, introducing the basic no-
tions, setting up notation, and giving some examples. Examples 1.4 and 1.9 in this sec-
tion emphasize why it is natural to think of groups of operators in connection with
OSS processes. In Section 2 we study OSS processes with rich families of expectations.
Theorem 2.3 in that section says that, if the linear space spanned by the expectations of
such a process is a set having category 2 in the sense of Baire in its closure, then there exist
constants a≥ 0 and M ≥ 1 such that

∥
∥E
[
X(t)

]∥∥≤Mta, t ≥ 1,
∥
∥E
[
X(t)

]∥∥≤Mt−a, 0 < t ≤ 1.
(1.4)

In order that the inequalities above hold we also require that the OSS processes have
a norm-continuous expectation-function t→ E(X(t)), t > 0. The main ingredient in the
proof of the theorem is the fact that OSS processes whose expectations span a dense linear
subspace of the whole space have a unique scaling family of operators which is necessarily
a multiplicative group of operators. This is proved in Theorem 2.1 of Section 2 and we
say that such processes have a spanning family of expectations. For those processes having
expectation-function, differentiable on an interval of the form (s0,∞), s0 ≥ 1 we are able
to show that the scaling family is necessarily of the form {sH : s > 0} for some H ∈�(�),
(Theorem 2.4, Section 2).

In Section 3 we consider OSS processes with scaling families of invertible operators.
The main result in that section is Theorem 3.5 which states that proper Hilbert-space
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valued OSS processes with a scaling family of commuting, invertible, positive operators
have an exponent, that is, have a scaling family of operators of the form {sH : s > 0} for
some H ∈�(�). For the term proper OSS process we refer the reader to Definition 3.5 in
Section 3.

In order to set up terminology we recall the following definition.

Definition 1.2. An additive semigroup of operators on � is a family {T(t) : t ≥ 0}, T(t)∈
�(�), for all t ≥ 0, with the following properties:

T(0)= I , T(s+ t)= T(s)T(t), ∀t,s≥ 0. (1.5)

If one can define T(t) for t < 0 such that relation (1.5) holds for all t,s ∈ R, then we
say that {T(t) : t ∈ R} is an additive group of operators. The theory of semigroups of
operators is customarily exposed in “additive notation” [7, 14]. It can be easily translated
into multiplicative notation as follows.

Definition 1.3. A multiplicative semigroup of operators on � is a family {A(s) : s ≥ 1},
A(s)∈�(�) with the following properties:

A(1)= I , A(st)=A(s)A(t), ∀t,s≥ 1. (1.6)

If one can define A(s) for 0 < s < 1 such that relation (1.6) holds for all t,s ∈ (0,∞),
then we say that {A(s) : s > 0} is a multiplicative group of operators. It is easy to see that
if {T(t)} is an additive semigroup (group) of operators, then {A(t)} given by A(t) :=
T(log t) is a multiplicative semigroup (group) of operators and conversely, if {A(t)} is
a multiplicative semigroup (group) of operators, then {T(t)} given by T(t) := A(et) is
an additive semigroup (group) of operators. For the purposes of this paper multiplica-
tive notation is preferred and results taken from the theory of semigroups of operators
and traditionally exposed in additive notation will be used in their multiplicative version
by the mechanism exposed above. The reason for this choice is visible in Examples 1.4
and 1.9.

Example 1.4. Consider a fixed random variable X and a multiplicative group of operators
{A(s) : s > 0}. Assume � is separable. For each t > 0 let μt = P(A(t)X)−1. Consider each n-
tuple {t} = {t1, t2, . . . , tn}, t1, t2, . . . , tn > 0, and set μ{t} := μt1 × μt2 ×···× μtn . There exists
a stochastic process {X(t) : t > 0} whose finite-dimensional distributions are {μ{t}}. The
process {X(t) : t > 0} is an OSS process with scaling family of operators {A(s) : s > 0}.
Proof. It is easy to see that the family {μ{t}}, where we consider all possible ordered n-
tuples {t}, n = 1,2, . . ., is a family of probability measures on � which obviously satis-
fies the consistency condition in Kolmogorov’s extension theorem, [2, Theorem 4.4.3],
thus there exists a stochastic process {X(t) : t > 0}whose finite-dimensional distributions
are {μ{t}}. The fact that this process is OSS with scaling family {A(s) : s > 0} is a conse-
quence of the fact that {A(s) : s > 0} is a one-parameter, multiplicative group of operators.



4 Operator self-similar processes on Banach spaces

Indeed, for arbitrary, fixed s > 0 and {t} = {t1, t2, . . . , tn}, t1, t2, . . . , tn > 0, one can write

P
({
X
(
st1
)∈ B1, X

(
st2
)∈ B2, . . . ,X

(
stn
)∈ Bn

})

= μs{t}
(
B1×B2×···×Bn

)= μst1 ×μst2 ×···×μstn
(
B1×B2×···×Bn

)

=
n∏

j=1

P
{
X
(
st j
)∈ Bj

}=
n∏

j=1

P
{
A
(
st j
)
X ∈ Bj

}

=
n∏

j=1

P
{
A(s)A

(
t j
)
X ∈ Bj

}=
n∏

j=1

P
{
A
(
t j
)
X ∈A(s)−1(Bj

)}

= P({A(s)X
(
t1
)∈ B1, A(s)X

(
t2
)∈ B2, . . . ,A(s)X

(
tn
)∈ Bn

})
,

(1.7)

for arbitrarily chosen Borel subsets B1, . . . ,Bn. �

Another source of examples is the following generalization of a construction by Lam-
perti.

