
University of Nebraska at Omaha University of Nebraska at Omaha

DigitalCommons@UNO DigitalCommons@UNO

Interdisciplinary Informatics Faculty
Publications School of Interdisciplinary Informatics

12-30-2017

Semantic hierarchies for extracting, modeling, and connecting Semantic hierarchies for extracting, modeling, and connecting

compliance requirements in information security control compliance requirements in information security control

standards standards

Matthew L. Hale
University of Nebraska at Omaha, mlhale@unomaha.edu

Rose F. Gamble
University of Tulsa

Follow this and additional works at: https://digitalcommons.unomaha.edu/interdiscipinformaticsfacpub

 Part of the Computer Sciences Commons

Please take our feedback survey at: https://unomaha.az1.qualtrics.com/jfe/form/

SV_8cchtFmpDyGfBLE

Recommended Citation Recommended Citation
Hale, Matthew L. and Gamble, Rose F., "Semantic hierarchies for extracting, modeling, and connecting
compliance requirements in information security control standards" (2017). Interdisciplinary Informatics
Faculty Publications. 33.
https://digitalcommons.unomaha.edu/interdiscipinformaticsfacpub/33

This Article is brought to you for free and open access by
the School of Interdisciplinary Informatics at
DigitalCommons@UNO. It has been accepted for
inclusion in Interdisciplinary Informatics Faculty
Publications by an authorized administrator of
DigitalCommons@UNO. For more information, please
contact unodigitalcommons@unomaha.edu.

http://www.unomaha.edu/
http://www.unomaha.edu/
https://digitalcommons.unomaha.edu/
https://digitalcommons.unomaha.edu/interdiscipinformaticsfacpub
https://digitalcommons.unomaha.edu/interdiscipinformaticsfacpub
https://digitalcommons.unomaha.edu/interdiscipinformatics
https://digitalcommons.unomaha.edu/interdiscipinformaticsfacpub?utm_source=digitalcommons.unomaha.edu%2Finterdiscipinformaticsfacpub%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unomaha.edu%2Finterdiscipinformaticsfacpub%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
https://unomaha.az1.qualtrics.com/jfe/form/SV_8cchtFmpDyGfBLE
https://unomaha.az1.qualtrics.com/jfe/form/SV_8cchtFmpDyGfBLE
https://digitalcommons.unomaha.edu/interdiscipinformaticsfacpub/33?utm_source=digitalcommons.unomaha.edu%2Finterdiscipinformaticsfacpub%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:unodigitalcommons@unomaha.edu
http://library.unomaha.edu/
http://library.unomaha.edu/

Vol.:(0123456789)1 3

Requirements Engineering
https://doi.org/10.1007/s00766-017-0287-5

ORIGINAL ARTICLE

Semantic hierarchies for extracting, modeling, and connecting
compliance requirements in information security control standards

Matthew L. Hale1 · Rose F. Gamble2

Received: 4 May 2017 / Accepted: 18 December 2017
© The Author(s) 2017. This article is an open access publication

Abstract
Companies and government organizations are increasingly compelled, if not required by law, to ensure that their information
systems will comply with various federal and industry regulatory standards, such as the NIST Special Publication on Security
Controls for Federal Information Systems (NIST SP-800-53), or the Common Criteria (ISO 15408-2). Such organizations
operate business or mission critical systems where a lack of or lapse in security protections translates to serious confidential-
ity, integrity, and availability risks that, if exploited, could result in information disclosure, loss of money, or, at worst, loss
of life. To mitigate these risks and ensure that their information systems meet regulatory standards, organizations must be
able to (a) contextualize regulatory documents in a way that extracts the relevant technical implications for their systems,
(b) formally represent their systems and demonstrate that they meet the extracted requirements following an accreditation
process, and (c) ensure that all third-party systems, which may exist outside of the information system enclave as web or cloud
services also implement appropriate security measures consistent with organizational expectations. This paper introduces
a step-wise process, based on semantic hierarchies, that systematically extracts relevant security requirements from control
standards to build a certification baseline for organizations to use in conjunction with formal methods and service agreements
for accreditation. The approach is demonstrated following a case study of all audit-related controls in the SP-800-53, ISO
15408-2, and related documents. Accuracy, applicability, consistency, and efficacy of the approach were evaluated using
controlled qualitative and quantitative methods in two separate studies.

Keywords Security policy · Security requirements · Requirement extraction · Security control standards · Regulatory
compliance · Certification · Accreditation · Semantic hierarchy

1 Introduction

Laws, regulations, and corporate policies increasingly
require companies and government organizations to dem-
onstrate that mission or business critical information sys-
tems and IT infrastructures satisfy a set of security policies
governing user behavior, system behavior, and emergency
fail-safes. Given the critical nature of these systems, a lack
or lapse of security protections translates to serious privacy

and confidentiality risks that, if exploited, could result in
information disclosure, loss of money, or, at worst, loss of
life. To mitigate these risks and ensure that their information
systems meet regulatory standards, organizations must be
able to (a) contextualize regulatory documents in a way that
extracts and expresses all of the relevant technical security
implications for their systems, (b) formally certify that their
in-house systems meet the extracted requirements, and (c)
ensure that all integrated third-party systems, which may
exist outside of the protected information system enclave as
web services in a cloud, also implement appropriate security
measures consistent with the regulatory documents. Certifi-
cation practices require expertise in the information system
domain, as well as understanding the corporate culture and
organization expectations for security certification. Imple-
mented as information system security controls, the technical
portion of security policies typically include, at a minimum,
provisions governing access control, audit, data protection,

 * Matthew L. Hale
 mlhale@unomaha.edu

 Rose F. Gamble
 gamble@utulsa.edu

1 Nebraska University Center for Information Assurance,
University of Nebraska at Omaha, Omaha, NE, USA

2 Tandy School of Computer Science, University of Tulsa,
Tulsa, OK, USA

http://orcid.org/0000-0002-8433-2744
http://crossmark.crossref.org/dialog/?doi=10.1007/s00766-017-0287-5&domain=pdf

 Requirements Engineering

1 3

contingency planning, and non-repudiation [1–5]. Certifi-
cation experts seek to re-use techniques, as evidenced by
the overlay concepts now highlighted in the NIST 800-53r4
[2], which designate specific groups of controls, beyond the
baselines, that can be used for sector or industry applica-
tions such as health care, avionics, or critical infrastructure
systems.

Occurring in tandem with system development and inte-
gration, the verification step of software system certification
requires that system developers and security analysts exam-
ine security control documentation to identify all applicable
security requirements and then extensively test the system
to determine whether or not it satisfies the requirements
[6–9]. Currently, examining and contextualizing regula-
tory documents means that developers and security analysts
must read through, decompose, and interpret long, complex,
natural language textual security control documents, such as
the NIST SP-800-53 [2] (for federal information systems),
the Health Information Portability and Accountability Act
(HIPAA) (for medical information systems) [10], or the
Common Criteria (ISO-15408 for industry information sys-
tems) [3] without formal underpinnings [11]. Based on the
interpreted information, expansive test cases and security
checklists must then be generated to test all system compo-
nent features [1, 12] and certify that they meet the regulatory
requirements.

System components may be developed in-house by the
organization, created specifically for the organization by an
external organization, deployed as third-party commercial
off the shelf (COTS) products, or provided as cloud-based
web services. Any and all information system updates,
patches, or API (i.e., application programming interface)
changes that affect the system require organizations to re-
examine security control documentation to determine if
any security requirements were impacted. With externally
provided components or third-party cloud web services, re-
certification is particularly difficult, since it is more difficult
to know how the changes impact the security posture of the
system. As time goes on, and security controls are repeatedly
reexamined, test-cases tend to become myopically focused
on the new features and not the overall picture of the system
[6]. Verification and certification becomes more and more
piecemeal, incomplete, and inconsistent with previous sys-
tem iterations.

Achieving a coherent, consistent perspective of techni-
cal security control compliance that is resilient to system
changes requires coupling a requirement extraction process
that uniformly expresses and organizes security require-
ments with formal techniques for representing information
systems so that security concerns can be partitioned without
fear of myopia—since all of the direct and indirect rela-
tionships are understood between component features and
compliance requirements. Embedding both resilience and

formalization into the Risk Management Framework [13]
can enable clearer certification processes during system
extensions, continuous monitoring that may identify new
risks, and new application development. Capturing trace-
ability information about how certification was performed
can lead to less ambiguity and, instead, point more directly
to security controls affected by extension and new emerging
risks. For new development, certifiers rely on prior experi-
ence (themselves or initial consulting services) and earlier
organization documents for certification of other informa-
tion systems. Common controls defined for the organization
or overlays of controls defined for the information system
domain that have explicit formal specification and interre-
lationships with other controls provide this immediate trace-
ability and direct application as new development proceeds.
This paper introduces a step-wise pattern-based require-
ment extraction and formalization approach that produces
a compliance model that formally represents the security
compliance requirements embedded in an arbitrary group
of security controls selected by organizational security poli-
cies as a set of compliance predicates divided into security
control semantic hierarchies.

Forming a hierarchy begins by examining an organiza-
tion’s security profile. The profile dictates which technical
security controls the organization’s information systems
must comply with. Each control states one or more func-
tional security requirements, i.e., the organization, system,
or component in the system must do something or have a
certain property. Understanding how security requirements
mandate compliance requirements requires the ability to
identify key information in the security requirements that
must be verified. To do this, our model includes a set of
security governance patterns capable of extracting and
organizing control information. The governance patterns are
predicated on the understanding that security controls have
similar semantics despite having disparate representations,
formats, and groupings across documents.

After the security controls are extracted using the gov-
ernance patterns, a formal schema is used to map extracted
control content into formal constructs that uniformly rep-
resents information based on the type of pattern used. This
step produces compliance requirements that dictate con-
straints that information systems must follow. Examining
such requirements in isolation is not sufficient. Thus, in
addition to the governance patterns and formal schema, we
define a set of semantic relations capable of relating similar
compliance requirements together. Semantic relations allow
control compliance constraints to be properly placed in rela-
tion to compliance requirements from other security con-
trols. Figure 1 demonstrates how this trifecta, i.e., patterns,
schema, and relations, allows regulatory requirements to be
extracted, formalized, and grouped into semantic control
hierarchies that unambiguously defines a set of compliance

Requirements Engineering

1 3

predicates that completely represent organizational compli-
ance burdens.