Definition 1.5. Let {Y(t) : t ∈ R} be an �-valued stochastic process and {A(s) : s > 0} a
family of bounded linear operators on � with the property

A(st)= A(s)A(t) ∀s, t > 0. (1.8)

The process

X(t) := A(t)Y(log t), t > 0, (1.9)

is called the Lamperti transform of the process {Y(t) : t ∈R} under the scaling family of
operators {A(t) : t > 0}.

To see how the Lamperti transform is a source of examples of OSS processes, consider
the following.

Example 1.6. The Lamperti transform of a strictly stationary process under a scaling fam-
ily of operators with the property in Definition 1.5 is an OSS process.

Proof. Indeed observe that for arbitrary, fixed s > 0 one can write

{
X(st)

}= {A(st)Y(logs+ log t)
} d= {A(s)A(t)Y(log t)

}= {A(s)X(t)
}

(1.10)

so {X(t) : t > 0} is OSS. �

It is worth observing that a converse construction is also true.

Remark 1.7. If {X(t) : t > 0} is an OSS process having a scaling family of operators {A(s) :
s > 0} which is a multiplicative group of operators, then the process

Y(t)= A(et)−1
X
(
et
)
, t ∈R, (1.11)

is strictly stationary and has Lamperti transform under the scaling family {A(s) : s > 0}
equal to {X(t) : t > 0}.
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Proof. Indeed for arbitrary, fixed h∈R one has

{
Y(t+h)

}= {A(ehet)−1
X
(
ehet

)} d= {A(et)−1
A
(
eh
)−1

A
(
eh
)
X
(
et
)}

= {A(et)−1
X
(
et
)}= {Y(t)

} (1.12)

so the process {Y(t) : t > 0} is strictly stationary. Checking that its Lamperti transform
under the scaling family {A(s) : s > 0} equals {X(t) : t > 0} is straightforward. �

For Rn-valued OSS processes, a connection between this class of processes and
operator-stable probability measures has been observed by the authors of [4]. Their idea
extends to Banach space valued processes as follows.

Example 1.8. Let � be a separable real Banach space and {A(s) : s > 0} a multiplicative
strongly continuous group of operators on �. Let μ be a probability measure with a rep-
resentation of the following form:

μ= lim
n→∞A

(
sn
)
νn∗ δxn , (1.13)

where the limit above should be taken in the sense of the weak convergence of probability
measures, the powers νn of the probability measure ν are calculated with respect to the
operation ∗ of convolution, (sn) is a sequence in (0,∞) and (xn) a sequence in �. For
each such μ there is a family {bt : t > 0} of vectors in � such that setting for each t > 0,

μt := μt ∗ δbt (1.14)

and for each n-tuple {t} = {t1, t2, . . . , tn}, t1, t2, . . . , tn > 0, μ{t} := μt1 ×μt2 ×···×μtn , there
exists a stochastic process {X(t) : t > 0}whose finite-dimensional distributions are {μ{t}}.
The process {X(t) : t > 0} is OSS and P(X(1))−1 = μ.

Proof. According to [5] such a measure is infinitely divisible and hence μt above makes
sense for all t > 0. Furthermore, according to the same paper, there exist α > 0 and a subset
{bt : t > 0} of � such that

μt =A(tα)μ∗ δ−bt (1.15)

[5, Theorem 3.2]. Arguing like in Example 1.4, one gets that, by Kolmogorov’s extension
theorem, there exists a process {X(t) : t > 0} whose finite-dimensional distributions are
μ{t}. That process is OSS with scaling family of operators {B(t)=A(tα) : t > 0}. �

Of course, simpler examples of OSS processes can be given as well. For instance, we
have the following examples.

Example 1.9. Given a fixed random variable X and a one parameter, multiplicative group
of operators {A(s) : s > 0}, the process X(t) := A(t)X , t > 0 is OSS, with scaling family of
operators {A(s) : s > 0}.

Lévy processes are random processes {X(t) : t ≥ 0}which are stochastically continuous
(i.e., for each ε > 0, P({‖X(s+ t)−X(s)‖ > ε})→ 0 as t → 0), start almost surely at the
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origin (i.e., X(0) = 0 a.s.), are time homogeneous (i.e., the distribution of {X(s + t)−
X(s) : t ≥ 0} does not depend on s), have independent increments (i.e., X(t0),X(t1)−
X(t0), . . . ,X(tn)−X(tn−1), are independent for any choice 0≤ t0 < t1 < ··· < tn), and have
continuous sample-paths.

Example 1.10. An important class of examples of OSS processes {X(t) : t ≥ 0} are the
proper Lévy processes having stationary, independent, operator-stable increments and
the property that X(1) has null centering function.

We refer the reader to [4, Theorem 7] for a proof and include in the following some
explanations on the notions in the previous example. Operator-stable measures are mea-
sures obtained as limits, like the measure μ in Example 1.8. Such measures, on arbitrary
Banach spaces, are studied in [8, 18–20]. The fact that the class of operator-stable prob-
ability measures on a separable, infinite-dimensional Banach space and that the class of
infinitely divisible laws coincide is established in [19]. In [8, 18] the existence of expo-
nents for full (i.e., not supported on a hyperplane), operator-stable, probability measures
is proved. This means that a full probability measure μ on a real, separable Banach space
is proved to be operator-stable if and only if there is some operator B so that μt is a trans-
lation of the measure tBμ= elog tBμ, for each t > 0. More formally, there is a function t→ bt
called the centering function of μ such that μt = tBμ∗ δbt , for all t > 0.