At the root of each control hierarchy is a single compli-
ance predicate that expresses the functional security con-
straints of a collection of security controls that semantically
appear below it. Children of the root may add structure,
specificity, and parameters to the constraints in the predicate.
Selecting a compliance predicate to be part of an informa-
tion system’s security profile means that a verifier can trav-
erse the associated hierarchy, through the semantic links, to
determine what branches should be verified to demonstrate
compliance. Each hierarchy may encompass controls from
other different control families, as well as other governing
documents. Thus, the verification step for one document can
show compliance with constraints in other documents. In
addition, as common control groups are established for an
organization’s information systems and as overlays are des-
ignated for certain domains, the semantic links can point to
controls that have strong interrelationships with controls in
the common or overlay groups but may have been inadvert-
ently omitted.

The compliance modeling process reduces the burden
security certification by formulating compliance predicates
as logical expressions that represent underlying security
policy requirements in ways that are amenable to verifica-
tion, can be contextualized for a particular organization,
and can easily be used by other organizations following the
same regulatory standard. The process also makes explicit

all of the connections between disparate compliance predi-
cates, so that there is no question as to what must be re-
certified when a system component is patched or changed
by the organization or a third-party vendor. This rest of
this paper uses a running audit case study based on the
entire set of technical security controls relating to audit,
taken from the SP-800-53 [2], the Common Criteria-Part
2 [3], and other regulatory standards including the DoD
8500.2 [4] and its companion Application Security and
Development STIG [5]. This case study illustrates the deri-
vation and application of the compliance model.

The rest of the paper is organized as follows: Sect. 2
overviews relevant regulatory documents, the accredita-
tion tooling ecosystem around them, security requirement
extraction techniques, and formal methods that can be used
in conjunction with the compliance model for system cer-
tification. Section 3 details the three types of governance
patterns and formalization templates used for requirement
extraction and formalization. Section 4 defines the five
semantic relations necessary to relate formalized com-
pliance predicates. Section 5 brings the audit case study
together, defining every audit-centric compliance predicate
in the family of regulatory standards previously identi-
fied. Section 6 describes the methodology and results of
two complementary studies with academic and industry
compliance experts conducted to evaluate the approach.
Finally, Sect. 7 concludes the work by discussing the

Security Controls

Organiza�onal
Security Profile

Security
Requirements

Sema�c Rela�ons

Security Control Hierarchy

Compliance
Predicates

selects

applied to

related by part_of

forms

part_of

1

1..*

contain

1

1

1..*

1..*

1

1

1

1..*

1..*

Governance
Pa�erns

Compliance
Requirements

produces

1..*

Formal
Schema applied to Input to

Accredita�on
Process

Regulatory
Compliance

Fig. 1 Formation of the security compliance model for accreditation

 Requirements Engineering

1 3

implications and applicability of this approach within the
certification and accreditation tooling landscape.

2 Background

Underlying holistic security certification is the notion of
managing compliance over the life cycle of organizational
information systems by implementing and managing certain
security measures to mitigate vulnerabilities and, thus, limit
risk. Based on the Risk Management Lifecycle and Security
Allocation Control processes in [2, 13], an internal certi-
fication lifecycle [14] is depicted in Fig. 2 that describes
the security lifecycle of internally managed organizational
systems, i.e., traditional systems without cloud web service
components. The lifecycle begins when the organization
defines a security policy. A security policy [2, 9] is a high-
level document that addresses organizational security goals
as a series of abstract, but ideally, unambiguous goal state-
ments, e.g., user data will remain confidential or systems
will remain operational 99% of the time. These goal state-
ments then direct the selection of security controls, as shown
in Fig. 2, from the set of security controls provided by a
chosen regulatory standard (discussed in detail in Sect. 2.1).
Once selected, the controls govern the design of the system,
as the organization must implement the controls on top of
their system functionality.

After (and during) the system design process, vulnerabili-
ties must be assessed and mitigated in order for the security
controls to be satisfied and, thus, for the organization to be
in compliance with the regulatory standard. Resources such
as the Common Weakness Enumeration (CWE) [15] and
the Common Vulnerability Enumeration (CVE) [16] may
be used to direct the assessment and mitigation of identified
implementation issues. The end result of successful certifi-
cation is the formation of a secure system enclave [2] around
the data and functionality that the system contains in a way

that complies with the regulatory mandates and protects
critical information or infrastructure.

Organizations utilizing third-party cloud services as part
of their information system processing must follow a differ-
ent certification lifecycle [14], as introduced in Fig. 3. This
lifecycle may be applicable for any outsourced service, but
our focus is on the expected use of cloud services over which
the organization has some control. In this process, the organ-
izations are not implementing the system design. Instead
they are seeking services that perform certain functions, but
that implement organizationally selected security controls.
In this way, an organization’s choice of security controls
direct the formation of a service request. The request could
be for one or many web services. Once formed, the request
must be assessed to determine what types of vulnerabili-
ties might apply to it, e.g., vulnerabilities described in [15,
16]. For instance, a service request for web composition of
cloud storage services with a point of sale system might
have the potential for data disclosure at the interchange
points. By identifying these vulnerabilities, the organiza-
tion can construct a risk-weighted list of service terms [14]
that any prospective service providers must be able to meet.
A matchmaking algorithm may then be applied to examine
the risk-weighted service request against actual published
service provider risk terms and select the service provider
with the closest match, i.e., lowest risk of non-compliance.

For many organizations the reality is often somewhere in
between these two lifecycle views. Such organizations may
utilize cloud-based web services combined with traditional
in-house systems that form a hybrid system [17]. In all cases,
it is important that security controls are well defined and
unambiguous so that certification is consistent and repeat-
able [2] regardless of whether the operational environ-
ment is in the cloud or an in-house information technology
(IT) asset. The next sections discuss governing regulatory
documents (Sect. 2.1), the state of the art in requirements
extraction and modeling (Sect. 2.2), and formal modeling

Fig. 2 Internal system certifica-
tion lifecycle

VulnerabilitesSecurity
Policies

Security
Controls

Weakness
Assessment

Selects

Exposure

Sensitivity

Mitigation
Measures

System
Design

Governs

DeterminesSatisfies

CWE,CVE,CCE, etc

Local
Data

Local
System
Enclave

NIST sp 800-53,
DODI 8500-2

Common Criteria P2

Requirements Engineering

1 3

approaches for representing traditional and cloud-based sys-
tems (Sect. 2.3).

2.1 Federal and industry regulatory documents

Organizations with critical systems, such as government
agencies, hospitals, corporations, or military branches,
typically follow one or more federal or industry regulatory
standards to ensure their systems meet confidentiality, integ-
rity, and availability constraints. These regulatory stand-
ards include the NIST Recommended Security Controls
for Federal Information Systems and Organizations (NIST
SP-800-53) [2], Department of Defense Instruction 8500.2:
Information Assurance (IA) Implementation (DoDI 8500.2)
[4], and its companion document the Defense Information
Systems Agency’s Application Security and Development
Security Technical Implementation Guide (DISA-AppStig)
[5] (for federal information systems), the Health Information
Portability and Accountability Act (HIPAA) (for medical
information systems) [10], and the Common Criteria (ISO-
15408) [3] and Cloud Computing Matrix [18] (for industry
information systems). All of these documents are directly
addressed in our approach with the exception of HIPAA,
which has been the focus of a number of other research
initiatives including widely accepted work by Breaux and
Anton [19], discussed in Sect. 2.2.

The gold standard for federal information systems is the
NIST SP800-53 [2]. The SP800-53 structures its security
controls using a well-defined three level system. At the top
is the control family. Each family describes either a set of
controls that are technical (impacts system design), manage-
ment (governs organizational planning, risk assessment and
authorization), or operational (relates to personnel training,
physical configuration and security, incident response, etc.).
There are a total of 18 high-level families that include provi-
sions for audit, access control, and contingency planning.

Below the high-level family are individually numbered and
named security controls that describe particular security
requirements. Finally, the bottom level is comprised of con-
trol enhancements that decompose the control into particu-
lar facets of interest and generally expand on the security
control content.

The DoDI 8500.2 [4] is an older federal standard, on
which the Department of Defense Information Assurance
Certification and Accreditation Process (DIACAP) [1] is
based. The DoDI 8500.2 is much less structured than the
SP800-53 and has much less concrete control statements.
Each information assurance control in the DoDI 8500.2 has
a unique control number and is grouped into one of several
possible subject areas. Each control has three versions, one
for each of the mission assurance categories which describe
the level of mission criticality applicable to the control.
STIGs, or security technical implementation guidelines,
specifically the 2011 Application Security and Development
STIG [5], extend the DoDI 8500.2, reducing the abstraction
of control statements by filling in details such as stating the
type of encryption required, or specifying the structure or
type of events that must be audited. A hodgepodge of other
documents, including the DoDI 5200.2, 5200.40, 8500.1,
OMB-Circular A-1-130 [20–23], relate to the DoDI 8500.2,
but are either to high level [22, 23], non-technical [20], or
outdated [21] and are thus not applicable to our work. For
instance, the DoDI 5200.2 [20] is a non-technical docu-
ment describing the DoD recommendations for personnel
security programs, and OMB A-130 [23] and DoDI 8500.1
[22] describe the roles of executive departments and agency
heads and high-level policy requirements, respectively.

The Common Criteria for Information Technology
Security Evaluation, hitherto labeled Common Criteria or
simply CC, contains three parts [24]. Part 1 describes the
general model taken by the CC and defines relevant termi-
nology [24]. Part 2 [3] defines a set of Security Functional

Fig. 3 External cloud-based
system certification lifecycle

Vulnerabilites
Org

Security
Policies

Security
Controls

2. Performs
Weakness Assessment

Selects

Exposure

Sensitivity

Risk Weighted
Service Terms

Service
Request

1. Establishes

3. Determines5. Defines Risk of
non-compliance

CWE,CVE,CCE, etc

Cloud
Data

SLA-Mediated
Cloud Enclave

NIST sp 800-53,
DODI 8500-2

Common Criteria P2

Accepted
Service Offer

4. Performs
Matchmaking

 Requirements Engineering

1 3

Requirements that resemble the security controls defined in
the SP800-53. Parts 3 [25] focuses on Security Assurance
Requirements and the methodology that must be used for
evaluating IT security. Our work focuses explicitly on Part
2, designated as ISO-15408 or simply referred to as CC-
Part2 in this paper, as it describes the security requirements
organizations must follow. The CC-Part2 follows a three
level structure, like the SP800-53, but is organized using a
component-based format. At the top is the functional class
which describes the category, such as security audit. Next
are a set of functional families that denote general security
requirements, e.g., the need for audit storage protection.
Below each of these are one or more components which
describe particular details of the security requirement and
may be hierarchical to each other.