The simple, yet important case of the joint limiting distribution of the sample mo-
ments

∑n
i=1X

k
i , 1 ≤ k ≤ m <∞, of a sequence Xi : i≥ 1 of R-valued independent and

identically distributed (i.i.d) random variables is considered in [11]. If X1,X2, . . . are i.i.d
as X , then X is said to belong to the domain of attraction of Y if for some sequences {an}
and {bn} of scalars, a−1

n (X1 +X2 + ···+Xn− bn)→ Y . The authors of [11] show, among
other things, that the random vector Z = (X ,X2,X3, . . .) belongs to the generalized do-
main of attraction of some operator-stable law on R∞ if and only if each Xk belongs to
the domain of attraction of some operator-stable law. The generalized domain of attrac-
tion of a random vector has a definition similar to that (given above) of the domain of
attraction of a random variable, only that one substitutes the sequence {a−1

n } by a se-
quence of invertible operators and {bn} by a sequence of vectors. The results in [11] are
summarized in the book [12, Chapter 10].

We considered important making the comments above relative to the existing litera-
ture on operator-stable laws on Banach spaces as those papers provide important context
for this one.

We conclude the introductory part of this paper by noting that the definition used by
some authors for both OSS processes and for self-similar processes is slightly different
from ours. More exactly, a stochastic process {X(t) : t > 0} is called OSS if for each s > 0
there exist an operator A(s) on � and b(s)∈� such that

{
X(st)

} d= {A(s)X(t) + b(s)
}
. (1.16)

The function s→ b(s) is called a drift-function. So in this paper we study OSS stochastic
processes with null drift-function, and simply call them OSS processes. The same goes
for self-similar processes. Also we do not include in the definition any continuity require-
ment and we consider the time interval to be (0,∞) rather than [0,∞).
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2. OSS processes with a spanning set of expectations

In this section the main idea is that OSS processes with a spanning set of expectations
have uniquely determined scaling families of operators which are groups of operators. We
prove this result and investigate its consequences. We begin by setting up some notations.
For each subset S of �, Span(S) denotes the linear subspace of � spanned by the vectors
in S and Span(S) the closure of that subspace.

A stochastic process {X(t) : t > 0} is called integrable if
∫

Ω

∥
∥X(t)

∥
∥dP <∞ ∀t > 0. (2.1)

In this case, for each t > 0, E[X(t)] denotes the expectation of the random variable X(t).
Some popular examples of Rn-valued OSS process have zero expectations (standard

fractional brownian motions for instance). Since this is often a good assumption, the
following remark is in order here.

Remark 2.1. Let {X(t) : t > 0} be an OSS process and {A(s) : s > 0} one of its scaling
families of operators. If for each t > 0 one sets Y(t) := X(t)− E[X(t)] then the process
{Y(t) : t > 0} is OSS with scaling family {A(s) : s > 0} and zero expectations.

Proof. Observe that for each s, t > 0 one can write

A(s)E
[
X(t)

]= A(s)
∫

Ω
X(t)dP

=
∫

Ω
A(s)X(t)dP =

∫

Ω
X(st)dP = E[X(st)

]
.

(2.2)

According to this computation one obtains

{
A(s)Y(t)

}= {A(s)X(t)−A(s)E
[
X(t)

]} d= {X(st)−E[X(st)
]}= {Y(st)

}
(2.3)

which proves that {Y(t) : t > 0} is OSS. Clearly E[Y(t)]= 0, for all t > 0. �

Let us denote �0 = Span{E[X(t)] : t > 0}. This subspace has the following interesting
properties.

Theorem 2.1. Let {X(t) : t > 0} and �0 be as above. The subspace �0 is left invariant by
any scaling family of operators {A(s) : s > 0} under which {X(t) : t > 0} is OSS, that is,

A(s)�0 ⊆�0 ∀s > 0. (2.4)

For an arbitrary, fixed y0 ∈ �0 and each fixed t > 0, set Y(t) := X(t) +A(t)y0. The process
{Y(t) : t > 0} is OSS with scaling family {A(s) : s > 0}. If {X(t) : t > 0} is an OSS process
with a spanning family of expectations, that is, if �0 =�, then its scaling family of operators
is a uniquely determined multiplicative group of operators.

Proof. The invariance property is an immediate consequence of the equality

A(s)E
[
X(t)

]= E[X(st)
] ∀s, t > 0, (2.5)
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which was used and proved in detail in the proof of the previous remark. Observe that

{
A(s)Y(t)

}= {A(s)X(t) +A(s)A(t)y0
} d= {X(st) +A(st)y0

} d= {Y(st)
} ∀s > 0,

(2.6)

because for each fixed s > 0 one can write

A(s)A(t)E
[
X(u)

]= E[X(stu)
]= A(st)E

[
X(u)

]
(2.7)

which implies

A(s)A(t)y0 =A(st)y0,
{
A(s)X(t)

} d= {X(st)
} (2.8)

by the operator self-similarity of {X(t) : t > 0} under {A(s) : s > 0}. This proves that
{Y(t) : t > 0} is also OSS under the same scaling family of operators. To finish the proof,
assume now that �0 = � and that {A(s) : s > 0} and {B(s) : s > 0} are two scaling fam-
ilies of operators for {X(t) : t > 0}. For an arbitrary, fixed s > 0 we wish to show that
A(s)= B(s), thus proving the uniqueness of the scaling family. This is an immediate con-
sequence of the equalities

A(s)E
[
X(t)

]= E[X(st)
]= B(s)E

[
X(t)

] ∀s, t > 0. (2.9)

To show that {A(s) : s > 0} is a multiplicative group of operators, observe that

A(st)E
[
X(u)

]= E[X(stu)
]= A(s)A(t)E

[
X(u)

]
, ∀s, t,u > 0, (2.10)

hence A(st)=A(s)A(t), for all s, t > 0. Also

A(1)E
[
X(u)

]= E[X(u)
]= IE[X(u)

]
, ∀u > 0, (2.11)

hence A(1)= I . �

Definition 2.2. An integrable process is said to have continuous expectation-function if
the map

t −→ E
[
X(t)

]
, t > 0, (2.12)

is norm-continuous.

Corollary 2.2. If {X(t) : t > 0} is a scalar-valued integrable OSS process, with continuous
expectation-function, such that

E
[
X(u)

] �= 0 for some u > 0, (2.13)

then {X(t) : t > 0} is a self-similar process.

Proof. Clearly, such a process has a spanning family of expectations so, by Theorem 2.1,
its uniquely determined scaling family {A(t) : t > 0} is a multiplicative group of operators.
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Keeping in mind that operators T on the field of scalars are functions of the form T(z)=
cz, the operator norm ‖T‖ being |c|, one can write

∣
∣E
[
X(tu)

]−E[X(u)
]∣∣=

∣
∣
∣
∣
(
A(t)− I)

∫

Ω
X(u)dP

∣
∣
∣
∣=

∥
∥A(t)− I∥∥∣∣E[X(u)

]∣∣. (2.14)

The continuity of the expectation-function and the fact that E[X(u)] �= 0 imply that the
semigroup is uniformly continuous, hence it must be of the form

A(t)= tHI , t > 0, (2.15)

for some scalar H [7, Theorem 1.5, page 8], and hence the process is self-similar. �

Of course, if {Y(t) : t > 0} has zero expectations, but is obtained as in Remark 2.1
from an OSS process {X(t) : t > 0} satisfying the assumptions in the corollary above, then
{Y(t) : t > 0} is self-similar. Another application of Theorem 2.1 is the following theorem
where, under some assumptions, we have information about the growth of ‖E[X(t)]‖
when {X(t) : t > 0} is an OSS process.

Theorem 2.3. Let {X(t) : t > 0} be an integrable OSS process with continuous expectation-
function. If Span{E[X(t)] : t > 0} is a subset having category 2 (in the sense of Baire) in the
space �0, then there exist constants M ≥ 1 and a≥ 0 such that

∥
∥E
[
X(t)

]∥∥≤Mta, t ≥ 1,
∥
∥E
[
X(t)

]∥∥≤Mt−a, 0 < t ≤ 1.
(2.16)

Proof. If E[X(t)] = 0 for any t > 0, the conclusion follows trivially. If there exists u > 0
such that E[X(u)] �= 0, then �0 �= {0}, and recall that �0 is left invariant by any scaling
family of operators {A(t) : t > 0}. Denote by B(t) := A(t)|�0 ∈�(�0). By an argument
similar to the one used in the proof of Theorem 2.1, {B(t) : t > 0} is a multiplicative group
of operators on �0.

Next we consider the multiplicative semigroup of operators obtained by taking indices
in the interval [1,∞) and show that it is a multiplicative C0-semigroup of operators, that
is,

lim
t→1+

B(t)x = x, (2.17)

for each x in �0. Clearly, if one considers x of the form x = E[X(s)] for some s > 0, the
condition above holds because

B(t)E
[
X(s)

]= A(t)E
[
X(s)

]= E[X(st)
]

(2.18)

and the expectation-function is continuous. By linearity the same is true if one chooses x
in Span{E[X(s)] : s > 0}. To prove that (2.17) holds for any x ∈�0, one needs to establish
first the fact that the family {B(t) : t > 0} is norm-bounded on a right neighborhood of 1
or, in other words, that there are some constants M′ > 0 and δ > 0 such that

∥
∥B(u)

∥
∥≤M′, ∀u∈ (1,1 + δ). (2.19)
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For each t > 0, {E[X(u)] : u∈ [t, t(1 + δ)]} is a compact set, hence a norm-bounded sub-
set of �0. This implies that the set {B(u)E[X(t)] : u∈ (1,1 + δ)} is norm-bounded. By the
linearity of the operators B(u), u > 0, it readily follows that for each x ∈ Span{E[X(t)] :
t > 0}, the set {B(u)x : u∈ (1,1 + δ)} is norm-bounded. According to the Banach-Stein-
haus theorem [16], this implies that the family {B(u) : u∈ (1,1 + δ)} is norm-bounded.
Based on that, the fact that property (2.17) holds for each x ∈ Span{E[X(t)] : t > 0} ex-
tends to the fact that it holds for each x ∈ �0 by a straightforward argument. Indeed,
let ε > 0 be arbitrary and fixed. Consider any fixed x ∈ �0. Since �0 is the closure of
Span{E[X(t)] : t > 0}, we can choose y ∈ Span{E[X(t)] : t > 0} such that ‖x− y‖ < ε/3
and M′‖x− y‖ < ε/3.