2.2 Security requirement extraction and modeling

Before discussing how security requirements can be
extracted and modeled, it is important to define certain ter-
minology in order to proceed with a common vernacular.
Foundational work by Haley et al. [26, 27] provides a formal
treatise on the security requirements engineering process
and complements the NIST security life cycle [2, 13]. Haley
defines requirements in terms of security goals and threats
to identified assets. Assets are “objects with a direct or indi-
rect value” [27] which if lost would incur some harm. A
threat description describes the harm caused if an action
is performed on an asset. Security goals are threat descrip-
tions prefaced with “prevent.” Finally, security requirements
are operationalized security goals that constrain the system
design to prevent or reduce possibly harms to the set of iden-
tified assets. The NIST SP800-53, like the CC, defines secu-
rity controls [2, 3] as “safeguards” or “countermeasures”
that when implemented, provide a “level of security due
diligence” for organizations. Contrasting this definition with
Haley’s, we can say that security controls contain one or
more security requirements that constrain system design to
prevent harm to identified assets, i.e., they fulfill the security
goals of the organization.

In addition to this defined core terminology, the security
requirements extraction process produces context-specific
terminology [2], such as what the definition of an auditable
event is or what organizational parameters mean. Ontolo-
gies [28–33] are typically used to organize and structure
context-specific terminology, which helps security analysts
to classify and reason over security controls in regulatory
documents. Ontologies, at their core, consist of a set of
entities [34] that represent concrete concepts, or types of
things, and a set of relations [34] that connect disparate
concepts. For instance, a few entities might be John Len-
non, Person, Beatles. These entities could be related together
using common ontological relationships like is_a or part_of,

e.g., John Lennon is_a Person who is part_of the Beatles.
Applications of ontologies to the security lifecycle include
assisting organizations in the security control selection and
design-time software engineering process [33, 35], provid-
ing support during the policy decision making process [36],
enabling run-time adaptations (such as web service replace-
ment) [37], and providing the building blocks for structuring
regulatory terms and controls [38, 39].

In the latter realm of classifying terms and security con-
trols, Lee, et al. [38, 40] examined the DITSCAP [21], the
predecessor to the DIACAP [1], and its family of documents.
Their goal was to facilitate security certification by linking
together federal regulatory requirements across document
abstraction levels. They defined three requirement levels
to separate high- and low-level security requirements [38].
At the top were generic requirement document categories,
where the OMB A-130 [23] fit, that described the “Why” of
the security plan, security development strategy, or techni-
cal control summary. Drilling down yielded domain span-
ning requirements, embedded in policy documents such
as the DoDI 8500.1 [22], which expanded the higher-level
categories. Finally, at the bottom were sub-domain require-
ments which further specified “how” the higher require-
ments should be implemented in systems, using controls
in the DoDI 8500.2 and operational guidelines in the DoD
5200.2 [20].

Lee et al. [38] provided basic natural language (NL)
requirement extraction by (1) decomposing complex require-
ments into atomic statements, (2) determining the level of
abstraction that an atomic statement applies to, (3) assign-
ing it to one of the DITSCAP requirement categories, and
(4) eliminating any conflicts that may exist between docu-
ments. Several ontological linking relations, such as com-
ply_to, specific_to, and realized_by, were defined to link the
requirements between levels. The end result was an infor-
mal, natural language, network of requirements that could
be used to build a DITSCAP checklist for organizations to
assess compliance against. While helpful and novel when
originally developed, their approach is limited by its infor-
mal nature and by its attachment to DITSCAP-related docu-
ments, which are now obsolete.

Tsoumas et al. [39] develop a risk analysis approach
that relates various elements involved in the risk assess-
ment, mitigation, and certification lifecycle. Their frame-
work allows high-level policy statements (the “what”) to be
linked to lower-level security controls (the “how”), similarly
to Lee’s approach. In their work, a system profile is con-
structed to identify system assets and represent the security
controls used to protect them. This construction relies on
statements in OWL-DL [34], which are quantified over the
assets in order to define the necessary and sufficient con-
ditions required for policy compliance. OWL, or the Web
Ontology Language [34], comes with a RDF, i.e., resource

Requirements Engineering

1 3

description framework, serialization that facilitates com-
mon interchange. Despite OWLs wide acceptance as a W3C
standard [34], it can be unnecessarily complex and is not the
right representation tool for every situation.

Taguchi et al. [8] construct a framework, targeted at the
Common Criteria, for modeling security requirements and
facilitating security assurance. Their framework consists of
a meta-model and a multistep requirements and assurance
lifecycle for specifying and verifying use and misuse cases.
The meta-model, constructed similarly to ontologies, defines
the structure of the Common Criteria using a two-actor
environment (a user and threat agent) and set of use cases
and security functions that realize CC security functional
requirements and prevent threats to assets [8]. The phases of
their lifecycle resemble the NIST lifecycle [2, 13] and assist
security analysts by mapping security control requirements
in the Common Criteria to use/misuse cases for certification
efforts.

Breaux and Anton [19], in widely accepted work focused
on healthcare regulations [19, 41], develop the notion of
using semantic patterns for extracting and expressing pri-
vacy policy requirements from HIPAA regulation state-
ments. Although the concept of patterning natural language
is not new, their approach successfully uses it to develop
triples of actor, action, and object to state compliance con-
straints as exceptions, obligations, and rights. Despite the
exceptional nature of their work, their patterned approach is
specific to HIPAA because the privacy statements follow a
regular format that is not found in, or applicable to, security
control regulatory documents [19]. Privacy controls, which
have been forcibly separated in the NIST SP800-53r4, can be
generalized into handling, storing, and transmitting. HIPAA
has a very strong focus on data handling by personnel and is
only related to health data, which is why Anthem Blue Cross
was not penalized when hackers were able to access 80 mil-
lion US personal identifying information, including social
security number, birth dates, and employers, but not health
care information [42]. The policy statements are at a higher
level than the NIST and related security controls. Thus, they
are not constructed with a structure that would be amenable
to formalization and this is one of the drawbacks of HIPAA.
Others using semantic patterns include Daramola et al. [43],
who create what they refer to as requirements boilerplates
that allow requirement engineers to fill in the blanks with
parameterized information related to their application(s).
Example boilerplates include semantic patterns such as “The
〈system〉 shall be able to 〈action〉 〈entity〉” [43].

Several tools and research efforts have tried to provide
a more generalized patterning process for examining func-
tional requirements (not necessarily security requirements),
expressing them in a patterned way, and using the patterned
content to support the derivation of class elements. For
instance, the Requirements Analysis Tool (RAT) [44] adds

structure to NL statements taken from arbitrary software
requirements documents to develop a set of heuristics, e.g.,
patterns, that enable the construction of a high-level system
class diagram. Another tool, called Circe [45], constructs
and uses domain-specific glossaries, which contain a list of
key terms and synonyms found in NL requirement document
text, to perform a series of canonization and tokenization
steps to transform plain NL text into a structured format.
It uses model-action-substitution rules (MAS-rules) in the
transformation process, where a single MAS-rule is a triple,
〈m, a, s〉 that applies to a requirement t. When m matches a
fragment of t, the action a is applied resulting in the frag-
ment of t being replaced by s. The end goal is a model of
the extracted requirements which experts can evaluate for
correctness.

2.3 Formal system modeling

Once requirements have been extracted from regulatory
documents, system designers must be able to demonstrate
their systems satisfy the requirements. Research [26, 37, 39,
46] has shown that ad hoc approaches that do not formally
represent security features during the system architectural
design process are much more prone to vulnerabilities and,
thus, suffer from increased risk of exploitation. The chal-
lenge for system designers is to represent their systems in a
form amenable to certification against the extracted regula-
tory requirements. Secure cloud system modeling relies on
demonstrating virtual isolation [47], security property pres-
ervation in web compositions [48, 49], and operational cor-
rectness [7, 47, 50–53]. Virtual isolation ensures that each
cloud execution environment is accessible only be approved
parties [47], e.g., one cloud client cannot view or modify
data or functionality being used by a second cloud client and
vice versa. Preserving security properties [48, 49] requires
demonstrating that there are no local (i.e., pairwise between
services) or global (i.e., end-to-end across service composi-
tions) violations of data integrity, confidentiality, or avail-
ability regulatory requirements. Such violations may arise
as a result of trust [49, 54] or communication [48, 49, 54]
issues that may exist between the selected web services. The
last issue, operational correctness [47], refers to systems or
compositions of services performing as expected. In other
words, functionality meets its stated goals without introduc-
ing error scenarios that could be potentially exploitable.

Overcoming these security modeling challenges has
been the focus of numerous works [46–49, 55, 56]. Among
those works, Bleikertz et al. [47] follow a graph theoretic
approach to express virtual isolation and certain operational
correctness requirements as graph rules, e.g., for isolation
two nodes outside of the same security domain may not
communicate. Their graph rules are then mapped onto the
formal language VALID [47] which uses model checking to

 Requirements Engineering

1 3

compare the run-time states of virtual machines (VMs) in
the cloud against the defined security graph rules. Singara-
velu et al. [49] examines the access control, encryption, and
trust implications associated with end-to-end messaging in
web service compositions. They introduce WS-FESec as a
WS-Security extension that improves the end-to-end han-
dling of confidentiality and integrity constraints in messages
[49]. She et al. [48] propose a message exchange protocol
for information flow control among composed services to
reduce violations. Their carry-along policy and pass-on cer-
tificate advertise service flow control policies and prevent
information leakage by providing appropriate credentials,
but it incurs a large overhead due to the increased interac-
tion among the services required to appropriately process
the policy directives.

Cloud systems can also be modeled using a coordination
language approach. Coordination languages have been used
successfully to formally verify operational correctness [50,
51] and security properties over static SOA specifications
[7, 51, 57]. The primary coordination language construct is
a tuple space. Tuple spaces are a well-studied data structure
[7, 57–59] that facilitate a data-driven model of component
interactions. Tuple space usage originated with the parallel
programming language Linda [59], which provided the three
operators in, out, and rd to allow tuples to be, respectively,
entered, removed, or read from the tuple space. Merrick
et al. [58] established a set of scoping rules that allowed
Linda tuple spaces to be nested or isolated from one another.
KLAIM [51] first introduced permissions to tuple spaces
providing access control mechanisms capable of limiting
which processes or components in a system can manipu-
late or read the content of tuples in a space. Their approach
relies on a set of static access control policies to limit certain
processes to their respective spaces and is course grained
meaning single tuples and data fields cannot be restricted
within a tuple space.