Also, since B(t)y→ y as t→ 1+ we can choose 0 < δ1 < δ such that ‖B(t)y− y‖ < ε/3
for all t ∈ (1,1 + δ1)⊂ (1,1 + δ). Now

∥
∥B(t)x− x∥∥≤ ∥∥B(t)x−B(t)y

∥
∥+

∥
∥B(t)y− y

∥
∥+‖y− x‖

≤ ∥∥B(t)
∥
∥ · ‖x− y‖+

∥
∥B(t)y− y

∥
∥+‖y− x‖

≤M′‖x− y‖+
∥
∥B(t)y− y

∥
∥+‖y− x‖

≤ ε
3

+
ε
3

+
ε
3
= ε

(2.20)

for all t ∈ (1,1 + δ1), that is, limt→1+ B(t)x = x for all x ∈�0.
Since {B(t) : t ≥ 1} is a multiplicative C0-semigroup of operators, there exist M1 ≥ 1

and a1 ≥ 0 such that

∥
∥B(s)

∥
∥≤M1s

a1 , s≥ 1. (2.21)

But {B(t) : t>0} is a multiplicative group of operators. According to [7, page 40], {V(s) :=
B(s−1) : s≥ 1} is also a multiplicativeC0-semigroup of operators so there existM2 ≥ 1 and
a2 ≥ 0, such that

∥
∥B(s)

∥
∥≤M2s

−a2 , s∈ (0,1]. (2.22)

Thus, if M0 =max{M1,M2} and a=max{a1,a2}, then

∥
∥B(t)

∥
∥≤M0t

a, t > 1,
∥
∥B(t)

∥
∥≤M0t

−a, t ∈ (0,1].
(2.23)

Now

∥
∥E
[
X(t)

]∥∥=
∥
∥
∥
∥

∫

Ω
A(t)X(1)dP

∥
∥
∥
∥=

∥
∥
∥
∥B(t)

∫

Ω
X(1)dP

∥
∥
∥
∥

≤∥∥B(t)
∥
∥ ·
∥
∥
∥
∥

∫

Ω
X(1)dP

∥
∥
∥
∥≤M0t

a

∥
∥
∥
∥

∫

Ω
X(1)dP

∥
∥
∥
∥=Mta

(2.24)

for t ≥ 1, where M =M0‖
∫
ΩX(1)dP‖.
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If t ∈ (0,1],

∥
∥E
[
X(t)

]∥∥≤ ∥∥B(t)
∥
∥ ·
∥
∥
∥
∥

∫

Ω
X(1)dP

∥
∥
∥
∥≤M0t

−a
∥
∥
∥
∥

∫

Ω
X(1)dP

∥
∥
∥
∥=Mt−a. (2.25)

�

Remark 2.3. Under the hypotheses above, if in addition, {X(t) : t > 0} has a spanning
family of expectations, then the conclusion can be strengthened to

E
[∥∥X(t)

∥
∥]≤Mta, t ≥ 1,

E
[∥∥X(t)

∥
∥]≤Mt−a, t ∈ (0,1].

(2.26)

Proof. Indeed, in this case �0 =� and hence B(t)= A(t), for all t > 0. So

E
[∥∥X(t)

∥
∥]=

∫

Ω

∥
∥X(t)

∥
∥dP =

∫

Ω

∥
∥A(t)X(1)

∥
∥dP

=
∫

Ω

∥
∥B(t)X(1)

∥
∥dP ≤

∫

Ω

∥
∥B(t)

∥
∥ ·∥∥X(1)

∥
∥dP

(2.27)

which in turn is less than or equal to

M0t
a

∫

Ω

∥
∥X(1)

∥
∥dP =Mta, if t ≥ 1, (2.28)

respectively,

M0t
−a
∫

Ω

∥
∥X(1)

∥
∥dP =Mt−a, if t ∈ (0,1], (2.29)

where M0 denotes the same constant as in the proof of the theorem above, and M =
M0
∫
Ω‖X(1)‖dP. �

Remark 2.4. If {X(t) : t > 0} is an integrable OSS process with continuous expectation-
function and if dim(�0) <∞, then there exist constantsM ≥ 1 and a≥ 0 satisfying (2.16).
In particular, if dim(�0) <∞ and �=�0, then there existsH ∈�(�) such thatA(t)= tH ,
for all t > 0.

Proof. If dim(�0) <∞, then clearly Span{E[X(t)] : t > 0} is a subset of �0 having cate-
gory 2 because Span{E[X(t)] : t > 0} = �0. In the particular case � = �0, dim(�0) <∞,
according to the previous remark, {A(t) : t ≥ 1} is a multiplicative C0-semigroup of oper-
ators. Therefore {A(t) : t ≥ 1} is a uniformly continuous multiplicative semigroup of op-
erators, because dim(�) <∞. For this reason, there is an H ∈�(�) such that A(t)= tH ,
for all t ≥ 1. But {A(t) : t > 0} is a multiplicative group of operators. Therefore A(1/t)=
A(t)−1, for all t ≥ 1, that is,A(1/t)= (tH)−1 = (1/t)H . If we denote 1/t = s, thenA(s)= sH ,
for all s∈ (0,1]. �

The existence of an H as above can be obtained on infinite-dimensional spaces if one
considers processes with the property that the expectation-function is differentiable on
an interval of the form (s0,∞) for some fixed s0 ≥ 1.
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Theorem 2.4. If the integrable OSS process {X(t) : t > 0} has the property that the
expectation-function is differentiable on an interval of the form (s0,∞) for some s0 ≥ 1,
�= Span{E[X(s)] : s > s0}, and Span{E[X(s)] : s > s0} is a subset of � having category 2 in
the sense of Baire, then the scaling family of operators of the process is of the form A(s)= sH ,
s > 0, where H is a bounded linear operator on �, uniquely determined by the following
equation:

HE
[
X(s)

]= sdE
[
X(s)

]

ds
∀s > s0. (2.30)

Proof. Observe that by Theorem 2.1, {A(t) : t > 0} is a uniquely determined multiplica-
tive group of operators. We need to show first that the family of operators {(A(v)−
I)/ logv : v > 0} is norm-bounded for v in the neighborhood of 1, that is, for all v ∈
(1− δ,1 + δ), for some δ, 0 < δ < 1. As in the proof of Theorem 2.3, it will suffice to es-
tablish the pointwise boundedness of the family on a set having category 2 in the sense of
Baire, namely, on Span{E[(X(s))] : s > s0}. For each s > s0 one can write

lim
v→1

(
A(v)− I)E[X(s)

]

logv
= lim

v→1

E
[
X(sv)

]−E[X(s)
]

logv
= sd

(
E
[
X(s)

])

ds
. (2.31)

Now this implies that for each x ∈ Span{E[(X(s))] : s > s0} the family {(A(v)− I)x/ logv}
is bounded near 1. On the other hand, the set {A(v)x : v ∈ [1,1 + δ)} is also norm-
bounded, by the continuity of the expectation-function on (s0,∞). Arguing like in the
proof of Theorem 2.3, one proves that {A(s) : s > 0} is a multiplicative C0-group of op-
erators. Hence {(A(v)− I)x : v ∈ (1− δ,1 + δ)} is norm-bounded and since 1/ logv is
bounded for v in each set of the form (1− δ,1− ε)∪ (1 + ε,1 + δ), 0 < ε < δ, one de-
duces that the set {(A(v)− I)x/ logv : v ∈ (1− δ,1 + δ)} is norm-bounded for each x in
the space Span{E[X(s)] : s > s0} which has category 2 in �. By the Banach-Steinhaus the-
orem, there exists a constant M ≥ 0 such that

∥
∥A(v)− I∥∥
| logv| ≤M, ∀v ∈ (1− δ,1 + δ). (2.32)

Since {A(t) : t > 0} is a multiplicative C0-group of operators, {T(t)= A(et) : t ∈ R}is an
additive C0-group of operators. Setting t0 = logs0 we wish to show that for each x ∈ �,
the function T(·)x is differentiable at t for any t > t0. We begin by showing this fact for x
of the form x = E[X(u)], u≥ 1. Indeed, in such a case, the following limit exists for any
s > s0:

lim
v→1

(
A(sv)−A(s)

)(
E
[
X(u)

])

logv
= sudE

[
X(su)

]

dt
. (2.33)

Taking s = et and making the substitution h = logv, we obtain that the following limit
exists, for any u≥ 1 and hence for any u > s0:

lim
h→0

(
T(t+h)−T(t)

)
E
[
X(u)

]

h
. (2.34)
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By linearity, this implies that for any t > t0 and any x ∈ Span({E[X(u)] : u > s0}), the
function T(·)x is differentiable at t. To prove this for an arbitrary x ∈�, observe that the
inequality

∥
∥A(v)− I∥∥
| logv| ≤M, ∀v ∈ (1− δ,1 + δ), (2.35)

implies

∥
∥T(h)− I∥∥

|h| ≤M, ∀h∈ (−δ′,δ′), (2.36)

where δ′ > 0 is chosen such that (e−δ′ ,eδ′) ⊆ (1− δ,1 + δ). For an arbitrary sequence
{hn}n inR such that hn→ 0, we wish to show that the sequence {(T(t+hn)−T(t))x/hn}n
is Cauchy. To that aim, choose ε > 0 and y ∈ Span({E[X(u)] : u > s0}) such that ‖x−
y‖ ≤ ε/(4M‖T(t)‖). Since the sequence {(T(t + hn)−T(t))y/hn}n is Cauchy because it
is convergent, we can choose n0 ∈N such that

∥
∥
∥
∥
∥

(
T
(
t+hm

)−T(t)
)
y

hm
−
(
T
(
t+hn

)−T(t)
)
y

hn

∥
∥
∥
∥
∥ <

ε
2

, |hn| < δ′, (2.37)

for all m,n≥ n0. In that case we can write
∥
∥
∥
∥
∥

(
T
(
t+hm

)−T(t)
)
x

hm
−
(
T
(
t+hn

)−T(t)
)
x

hn

∥
∥
∥
∥
∥

≤
∥
∥
∥
∥
∥

(
T
(
t+hm

)−T(t)
)
y

hm
−
(
T
(
t+hn

)−T(t)
)
y

hn

∥
∥
∥
∥
∥

+
∥
∥T(t)

∥
∥
(∥
∥T
(
hm
)− I∥∥

|hm| +

∥
∥T
(
hn
)− I∥∥

∣
∣hn

∣
∣

)

‖x− y‖

<
ε
2

+
∥
∥T(t)

∥
∥2M

ε
4M
∥
∥T(t)

∥
∥ = ε ∀m,n≥ n0.

(2.38)

This shows that the derivative of the function T(·)x exists at any t > t0 for any choice of
x ∈�.

According to [14, Chapter 2, Lemma 4.2], this implies that, for t > t0 sufficiently large,
HT(t) is a bounded operator, where H is the infinitesimal generator of {T(t) : t ∈ R}.
ThenHT(t)T(−t)=H is also bounded. Hence we have that T(t)= etH , for all t ∈R, that
is,A(s)= sH , for all s > 0. To show thatH satisfies (2.30), observe that for each fixed s > s0,
one can write

HE
[
X(s)

]= lim
t→0+

T(t)E
[
X(s)

]−E[X(s)
]

t

= lim
v→1+

(
A(v)− I)E[X(s)

]

logv
= lim

v→1+

E
[
X(sv)

]−E[X(s)
]

logv
= sd

(
E
[
X(s)

])

ds
.

(2.39)
�
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3. OSS processes with scaling families of invertible operators

In this section we assume that for the OSS process {X(t) : t > 0} there exists a scaling fam-
ily of operators {A(s) : s > 0} consisting of invertible operators on �. For such processes
we consider the classes of operators in the following definition.

Definition 3.1. For each arbitrary, fixed s > 0 Gs, is by definition the class of all invertible
operators A∈�(�) with the property

{
AX(t)

} d= {X(st)
}

,

G=
⋃

t>0

Gt.
(3.1)

Remark 3.2. By our assumptions Gt �= ∅, for any t > 0.