Recently, Linda-like tuple spaces have been applied by
Bravetti et al. [52] to model and secure coordination in un-
trusted interaction environments that occur between com-
posed services. Their work developed a language called
SecSpaces [52] which refines Linda tuples with asymmetric
key-based control fields that provide fine-grained access
control over elements in a tuple. A SecSpace tuple may only
be read, i.e., rd, if the provided credential matches the stored
private key. However, despite these advances from previ-
ous Linda iterations, SecSpaces lacks the formal proof logic
necessary to prove temporal interaction properties. Another
coordination language, named X-UNITY [7, 53], pro-
nounced “cross-unity,” offers all of the fine-grained access
control and encryption capabilities of SecSpaces, but also
brings to bear a powerful temporal proof logic associated
with its predecessors [50, 60]. Of the coordination languages
available, it provides the most fertile ground for representing

services in the cloud and the best proof theory for proving
temporal properties over service specifications. The compli-
ance models derived by our extraction process can be used
to direct certifications in any of the above, and many other,
temporal logic-based modeling paradigms.

2.4 Addressing security requirements
during development

Extracting and modeling security requirements strictly for
use during the design phase of the software development
lifecycle is not sufficient. Instead, those requirements should
also be applicable throughout the implementation, certifi-
cation, and maintenance phases. Multiple research efforts
[61–68] have explored how formalized security require-
ments and formal methods used in the design process can
be translated into developer-friendly tools for use during
product implementation. Generally, these approaches focus
on providing traceability from requirements to code to test
cases [61–63], weakness, threat, and vulnerability reposi-
tories knowledge re-use for risk assessment and mitigation
[64–66], and tool support for certification [67, 68].

Keeping code traceable to the requirements that gener-
ated it to the test cases that assess whether those require-
ments are satisfied or not is the central focus of many efforts
within the requirements engineering community. Wang et al.
[61] examined this problem in the context of open source
projects using a mapping approach called a requirements
traceability matrix. Using an open source project called
iTrust as a case study, they identify three common situa-
tions that lead to traceability concerns—extending an exist-
ing requirement, implementing a requirement, and realizing
a previously unfulfilled requirement. Ghezzi et al. [62] focus
on formal methods that account for the iterative effect of
continuous evolution. They use an incremental model-check-
ing approach based on evolving statecharts to state logical
properties and compare them against a system model during
agile development. Mahmoud and Niu [63] focus on refac-
toring techniques that recover structural vocabulary terms
to improve information retrieval (IR)-based traceability
techniques that span code, tests, and requirements. Their
approach works by making textual artifacts more norma-
tive through systematic refactoring using three operations
(Rename Identifier, Move Method, eXtract Method) adapted
from other in IR-based approaches. Rename focuses on
ensuring terminological consistency across software evolu-
tions in a way that maps to the original design requirements.
Move method removes misplaced signs of traceability by
ensuring that code is packaged in the place it was designed
to be in. Finally, extract method removes duplicated code
where requirements may be traced to multiple instances of
the same code, based on copy-paste style programming.

Requirements Engineering

1 3

Knowledge re-use efforts largely focus on using formal
methods and requirements side-by-side with repositories,
such as CWE [15] and CVE [16], to generate certifica-
tion criteria for use during design and development. One
approach by Hermoye et al. [64, 65] uses extends formal
semantics in the KAOS [69] framework to allow for the use
of attack pattern libraries and associated countermeasures.
Attack patterns express anti-goals, domain properties, and
predicates generically. The re-use approach is 4-phased. First
retrieve relevant generic attack patterns. Next, specialize
them, by adapting the patterned concepts to fit the specific
cases applicable for the system of interest. Third contextual-
ize anti-goals according to the how and why the specialized
attack applies to the system. Finally, derive new or re-use
existing requirements that act as countermeasures for the
identified contextualized threats. In similar work by Saeki
and Kaiya [66], the Common Criteria is used alongside
the ECMA-271 E-COFC [70] as the source of knowledge
for requirements elicitation. As with Hermoye, Saeki and
Kaiya [66] focus on the role of a threat catalog, however,
the countermeasures that they emphasize (i.e., the security
requirements that mitigate identified attack patterns) are
derived directly from security controls specifying Security
Functional Components in the CC.

Tool support is another area focused on developers. It is
important for approaches relying on formal methods and
formally stated requirements to consider how those meth-
ods and requirements can be presented developers in an
understandable and usable way [67]. Hence, tools are often

developed to assist developers in applying formal require-
ments analysis techniques during development. Yu et al.
[68] propose a meta-model and associated automated tool,
called OpenRISA, that makes the connection from formal
methods to formal arguments that can be used in support
of the risk assessment process. Their work extends ear-
lier security argumentation work by Haley et al. by adding
support for public security catalogs (such as CAPEC [71]
and CWE [15]) and automatic reasoning. Figure 4, from
[68], overviews the RISA approach. The process seeks to
prioritize risks and identify mitigations using a combina-
tion of the security requirements on the system and public
repositories of attack patterns and software weaknesses. Our
work in this paper fits within steps 2 and 3 of the RISA
approach, as we have highlighted in red atop the figure. Our
work offers increased precision for security requirements as
well as traceability to the regulatory documents where the
security functional requirements were generated. The logic-
based syntax of our requirements process is integrable with
approaches such as the RISA method.

3 Governance patterns and formalization

The first step in extract requirements from regulatory docu-
ments involves identifying common elements expressed
in the natural language text of the document. This section
defines a set of security governance patterns capable of
directing control statement property extractions. Associated

Fig. 4 RISA method from [68]. Improving steps 2–3 (overlaid in red) through more precise and integrative requirement specification, as in the
compliance hierarchy modeling process, are within the scope and purvey of our work in this paper (color figure online)

 Requirements Engineering

1 3

with each pattern is a modeling template that maps extracted
control content to a temporal logic construct based on the
pattern type. The logic constructs are reminiscent of first
order logic, but also rely on elements of temporal state-
based logic, such as in [60]. The patterns were empirically
derived by examining existing controls in existing regulatory
standards in a way that allows them to be applied regardless
of organizational, business, or government agency bounda-
ries. To ensure future re-use, the derivation process of each
pattern is clearly defined. This means that compliance predi-
cates formed by applying the patterns can be used for verify-
ing an information system’s behaviors, without being tied
to specific document syntax. It also means that the pattern-
based extraction and modeling process can accommodate
newly introduced controls as they come out, such as those
that may specifically address web services and cloud secu-
rity, in a way that can be transformed to a verification con-
struct consistent with other existing security constraints. It
goes beyond the NIST SP800-53Ar4, which provides insight
into using “examination,” “interview,” and/or “testing” to
establish parts of security controls, by highlighting relation-
ships among controls so that the certification techniques can
also be directly related depending on the family and indi-
vidual specification of the control.

All security controls have a general security policy intent,
or area of security within an information system, such as
separation of duties or cryptographic mechanisms. Deter-
mining the intent is the first step in the patterning process
and is based on the placement of the control in the gov-
erning document, its descriptive title, and the context of its
goal statement. Assigning intent to security controls forms
an intent class that relates controls based on their specific
requirements. If an examined control does not fit into any
existing class, then a new class is formed. For example, pat-
terning a control related to determining which events should
be audited would introduce an “auditable event” intent class.
Another control, perhaps describing the type of encryption
mechanism for audit records, does not conceptually fit with
types of auditable events. Instead a new class with the intent
of “audit protection” would be created. Controls in classes
that are closely related can be periodically reexamined as
the extraction process progresses to determine if any can
be deemed a better fit in another intent class. The result
is a partitioning of controls at a fine enough granularity to
separate concerns, but not so fine that there are unnecessary
hierarchies.

Each intent class will ultimately form a separate secu-
rity control hierarchy. Each control in a class must first
be extracted by a governance pattern. The pattern used is
selected based the control’s information content. Analy-
sis of the governing documents indicates that a security
control targets one of three information system functional
goals (1) it requires the information system(s) to abide by

the formatting and parameters that the organization imposes,
(2) it supplies information about how a function should per-
form some mission critical security functionality, or (3) it
defines mechanisms that protect critical assets. Other techni-
cal controls relate to the definition of policy artifacts that the
organization designates for human review and intervention.
Though this last type is a pattern, it is non-technical and thus
outside the scope of this work, which specifically focuses on
technical requirements.

Each governance pattern, i.e., imposes, performs, or
protects, requires security analysts to select a certain level
that denotes the scope of the control. The possible levels
include Org (organization), meaning the control statement
is based on an organization-wide directive, InfoSys (informa-
tion system), meaning it applies to an information system
implementation, or Comp (component) meaning the state-
ment applies to a specific component or process within an
information system.

Using a box notation similar to that found in Z [72], we
define a model template to house and formally express the
information in each patterned control. The template, shown
in Fig. 5, consists of three fields. The top identifies the con-
trol statement by its document of origin and identifier. The
middle is used to formally define a set of declared variables,
extracted by the security control pattern. Unless specifically
designated, these variables are universally quantified within
the instantiated template. The bottom is the constraint spec-
ification that defines logical relations embodying compli-
ance requirements in the extracted control. Requirements
that express a temporal state change are represented using a
“leads-to” relation. The statement p “leads to” q means that
when a system reaches a state which satisfies the predicate
p, eventually it will reach a state satisfying another predicate
q, whether or not p still holds in q [35]. Bolded text in a
template denotes a label that may be re-used across controls.
These labels are helpful when multiple controls specifically
reference elements defined by other related controls. All
patterns use the same template, but may have slight varia-
tions in their actual instantiation and expression based on the
information extracted by the governance pattern.

Applying the patterns to the full set of organizationally
selected controls results in an enumeration of compliance
requirements, that when grouped into compliance predicates,
collectively define the organizations mandated security

declared_var1 : Type
⁞
declared_varN : Type

[document, control iden�fier]

Constraint or Rule

Fig. 5 Modeling template

Requirements Engineering

1 3

profile. The following sections detail each pattern, describ-
ing the types of controls it applies to, what information is to
be extracted, and how to formalize the extracted information.
The patterns are highlighted in the context of the running
audit case study.