The following theorem (parts of which appear in [4] or [17] for the case of opera-
tors on Rn) has a straightforward proof. We include it in order to make this paper self-
contained.

Theorem 3.1. G is a group, G1 is a normal subgroup of G, closed relative to G. For each
t > 0, the class Gt is an equivalence class modulo G1, that is, Gt ∈ G/G1, for any t > 0, and
the map ϕ(t)=Gt, t > 0, is an onto group homomorphism of (0,∞) onto G/G1. Let p denote
the canonical projection of G onto G/G1. The process {X(t) : t > 0} has a scaling family
of operators which is a multiplicative group of operators if and only if the homomorphism
ϕ lifts to a homomorphism ψ of (0,∞) into G, that is, if and only if there exists a group
homomorphism ψ of the multiplicative group (0,∞) into G such that p ◦ψ = ϕ.

Proof. Indeed, for u,s > 0 consider A∈Gs and B ∈Gu. We can write {BX(t)} d= {X(ut)},
hence {X(t)} d= {B−1X(ut)}. Denote now tu= v, hence t = u−1v and we get {B−1X(v)} d=
{X(u−1v)}. This proves that B−1 ∈ Gu−1 if B ∈ Gu, that is, inverses of operators in G

belong to G. Now {BX(t)} d= {X(ut)} and {AX(t)} d= {X(st)}. Therefore {ABX(t)} d=
{AX(ut)} d= {X(sut)}, that is, AB ∈ Gsu which proves that G is a subgroup of the group
of all invertible operators on � and that ϕ is an onto group homomorphism, provided
that we show that the sets Gs, s > 0 are equivalence classes modulo G1. We will prove the
latter below. In a similar way, one shows thatG1 is a subgroup ofG. Let us check thatG1 is
normal. Indeed, choose an arbitrary A in G. Then A∈Gs for some s > 0. For any B ∈G1

we can write

{
BX(t)

} d= {X(t)
}

,
{
AX(t)

} d= {X(st)
}
.

(3.2)

So

{
ABX(t)

} d= {AX(t)
} d= {X(st)

}
, (3.3)

that is, AB ∈Gs or AG1 �Gs.
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Conversely now, if T ∈ Gs, then set B = A−1T . According to what we proved above,
B ∈ G1 and AB = T ∈ AG1, proving that AG1 = Gs. A similar argument leads to G1A =
Gs, ending the proof of the normality of G1 and of the fact that the setsGs are equivalence
classes modulo G1. Finally the fact that G1 is closed relative to G (not only norm-closed
but closed even with respect to the strong operator topology) is a direct consequence of [6,
Proposition 1.7.2]. Obviously, the process {X(t) : t > 0} has a scaling family of operators
which is a multiplicative group of operators if and only if the homomorphism ϕ lifts to a
homomorphism ψ of (0,∞) into G. �

In several of the previous papers on OSS processes [4, 9, 17], it is proved that such
processes satisfying good continuity assumptions have an exponent, that is, have a scaling
family of operators of the form {sH : s > 0} where H ∈�(�) is called an exponent of the
process. Relative to that, we prove the following.

Theorem 3.2. The OSS process {X(t) : t > 0} has an exponent if and only if there exists a
locally compact, Abelian subgroup � of G with the following properties:

G̃s :=�∩Gs �= ∅ ∀s > 0, (3.4)

∀ε > 0 ∃(0 < δ < 1) such that if |t− 1| < δ, then

∃A∈ G̃t such that ‖A− I‖ < ε. (3.5)

Proof. To prove the sufficiency observe first that G̃1 is a subgroup of � closed relative
to �, for each s > 0 G̃s is an equivalence class of �, modulo G̃1, and ϕ(s) = G̃s is an
onto group homomorphism of (0,∞) onto �/G̃1. This homomorphism is continuous
if the quotient topology is considered on �/G̃1. Since this is a homomorphism of topo-
logical groups, only continuity at 1 needs to be checked. To that aim, let � denote a
neighborhood of the identity in �/G̃1. In that case there exist S⊆ (0,∞) such that 1∈ S,
�= {G̃s : s∈ S}, and N =∪s∈SG̃s is a neighborhood of I . Therefore there is an ε > 0 such
that, if A ∈� and ‖A− I‖ < ε, then A ∈ N . Associate to this ε a δ satisfying condition
(3.5). For arbitrary, fixed t ∈ (1− δ,1 + δ) consider an operator A as in condition (3.5).
There must exist s∈ S such that A∈ G̃s and hence G̃t = G̃s so G̃t ∈�, or in other words,
ϕ(1− δ,1 + δ)⊆�, that is, ϕ is continuous. By a theorem of Moskowitz (see [1] or [13]),
ϕ lifts to a continuous group homomorphism ψ : (0,∞)→�, hence {A(t)= ψ(t) : t > 0}
is both a scaling family for the process under consideration and a norm-continuous mul-
tiplicative group of operators. Therefore it must be of the form {A(s) = sH : s > 0} for
some H ∈ �(�), which ends the proof of the sufficiency. The necessity is immediate.
Indeed if an exponent H exists, then set �= {sH : s > 0}. �

Exponents and more generally, scaling families of operators for OSS processes need
not be uniquely determined. See [4, 9, 17] or the following remark.

Remark 3.3. Let A be an arbitrary operator in G and ρA the inner automorphism of G
induced by A,

ρA(T)= A−1TA, T ∈G. (3.6)
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The image under ρA of any scaling family of operators of the process {X(t) : t > 0} is also
a scaling family of operators for the same process.