3.1 Imposes

Security control documentation requires organizations to
select certain policy parameters and impose them on desig-
nated critical information assets. To accommodate and rep-
resent this type of security control, we created the imposes
pattern. The imposes pattern specifically applies at the Org
level meaning that the organization applies policy param-
eters to certain identified assets in all of the information sys-
tems it controls and uses. It is important to note that imposes
cannot apply to Info Sys or Comp levels. The imposes pattern
is read as follows:

where 〈policy entities〉 are the organizationally defined
parameters that constrain information assets denoted by
〈assets〉 or, more generally, all information systems (when
〈assets〉 is left null). Policy entities govern particular fac-
ets of the system such as specifying the encryption method
systems must use, establishing information record keeping
requirements for audit record assets, or defining auditable
events. For imposes patterned controls, the definition and
representation of policy entities constitute the compliance
requirements associated with the control statement.

Formulating an imposes requirement involves identifying
the policy entities and the assets they are imposed on and
then mapping the extracted fields to the modeling template
from Fig. 5. This mapping includes typing, quantifying,
and perhaps constraining each extracted control parameter.
When typing control parameters, we assume a basic set
of primitive types exist, such as String, Integer, Boolean,

Org imposes ⟨policy entities⟩ on ⟨assets⟩

and Component. Other complex types may be defined dur-
ing control extraction to represent the specific semantics of
control parameters. Complex types are generally objects
that are developed from primitive types. An example might
be a type called UID, which is a semantically meaningful
type of Integer that defines a user ID. The typing process
also allows for the definition of sets, simply denoted as Set
〈type〉, and powersets denoted as℘ 〈type〉, where type is a
defined primitive or complex type. Here, a set is an unor-
dered collection of the underlying type and a powerset is
a set of sets of the underlying type. Finally, the notation ↑
〈typename〉 is used to designate a Compliance Type which
is a compliance predicate that results from the development
of a semantic hierarchy elsewhere in the compliance model;
this is discussed extensively in Sect. 4.5.

As an example, Fig. 6 illustrates an audit security con-
trol from the Common Criteria called FAU_GEN.1.2. This
control, from the functional audit family, imposes six con-
tent parameters on all information system audit records and
allows for additional content to be included in the record.
During control extraction, an intent class called Audit
Records is created to collect groups of controls, includ-
ing FAU_GEN.1.2, that are related to how an audit record
is defined. The instantiation of the imposes pattern for
FAU_GEN.1.2 appears under its NL control statement in
Fig. 6. The filled modeling template to the right identifies
the Common Criteria as the document and FAU_GEN.1.2
as the control id. Below the title box are the declared vari-
ables which represent the policy entity parameters extracted
by imposes. Given these parameters, the information asset,
called record, is defined to be “at least” the required param-
eters, as denoted by the symbol (≍), but could potentially
have additional content parameters. The record will con-
tribute to the AuditRecord type as shown later in Fig. 16. A
discussion describing how FAU_GEN.1.2 fits into the Audit
Record compliance hierarchy is provided in Sect. 4.

Fig. 6 Imposes pattern applied
to the Common Criteria control
FAU_GEN.1.2

 Requirements Engineering

1 3

3.2 Performs

The second pattern, called performs, expresses constraints
that relate directly to properties of system functionality. The
pattern relies on an action to specify the functional behavior,
a set of pre-conditions and input that constrain the applica-
tion of the action, and a set of post-conditions that detail the
results of the action’s effects on the system. Often a post-
condition for a security functional requirement dictates that
an asset or artifact is created or modified. For this reason,
the pattern explicitly separates generic post-conditions from
assets or artifacts which must be produced as a result of the
execution of an action. For policy statements that do not
specify asset or artifact creation, this field should be left null.
Performs is thus defined as follows:

where 〈level〉 is either InfoSys or Comp (cannot be Org).
Often the line demarcating the InfoSys and Comp is blurred,
since the information system may designate a certain com-
ponent to perform the action. In such cases, InfoSys is cho-
sen as the level for consistency and the use of a component
becomes part of the constraint in the model template.

Declared variables in a performs pattern can be input and
output variables, and relations between variables, such as
functional mappings. One distinction is the use of the tem-
poral property leads-to (⧐), borrowing from UNITY seman-
tics [60], in the constraint specification to denote a progress
property in which eventually a state will be reached from the
pre-conditions (which may be simply true) where the post-
conditions are true. Sometimes, the pre-conditions and post-
conditions involved in performs are not explicitly stated in
the security control. In such cases, the pattern instantiation
relies on the semantics of the action to imply the conditions
as in the case of FAU_GEN.1.1(c) shown in Fig. 7, where
the phrase “generate an audit record” implies that the record

⟨level⟩ performs ⟨action⟩

given ⟨preconditions⟩ and ⟨input⟩

that results in ⟨postconditions⟩

does not already exist. Additionally, the input expressed may
reference an abstract information system architecture.

Figure 7 shows the extracted performs pattern state-
ment below the stated natural language (NL) control FAU_
GEN.1.1(c) from the Common Criteria. A component-based
implementation of the information system is inferred given
the foundation for the Common Criteria specifications. An
inference is also made that the Target of Evaluation Secu-
rity Functionality (TSF) does not generate audit records
for all components. Therefore, “a component” is added to
the given section of the pattern. This inference is based on
other similar controls from other documents. For compliance
verification, an organization could select all components to
be audited, in which case the performs constraint would be
used to reason over each one separately. The Compliance
Types ↑AuditableEvent and ↑AuditRecord are used within
the control, though they are defined as part of other intent
classes as shown later in Fig. 16. In the model template
(right side of Fig. 7), the input parameters and a function,
called Gen_Rec, describing audit record generation actions,
become declared variables. A leads-to property (bottom of
template on the right side of Fig. 7) expresses that for any
component, a state in which an auditable event occurs in
a selected component and a corresponding record has not
been generated for the event, eventually leads to a state in
which the generated audit record for the event is placed in
the component’s audit log. Note that Gen_Rec does not have
to be part of component c. Neither does the evaluation of
an occurrence of the event. Also, the notation (‘) is used
to denote the “after state” of a variable as in c.auditLog
and c.auditLog’. Stated specifically, a variable x’ denotes
the “after state” of a variable x. Since the performs pat-
tern denotes a requirement for a state change, its assessment
could be in the form of evaluating traces, such as the use of
security hyperproperties [73].

3.3 Protects

A third pattern is used when a security control identifies
assets, processes, or functions that must be protected against

Fig. 7 The performs pattern as
applied to the Common Criteria
control FAU_GEN.1.1(c)

Requirements Engineering

1 3

some negative activity, such as malicious user actions. This
security control type prescribes a selection of high- or low-
level protection mechanisms. For technical controls, these
protection mechanisms can include performs constraints,
thus incorporating that pattern. Given these considerations,
the protects pattern captures the relevant information as
follows:

where 〈level〉 can be InfoSys or Comp. InfoSys more gener-
ally represents the need to protect the asset using some per-
forms function specified in the system, while Comp indicates
an actual component which deploys the mechanism respon-
sible for protecting the asset. The protection 〈mechanism〉
is imposed by the organization and may be either a type of
encryption method, digital signature, or monitoring process
depending on whether the 〈activity〉 violates a confidential-
ity, integrity, or availability security objective, respectively.

The protects pattern may need additional context to
extract the 〈mechanism〉 from the control text. The mecha-
nisms may appear elsewhere in the control document such
as the NIST supplemental guidance section of a security
control [2] or may be embedded in a separate security con-
trol that has a semantic link to the control being expressed
(discussed further in Sect. 4). Protects involves declaring
and quantifying the assets for protection, the activity to be
prevented, and the function or set of functions to be used.
Each function is expressed as part of a performs statement,
which must be included or semantically linked to the control
that instantiates the protects pattern. Function labels, shown
in bold, label performs constraints. These labels are refer-
enced within the protects instantiation of the control state-
ment to indicate the logical dependencies needed to describe
the mechanism function expectations.

⟨level⟩ protects ⟨asset⟩

using ⟨mechanism⟩

to prevent ⟨activity⟩

Figure 8 shows the performs constraints for AU-10.E3
that defines review(r), for an audit record r. The review(r)
function is one of four mechanisms used in AU-10.G to pre-
vent repudiation of audit records. The control text establishes
the need for a reviewer’s UID to be stored in the audit record
upon review and requires the UID to be signed. The performs
pattern is applied to the control text on the top left of Fig. 8
and results in the pattern instantiation below it. Contextu-
ally, the “information” described by the control text refers
to all audit records created as the result of a user’s actions
that have been previously validated to insure the user UID
has not been modified. A binding mechanism (BindRev),
such as a digital signature mechanism, is assumed as input.
This definition of review(r) states that whenever an audit
record, r, has been validated (i.e., using validatedUID(r))
and a review request is initiated (occurs(e)), a state eventu-
ally results that adds the reviewer’s UID to the audit record
(r’ = bindRev(r, rev_uid)) and signs it (r’.revUID.signed).
The concept of signing, although not directly in the control
statement, is inferred from the control’s references to “cre-
dentials” and “associates the identity.”

AU-10.G incorporates AU-10.E3, and three other con-
trols, as part of a compliance requirement to ensure non-
repudiation of audit records. Figure 9 shows the result of
extracting the requirements of AU-10.G and instantiating a
protects pattern. The context of the control implies that the
set of all audit records is the 〈asset〉 in the pattern. The con-
trol does not directly specify the mechanism to protect the
audit records because it relies on the control enhancements
which are referred to by their labels (including review(r) as
developed in Fig. 8.

The 〈activity〉 the control seeks protection from is
repudiation. Thus, repudiation is of type Activity. The
function prevents is standardized within the protects pat-
tern to collect and apply the mechanisms on the assets.
In this case, prevents(repudiation, r), in Fig. 9, means
the activity of repudiation as applied to the set of audit
records r is prevented from occurring as long as at least

Fig. 8 The performs pattern
within AU-10.E3

 Requirements Engineering

1 3

one of the mechanisms (e.g., signUID, validateUID,
review, and transfer) is performed.

In the case of AU.10.G, protects expresses the overall
mechanisms to prevent a bad state from occurring while
at the same time dictating the state changes allowed by
the mechanisms. The signUID, validateUID, review,
and transfer mechanisms are individually instantiated
as performs compliance requirements and hierarchically
connected to AU-10.G via a semantic relation (discussed
later in Sect. 4.2). As long as the performs compliance
requirements are satisfied, prevents(a) holds and repu-
diation cannot occur in the information system. This
knowledge, required for formalizing a protects property,
is derived from the semantic relations connected to AU-
10.G. Understanding these relations is the topic of the
next section.

4 Creating semantic hierarchies using
semantic relations

Determining the compliance predicates that provide cov-
erage of the security controls requires identifying the
relationships that exist between security controls, start-
ing with those in the same intent classes. As these con-
nections are investigated, within each class, a semantic
hierarchy emerges that identifies a dominant control, i.e.,
a control whose expression encompasses the requirements
of the class. This section defines four semantic relations
based on their structural properties and the subsequent
representations that describe how compliance require-
ments are affected by, and propagate over, the relation.
The relations are irreflexive, anti-symmetric, and transi-
tive such that for any relation type (except forms), if a
control C1 is related to another control C2 by a relation
R1 and C2 is related to a third control C3 by relation
R2, then C1 is related to C3 by R1. If there is a relation
R3, such that controls are related by R1, then R3, then
R2, transitivity is not proven to hold in all cases. The
audit case study is continued for clarity and illustrative
purposes.

4.1 SubsumedBy

A control, c1, is subsumedBy another control, c2, as repre-
sented by c1 → c2 iff:

• both controls are instantiated by the same pattern and
• the specification constraint of c2 implies the specification

constraint of c1.

Figure 10 exemplifies three controls, ECTP-1, FAU_
STG.1.1, and APP3690.4 with intent Audit Protection that
are subsumedBy AU-9.G, with the same intent. AU-9.G
specifies the need to protect all audit records, the audit trail,
and all audit reports from unauthorized access, modification,
or deletion, thus subsuming the types declared for assets as
well as the activities being prevented on those assets. No
specific process is required by the control constraints, so
organizations may construct any protective mechanisms to
ensure that prevents is satisfied.

4.2 UsedBy

Figure 9 illustrated the instantiation of a protects pattern
with labeled mechanisms, one of which, i.e., review(r), was
described in Fig. 8. The usedBy semantic relation, repre-
sented by c1 c2 in Fig. 11, indicates the inclusion
of a predicate s in c1 (in this case a labeled performs state-
ment) in a predicate t in c2, such as the prevents repudiation
activity. Parameters for s and t can be used within the label
to clarify which predicates in c1 are usedBy predicates in c2,
if it is not obvious.

Examining Fig. 11 in more detail shows that FAU_
GEN.2.1 specifies and labels the performs statement,
signUID(r), which takes an audit record r and eventually
returns it as a signed record r’, using the organization-
ally defined digital signature mechanism represented by
signMech. Though no formal relationship exists in the
documents, FAU_GEN.2.1 (Common Criteria) can be
linked to the NIST AU-10.G and AU-10.E2 using usedBy
to provide a functional requirement detail regarding sign-
ing that is missing in the NIST. AU-10.E2 defines a vali-
dation mechanism, validateUID(r) that examines an audit

Fig. 9 Protects pattern applied
to NIST control AU-10.G

Requirements Engineering

1 3

record for a proper digital signature whenever a review
request is made on the record. If the record is signed (i.e.,
signUID(r) is true), then eventually a state is reached
when the record is verified, using the organizationally
defined verify method that supplements signMech, allow-
ing it to be reviewed.

AU-10.E3 (shown originally in Fig. 8) expresses the
binding of a reviewer’s user ID to the record ensuring
the reviewer cannot repudiate the review. AU-10.E4
in Fig. 11 states that the audit record reviews are vali-
dated prior to transferring the record outside the secu-
rity enclave. Thus, transfer(r) is true if an audit record
transfer request occurs that eventually results in a state in
which verifyRevUID is performed on r to ensure that the
signed reviewer uid is legitimate. Each of the predicates
signUID, validatedUID, review, and transfer prevents
repudiation and therefore are usedBy (and included in)
the prevents(repudiation) predicate detailed in the con-
straint portion of AU-10.G. Because the predicates are
also included in the other non-repudiation mechanisms,
usedBy denotes that relationship as well.

4.3 Structures

Information systems generally require a number of secu-
rity-sensitive assets and types. Individual security controls
related to assets and types may impose a representational
format as well as define asset and type attributes. An exam-
ple in Fig. 12 is the STIG APP3620 control that requires
a secrecy level attribute that is one of {top secret, secret,
unclassified} to be associated with all auditable events.
Thus, the control defines a specific structural element of the
auditable event definition.

In fact, a type’s structure, or format, may be partially
defined in multiple security controls to provide a fuller
representation of the type. The structures semantic relation
appends type definitions to assets defined in other controls
by denoting specific formatting elements. Thus, c1 struc-
tures c2, represented by c1 c2, states that a declared
variable in c1 defines some portion of the structure of a
declared variable in c2. Parameters of structures identify
the appropriate variables in c1 and c2. If only one variable
is declared in the schema for the control, then that variable

Fig. 10 Portion of the audit
protection control hierarchy that
is subsumedBy AU-9.G

 Requirements Engineering

1 3

is a parameter by default and is not made explicit within the
semantic relation.

Figure 12 illustrates two scenarios using structures—
when it is applied to an asset type and when it is inserted as
an element of a tuple to format a type. Control FAU_SEL.1.1
specifies the various elements of an auditable event. As used
in Fig. 6, the ≍ symbol denotes that an event is at least com-
posed of the elements specified in the associated tuple. This
constraint is transitively passed on to AE, in AU-2.G, which
defines all possible auditable events. Effectively, the relation
between FAU_SEL.1.1 and AU-2.G, i.e., structures(event,
AE), expresses that all auditable events at least contain the
information in the event tuple. This example corresponds
to the first case described by the structures relation defini-
tion. Structures is also used as a relation between APP3620/
FAU_GEN.1.1 and FAU_SEL.1.1, in which secrecyLevel
and detailLevel format the event tuple.

In terms of certification, verifying AU-2.G is correctly
implemented requires that, for all events e in AE, e contains
at least the information dictated by event. Thus, satisfying
AU-2.G with the additional constraints means the controls
related by structures are also satisfied.

4.4 Refines

Where structures targets compliance types, refines covers
compliance relations. The primary motivation for refines is
to make a generic constraint, e.g., the system must audit
important events, more specific, e.g., the system must audit
user login. Control c1 refines control c2, (c1 c2),
denotes a refinement of a declared variable v2 in c2, by a
declared variable v1 in c1. The refinement relation requires
v1 and v2 to be the same type. In addition, it may affect the
structure of the resulting constraint specification for c2.

Fig. 11 The non-repudiation control hierarchy with the usedBy relation

Requirements Engineering

1 3

On the top left of Fig. 13 is AU-5.G.b, which is the
dominant control in the control hierarchy of an intent class
for detailing the contents of the Audit Failure Mapping. It

comprises the organizational failure mapping (orgAFM),
which embodies the actions (AFActions) that must occur in
the case of certain audit failure events (AFEvents) as dictated

Fig. 12 Building up the struc-
ture of AuditableEvents using
structures

Fig. 13 Using refines for the
organizational audit failure
mapping control hierarchy

 Requirements Engineering

1 3

by the refines operator. Connected to AU-5.G.b are a num-
ber of controls that dictate particular (AFEvent, AFAction)
pairs. Each of these pairs refines the orgAFM, establishing
particular events and actions or sets of events and actions,
such as real-time alerts (AU-5.E2), events that require sys-
tem shutdown (AU-5.E4), traffic threshold exceeded (AU-5.
E3), or storage threshold exceeded (FAU_STG.3.1 and
FAU_STG.4), as part of the failure mapping.

Bold elements in the constraint specification portion
denote how the refinement occurs. Bold elements in the
declared variables section denote which variables influence
the refinement. The label on the arrow indicates the direction
of the refinement and what is being refined. Controls lower
in the hierarchy refine orgAFM by adding elements. For
instance, FAU_STG.3.1 and FAU_STG.4 require that certain
failure actions (a warning, ignore event, prevent event, or
overwrite previous events) must be available if audit record
storage is exceeded. Figure 11 also shows the transitive use
of refinement where FAU_STG.4 refines the event-action
pairs in the audit failure mapping (AFM) called storageAFM
described in FAU_STG.3.1 to include the actions of warn-
ing, ignore, prevent, and overwrite.

4.5 Forms

One of the primary research goals of this work was to pro-
duce a representative expression of each intent class in the
form of a compliance type or a compliance rule. As the
investigation progressed and the intent classes were defined,
we found that at least one of the documents had a control
that dominated the others in its class. Often it was an abstract

or high-level control statement that allowed it to encompass
the details of the other controls. The forms relation termi-
nates the developed control hierarchy by linking this domi-
nant control to the resulting compliance type or compliance
rule. If a dominant control does not emerge, then the intent
class should be decomposed into multiple intents of a finer
granularity of expression so that a single type or rule reflects
the intent. Since forms is only defined between a dominant
control and a compliance predicate, it is not transitive.

The forms relation reflects the instantiated pattern of the
dominant control. When the dominant control is an imposes
pattern, it forms a compliance type. A compliance type
defines the format, fields, and constraints on the instances
of an information asset. Dominant controls that instantiate
either performs or protects patterns form compliance rules
that dictate security relations for types and functions. Forms
is represented visually as c CI, where c is the domi-
nant control and CI is the compliance item (either a rule or
type), and the result of its application is that all controls in
the control hierarchy below c hold whenever CI holds. If this
perspective (i.e., complete compliance) is not desired by the
information system designers, then one or more branches
can be pruned from hierarchies that define CI specific to
accommodate their selected partial compliance verification
process.

Figure 14 exemplifies the two types of forms relations.
On the left, the dominant control AU-5.G.a directly forms
the Audit Failure Response compliance rule. AU-5.G.a is
a dominant control based on a performs pattern because it
fully encompasses the controls for that intent class as shown
by the semantic relations of the hierarchy.

Fig. 14 Forming compliance
predicates

Requirements Engineering

1 3

On the right of Fig. 14 is the compliance type for Failure
Mapping. All controls that form the failure mapping (includ-
ing AU-5.G.b) are based on imposes patterns. It is interesting
that AU-5 provides information for both a compliance type
and a compliance rule thus spanning two intent classes when
its details are extracted. AU-5.G.b is the dominant control
of its intent class because its statement regarding the failure
mapping type allows it to be structured and constrained by
controls also instantiating the imposes pattern lower in the
control hierarchy. The resulting type is then the AFMapping,
as seen in the yellow box on the right in Fig. 14.