Proof. Assume A∈ Gs for some s > 0, then let {A(t) : t > 0} be a scaling family of opera-
tors for the given process. By the proof of Theorem 3.1, A−1 ∈Gs−1 and

ρA
(
A(t)

)= A−1A(t)A∈Gs−1ts =Gt ∀t > 0. (3.7)
�

Next we will extend to arbitrary Hilbert spaces the early result by Laha and Rohatgi
saying that proper Rn-valued OSS processes with a scaling family of positive operators
have exponents. Let � be a Hilbert space. We need to introduce some terminology first.

Definition 3.4. Recall that a probability measure μ on the σ-algebra of the Borel subsets
of �, a separable Banach space, is called a full measure if the support of μ is not contained
by a hyperplane.

Following [9], we introduce the notion of proper stochastic process.

Definition 3.5. The process {X(t) : t > 0} is called proper if PX(t)−1 is a full probability
measure for any t > 0.

Remark 3.6. An OSS process {X(t) : t > 0} with a scaling family of invertible operators is
proper if and only if PX(1)−1 is a full probability measure.

Proof. Indeed, this is a consequence of the equality

supp
[
PX(t)−1]= A(t)

(
supp

[
PX(1)−1]). (3.8)

�

Lemma 3.3. If � is a separable Hilbert space and A∈�(�) is a positive invertible operator
other than the identity, then there exists a nonzero vector x0 ∈� such that either ‖Anx0‖→ 0
or ‖A−nx0‖ → 0. If A is positive and noninvertible, then there exists some nonzero x0 such
that ‖Anx0‖→ 0.

Proof. Assume first that A is invertible and A �= I . By the spectral mapping theorem
for positive operators, [15, Theorem 1.6] it will be enough to prove the existence of
x0 for a multiplication operator Mφ, acting on L2

K (dμ) where K is a compact subset of
(0,∞), μ a finite Borel measure on K , and φ an essentially bounded nonnegative func-
tion on K with essentially bounded inverse φ−1. Indeed, each positive invertible operator
A is unitarily equivalent to such a multiplication operator Mφ by [15, Theorem 1.6].
If the set E = {x ∈ K : φ(x) < 1} has positive measure μ, then its characteristic func-
tion χE is a nonzero element of L2

K (dμ). By Lebesgue’s dominated convergence theo-
rem, one immediately proves ‖Mn

φχE‖2 → 0. If μ(E) = 0, then suppose μ(F) > 0, where
F = {x ∈ K : φ−1(x) < 1}. Again by Lebesgue’s theorem, one gets ‖M−n

φ χF‖2 → 0. One of
the sets E and F must have positive measure μ because if we suppose that both have mea-
sure 0, then φ = 1, μ− a.e., that is, Mφ = I and hence A= I , contrary to our assumptions.
Thus we established the existence of a nonzero x0 with the required properties. To show
the existence of x0 when A is noninvertible, recall that K above is the spectrum of A and
in this last case K contains 0. It is known that K coincides with the essential range of φ,
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[3]. Let us choose ε, 0 < ε < 1. Since 0 is in the essential range of φ, one obtains that the
set E = φ−1([0,ε)) has positive measure μ. Therefore χE is a nonzero element of L2

K (dμ),
and since φn(x)→ 0, for all x ∈ E, Lebesgue’s theorem can be applied again in order to
get ‖Mn

φχE‖2 → 0. �

Lemma 3.4. Let � be a separable Hilbert space and X(1) : Ω→ � a random variable such
that PX(1)−1 is a full probability measure. The only positive operator A on � with the prop-
erty P(AX(1))−1 = P(X(1))−1 is the identity.

Proof. If A is invertible then obviously P(A−1X(1))−1 = P(X(1))−1. Therefore we will not
reduce generality by assuming that ‖Anx0‖ → 0 for some nonzero x0. Denote by 〈·,·〉
the inner product of �. The mapping 〈·,x0〉 is obviously a continuous mapping on �.
Therefore one can write

P
(〈
X(1),x0

〉)−1 = P(〈AnX(1),x0
〉)−1 = P(〈X(1),Anx0

〉)−1
, ∀n≥ 0. (3.9)

Since ‖Anx0‖→ 0, one deduces P(
〈
X(1),x0

〉
)−1 = δ0. By [6, page 27]

〈
supp

[
PX(1)−1],x0

〉= {0} = supp
[
δ0
]
, (3.10)

hence

Span
(

supp
[
PX(1)−1])⊆�� Span

{
x0
}

(3.11)

which is a contradiction because this means that PX(1)−1 is not full. �

Theorem 3.5. If � is a separable Hilbert space and {X(t) : t > 0} is an OSS process with
a scaling family {A(t) : t > 0} of positive operators, commuting with each other, and if
PX(1)−1 is full, then the process is proper and {A(t) : t > 0} is a multiplicative group of
operators.

Proof. By Lemma 3.4, G1 contains only one positive operator, namely, I . This implies
A(1) = I . For any t > 0 A(t) and A(t−1) are commuting positive operators, hence
A(t)A(t−1) is positive. Since A(t)A(t−1) ∈ G1, one deduces A(t)A(t−1) = I . This proves
that the scaling family of operators consists of invertible positive operators. By Remark 3.6
this fact implies that the process under consideration is proper. Finally, in order to estab-
lish the fact that the scaling family of operators is a multiplicative group, choose s, t > 0
arbitrary but fixed and observe that A(s), A(t), and A(st) are positive operators commut-
ing with each other, for which reason A−1(st)A(s)A(t) is a positive operator in G1 hence
A(st)= A(s)A(t). �
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