Table 1 provides summary guidelines for applying each
type of semantic relation based on subject matter expert
feedback (collected as part of the formative evaluation dis-
cussed later in Sect. 6.2).

5 Compliance interconnectivity spanning
hierarchies in the audit case study

The hierarchy formed through the process of intent determi-
nation, NL patterning, and semantic relationship definition
produces high-level elements, segregated into compliance
rules and compliance types that provide a security verifica-
tion profile with respect to the controls in the governing
documents. Though our case study focuses specifically on
audit, the process also produces related hierarchies across
the other technical control categories including access con-
trol (AC), identification and authentication (IA), and system
and communications protection (SC) in [2] and communica-
tion (class FCO), cryptographic support (class FCS), user
data protection (class FDP), identification and authentica-
tion (class FIA), protection of the TSF (class FPT), resource
utilization (class FRU), TOE access (class FTA), and trusted
path/channels (class FTP) in [3].

Within and across technical control categories, there are
relationships that should be exploited so that compliance can
be easily documented by progressing through the compli-
ance rules and types and then identifying any branches of
hierarchies that may be non-compliant. This section intro-
duces top-level semantic relations that can be used to con-
nect compliance predicates (Compliance Rules and Types)
together to denote control document interconnections. This

makes the security profile specification more understand-
able by information system designers and certifiers and
facilitates re-use by other organizations who need only apply
their specific parameters to instantiate the profile. The top-
level relations are applied to the running audit case study to
arrive at an overall profile of audit security requirements.
Each specific predicate in the overall profile is individually
decomposed and discussed.

5.1 Top‑level semantic relations

When extracting and formalizing the semantic hierarchies
it became clear that intent classes were related at a high
level. Each intent class has its own semantic hierarchy of
controls that define specific compliance requirements for a
system, but may also have additional interdependencies. For
instance, defining auditable events in isolation is meaning-
less if the system does not have an audit record generation
capability. Similarly, audit records cannot be protected if
they do not exist. Following this rationale, it is clear that
additional, high-level semantic relations are needed to
express hierarchy-spanning compliance interconnectivity.

To denote these cross-hierarchy relationships our
approach includes a set of top-level semantic relations
that are defined between different compliance predicates,
denoted as p1 and p2. Their definitions appear below and in
the overall audit profile as shown in Fig. 15, discussed next.

• p1 includedIn p2 indicates that the constraints in the
Compliance Rule p1 are needed for p2’s verification.

• p1 targets p2 indicates that p1 has embedded constraints
that influence or affect variables or constraints in p2.

• p1 creates p2 indicates that when the predicate in Com-
pliance Rule p1 evaluates to true, entities described in p2
are created as a result.

• p1 requiredBy p2 means that the Compliance Type
defined in p1 is required to define declared variables or
elements of the constraint in the Compliance Rule p2.

Figure 15 exemplifies the relations and identifies the full
set of compliance predicates for the entire audit technical
control family across the governing documents discussed
in Sect. 2.1, displaying only the control and compliance

Table 1 Semantic relations

Relation Guidelines for Application

subsumedBy Indicates that one control’s compliance requirements are subsumed by another’s requirements
usedBy Indicates that one control compliance requirements are needed by another’s
structures Indicates that a control defines something (such as a format) regarding another control
refines Indicates that a control clarifies or makes a requirement more explicit in another control
forms Indicates the formation of compliance type or compliance rule from a dominant control

 Requirements Engineering

1 3

predicate identifiers. Overall, there are 12 compliance predi-
cates that describe all audit requirements and constitute the
audit compliance model. Previous Figs. 4, 5, 6, 7, 8, 9, 10,
11, 12, and 13 show certain expanded sections of the com-
pliance model and are highlighted using dotted red boxes.

Based on the constructed method of discovering, rep-
resenting, and relating the predicates, Fig. 15 manifests a

flow that is directly relevant to the compliance verification
process. Essentially, the assessment begins by identify-
ing AuditableEvents. Selected auditable events must cause
audit records to be generated, via Audit Record Generation.
These generated records take on the particular character-
istics, denoted by creates, of the organizationally defined
AuditRecord. A subset of these audit records, denoted by

FAU_GEN.1.1(a)

Non Repudia
on
Compliance Rule

FAU_GEN.2.1

AU-10.E1

AU-10.E3 AU-10.E4

AU-10.G AU-10.E2

FAU_STG.4

FAU_STG.3.1
AU-5.E3

AU-5.E1

AU-5.G.a

FailureMapping
Compliance Type

Audit Failure Response
Compliance Rule

APP3650

AU-5.E2

AU-5.E4

AU-5.G.b
AuditableEvents
Compliance Type

FAU_GEN.1.1(b)

FAU_SEL.1.1

AU-2.G.a

AU-2.E4 APP3660

APP3680.6

APP3680.1 & 2

APP3670

APP3620

Audit Cryptography
Compliance Rule

AU-9.E3

DCNR-1.bAU-10.E5

AU-12.E1AU-12.E2

Audit Trail Compila
on
Compliance Rule

Audit Record Backup
Compliance Rule

AU-9.E2

ECTB-1

Audit Record Genera
on
Compliance Rule

AU-3.E2

Audit Review
Compliance Rule

AU-7.G

FAU_SAR.1.2

ECRG-1

FAU_SAR.3.1

AU-7.E1

Audit Access Control
Compliance Rule

FAU_SAR.1.1

AU-9.E4

APP3690.1

Audit Protec
on
Compliance Rule

FAU_SAR.2.1

FAU_STG.1.1

FAU_STG.1.2

ECTP-1

FAU_STG.2.2

FAU_STG.2.1

AU-9.GAPP3690.4APP3690.2

AU-12.G.a

FAU_GEN.1.1(c)

AU-12.G.c

APP3640

AC-3.E3

APP3690.3

creates

requiredBy AU-3.G

ECAR-3ECAR-2ECAR-1

FAU_GEN.1.2

APP3680.5APP3680.4APP3680.3

AuditRecord
Compliance Type

AU-3.E1

requiredBy

targets

includedIn

targetstargets

targets

requiredBy

includedIn

includedIn

subsumedBy
usedBy

structures
refines
forms

Control Hierarchy Legend:

Theory-level rela
ons:
label

Fig. 13

Fig. 12

Fig. 11

Fig. 7,8,10

Fig. 9

Fig. 6

Fig. 5

includedIn

Fig. 15 Compliance predicates and their relationships for the audit
technical control category and beyond. This view presents the entire
compliance hierarchy relating compliance predicates (in yellow) with
their associated controls (in gray). Previous figures discussed in detail

are highlighted (red dotted line) to show their connectivity in the
overall hierarchy. Theory level relations identify connections between
disparate compliance predicates (color figure online)

Requirements Engineering

1 3

includedIn, must be compiled into an audit trail to satisfy
Audit Trail Compilation. Additionally, all audit records must
be safeguarded (shown by targets) by Audit Protection and
its three sub-parts (shown by includedIn) Non-Repudiation,
Audit Access Control, and Audit Cryptography. Records
should be reviewed using Audit Review and backed-up
according to Audit Record Backup. Finally, if the audit
record generation process fails, the Audit Failure Response
relies on a Failure Mapping to handle audit failures in organ-
izationally specified ways that limit asset exposure.

Figure 16 expands each compliance predicate in Fig. 15,
showing all of the compliance requirements in the Audit

Compliance Model. By construction, satisfaction of these
criteria is sufficient to verify a system or collection of
systems as compliant with audit security controls across
all of the governing documents. It is important to note
that organizations need not comply with all of the audit
security controls, but in order to satisfy certain controls
they must satisfy those that are indicated by the top-level
and inter-hierarchy semantic relations. For instance, an
organization seeking to be certified with a control that has
an incoming requiredBy link, must necessarily be certified
against the linked required control.

Fig. 16 Compliance types, rules, and relations, for the audit technical control category

 Requirements Engineering

1 3

5.2 Auditable events

The AuditableEvents compliance type in Fig. 16 relies
on a cross-product of the relevant event fields described
within its control hierarchy. Its dominant control, AU-
2.G.a from Fig. 12, restricts the type to organizationally
selected auditable events as instantiated within the hier-
archy. All auditable events must contain at least the infor-
mation expressed in the tuple according to the governing
documents. This compliance type is used as input (denoted
by requiredBy) to Audit Record Generation, discussed in
Sect. 5.4.

5.3 AuditRecord

As with AuditableEvents, the set of AuditRecords, shown in
Fig. 16, is constrained to have all of the same characteristics
as the organizationally defined records type expressed in
the dominant control that forms the compliance type. For all
audit records, each record must consist of at least an event
type, timestamp, location, source, component, outcome, and
event user ID, but can also have additional content as speci-
fied by the organization.

5.4 Audit Record Generation

The compliance rule for Audit Record Generation, shown in
Fig. 16, is formed directly from the dominant control FAU_
GEN.1.1(c), as shown in Fig. 7. Essentially, for all compo-
nents, c, if a selected auditable event occurs, then a record
is generated for that event and placed in the component’s
audit log, i.e., c.auditLog. The relation creates denotes that
the result of Audit Record Generation is an entity of compli-
ance type Audit Record. We assume that components must
have an abstraction of the storage that houses their audit
records. Otherwise, the component cannot be certified for
any audit control.

5.5 Audit trail compilation

Audit Trail Compilation, connected to AuditRecord in
Fig. 16, expresses the constraint that audit records must be
compiled into a standardized audit trail. The compliance
rule makes explicit that any audit records collected by a
component appear in an audit trail. The temporal property
guarantees that all audit trails will eventually be complete
with respect to the collected audit records. The compliance
rule allows for the possibility of multiple audit trails, but
one must be the “system-wide” or centralized audit trail, as
required by NIST [2]. Additionally, the requiredBy relation

ensures that records in the trail conform to the type defined
in Audit Records.

5.6 Non‑repudiation, audit access control, audit
cryptography, and audit protection

A set of controls exist to safeguard audit records from
unintentional or malicious activities. For example,
the Audit Access Control compliance rule specifies the
non-discretionary access control policy to be applied to
all audit assets. The unauthorizedAccess activity is an
attempted unauthorized access, modification, or deletion.
NDAC(assets), as shown in the middle left of Fig. 16,
denotes a labeled performs for applying a non-discretion-
ary access control process to the assets to protect them
against these activities. This item is left unexpanded, since
it relies on the Access Control (AC) family of controls
and is thus outside the scope of the audit case study. If
expanded, it would have a semantic hierarchy that bridges
two dominant controls AU-9.E4 (in the audit family) and
AC-3.E3 (in the access control family). Access control
can proactively prevent all of the activities on assets given
proper system usage. However, additional provisions must
be in place to prevent malicious activities that circumnavi-
gate access control.

The compliance rule, Non-Repudiation (top of Fig. 16),
prevents user attempts to deny having performed an activ-
ity, i.e., repudiation as described previously in Figs. 9 and
11.

A third compliance rule Audit Cryptography (lower right
of Fig. 16) defines the cryptographic mechanisms that can
be used for securing information assets. All of the various
labeled performs predicates in the prevents expression repre-
sent various cryptographic mechanisms that may be applied.
These could be expanded into the full formal predicates they
represent to facilitate at-a-glance compliance, but again are
left unexpanded as they cross into other families outside of
audit (such as SC in the SP800-53 and FCS in the CC-Part2).
Each mechanism applies to a specific cryptographic area,
e.g., AES for encryption, RSA for digital signatures, and
SHA-1 for hashes.

Figure 10 expresses the dominant control AU-9.G and
some of the controls it subsumes. This dominant control
and three related compliance rules form the Audit Protec-
tion compliance rule. Audit Protection assures three pre-
vented activities: unauthorized access, modification, assets,
or repudiation of assets. A single dominant control does
not actually specify the prevention mechanisms. Instead,
the three compliance rules, i.e., Audit Access Control, Non-
Repudiation, and Audit Cryptography, are needed to fully
specify the mechanisms as indicated by the includedIn rela-
tion in Fig. 16.

Requirements Engineering

1 3

5.7 Audit review

The Audit Review (top of Fig. 16) compliance rule dictates
the process by which audit records are reviewed. Essentially,
a non-null set of records chosen for review are examined by
an organizationally specified reviewer and included in an
organizational asset of type AuditReport. An AuditReport is
a set of reviewed records with a common purpose. In addi-
tion to being included in the report, the audit records are also
marked as being reviewed, which is important as we have
shown with AU-10.G for non-repudiation. This relationship
is denoted by the application of includedIn between Audit
Review and Non-Repudiation.

5.8 Audit record backup

Systems that require periodic, no less than weekly, backup
must comply with the Audit Record Backup compliance rule.
It provides a way to copy audit records from one compo-
nent to another. Though these can be any two components,
NIST requires them to be on different systems or media.
The compliance rule in Fig. 16 for backup denotes a source
component, a destination component (i.e., dest), an event
e defined as weeklybackup(AR) where e might be run by
something like a cron job in an actual implemented system.
The temporal predicate says that if there are a set of records
AR in the source component and e occurs, then the records
are copied using a copy function into the destination com-
ponent, i.e., dest.records.

5.9 Audit failure response and failure mapping

Audit Failure Response and its associated Failure Mapping,
shown in Fig. 16, provide the last assurance requirement
with respect to auditing in the governing documents. Audit
Failure Response applies to a generic audit failure event,
e, and its associated audit failure action, action. The rule
says that given that if a failure event e occurs in some com-
ponent, then the corresponding pre-defined action must be
performed and e must be logged by the audit failure com-
ponent c.

The Failure Mapping is the compliance type that embod-
ies the organizationally and control defined (event, action)
pairs specifically related to audit failure. It contains all of
the constraints applied to orgAFM using the refines semantic
relation, (as previously shown in Fig. 13). Similar to AE
within the Auditable Event compliance type, AFMapping
can be expanded to show these constraints. Some of the vari-
ous (event, action) pairs include (storage exceeded, warn-
ing), (traffic exceeded, reject additional traffic), and (audit
system shutdown, real-time alert) and are consistent with the
refinements to orgAFM shown in Fig. 13.

6 Evaluation of extraction, formalization,
and hierarchy creation process

A pilot study was conducted as a means of formative assess-
ment to get feedback regarding the applicability and consist-
ency of the compliance hierarchy formation process. After
improving the extraction and modeling process, a second
study summarily assessed the accuracy, efficacy, and pref-
erence of our approach. Both studies were conducted on
participant pools of subject matter experts (SMEs) who had
obtained, or were obtaining, CNSSI certificates. The meth-
odology and results of each study are discussed separately
below.

6.1 Pilot study methodology: formative evaluation
and feedback

The first study posed three research questions for formative
feedback and evaluation using SME groups:

RQ1 Is the governance patterning process understand-
able, consistent, and repeatable across different control
families and groups of SMEs performing requirements
extraction?
RQ2 Do SMEs consistently identify semantic relation-
ships that exist between controls?
RQ3 How often are extraneous relationships identified
during the semantic relationship identification process?

To answer these questions, we recruited nine SMEs from
academia and industry and divided them into three panels
of three. Each panel was given two collections of security
controls from the governing documents (i.e., NIST sp800-
53, Common Criteria, and DoDI 8500.2). The first collec-
tion consisted of 7 controls related to identification and
authentication. The second collection varied between pan-
els. Panel 1 was given controls related to access control and
authentication. Panel 2 was given controls related to user
accounts. Panel 3 was given controls related to transmis-
sion protection. The specific controls and their documents
of origin are given in Table 2. Overall 43 unique controls
across the governance documents were given to the SME
panels. Each panel was given four tasks to complete for each
of their control collections: (1) determine each control’s pat-
tern, (2) identify the semantic relationships among the pro-
vided controls, (3) select one or more dominant controls for
the collection, and (4) form a compliance hierarchy for the
control collection.

Prior to SME data collection, we completed the four tasks
for each of the collections—identifying a control pattern
for each included control, semantic relationships between
controls, and identifying a dominant control and hierarchy

 Requirements Engineering

1 3

Ta
bl

e
2

 C
on

tro
l c

ol
le

ct
io

n
by

 g
ro

up
 a

nd
 g

ov
er

na
nc

e
do

cu
m

en
t i

n
th

e
pi

lo
t s

tu
dy

a Th
es

e
co

nt
ro

ls
 d

o
no

t h
av

e
ST

IG
 id

en
tifi

er
s

b Th
e

co
nt

ro
l r

ea
ds

: T
he

 A
SA

 w
ill

 e
ns

ur
e

us
er

s a
re

 n
ot

 a
llo

w
ed

 to
 c

ha
ng

e
th

ei
r p

as
sw

or
ds

 m
or

e
th

an
 o

nc
e

ev
er

y
24

 h
 w

ith
ou

t I
A

O
 a

pp
ro

va
l

c Th
e

co
nt

ro
l r

ea
ds

: T
he

 A
SA

 w
ill

 e
ns

ur
e

ap
pl

ic
at

io
n

se
rv

er
 a

cc
ou

nt
 p

as
sw

or
ds

 a
re

 c
ha

ng
ed

 a
t l

ea
st

on
ce

 a
 y

ea
r a

nd
 a

ny
tim

e
an

 A
SA

 is
 re

as
si

gn
ed

d Th
e

co
nt

ro
l r

ea
ds

: T
he

 A
SA

 w
ill

 e
ns

ur
e

ap
pl

ic
at

io
n

se
rv

er
 a

cc
ou

nt
 p

as
sw

or
ds

 a
re

 a
 m

in
im

um
 o

f e
ig

ht
 a

lp
ha

nu
m

er
ic

 c
ha

ra
ct

er
s

in
 le

ng
th

 a
nd

 d
o

co
nt

ai
n

a
m

ix
 o

f u
pp

er
 c

as
e

le
tte

rs
, l

ow
er

 c
as

e
le

tte
rs

, n
um

be
rs

, a
nd

 sp
ec

ia
l c

ha
ra

ct
er

s
e Th

e
co

nt
ro

l r
ea

ds
: T

he
 A

SA
 w

ill
 e

ns
ur

e
ap

pl
ic

at
io

n
se

rv
er

 a
cc

ou
nt

 p
as

sw
or

ds
 d

o
no

t c
on

ta
in

 p
er

so
na

l i
nf

or
m

at
io

n
su

ch
 a

s n
am

es
, t

el
ep

ho
ne

 n
um

be
rs

, a
cc

ou
nt

 n
am

es
, d

ic
tio

na
ry

 w
or

ds
, e

tc
f Th

is
 c

on
tro

l d
oe

s
no

t h
av

e
a

ST
IG

 id
en

tifi
er

. T
he

 c
on

tro
l r

ea
ds

: T
he

 A
SA

 w
ill

 e
ns

ur
e

th
e

ap
pl

ic
at

io
n

se
rv

er
 a

nd
 it

s
ho

ste
d

w
eb

 a
pp

lic
at

io
ns

 h
av

e
im

pl
em

en
te

d
a

PK
I a

nd
 P

K
 e

na
bl

in
g

so
lu

tio
n

th
at

 u
se

s N
IS

T-
va

lid
at

ed
 o

r N
SA

-a
pp

ro
ve

d
cr

yp
to

gr
ap

hy
 fo

r I
&

A
 se

rv
ic

es

(A
ll

Pa
ne

ls
) i

de
nt

ifi
ca

tio
n

an
d

au
th

en
ti-

ca
tio

n
(P

an
el

 1
) a

cc
es

s c
on

tro
l a

nd
 a

ut
he

nt
ic

a-
tio

n
(P

an
el

 2
) u

se
r a

cc
ou

nt
s

(P
an

el
 2

) t
ra

ns
m

is
si

on
 p

ro
te

ct
io

n

N
IS

T
SP

 8
00

-5
3

r4
IA

-2
 (p

. 2
43

),
IA

-2
(1

) (
p.

 2
44

),
IA

-3
 (p

.
24

6)
, I

A
-3

(1
) (

p.
 2

46
)

A
C

-3
 (p

. 1
63

),
A

C
-3

(2
) (

p.
 1

63
),

A
C

-3
(5

) (
p.

 1
65

),
A

C
-3

(7
) (

p.
 1

65
),

A
C

-6
 (p

. 1
71

),
A

C
-6

(2
) (

p.
 1

72
),

A
C

-
14

.a
 (p

. 1
78

)

A
C

-2
.d

 (p
. 1

60
),

A
C

-2
(1

) (
p.

 1
61

),
A

C
-2

(8
) (

p.
 1

62
),

A
C

-2
(2

) (
p.

 1
62

),
A

C
-2

(3
) (

p.
 1

62
),

A
C

-2
(5

) (
p.

 1
62

),
A

C
-2

(9
) (

p.
 1

63
),

A
C

-2
(1

0)
 (p

. 1
63

)

SC
-8

 (p
. 3

46
),

SC
-8

(1
) (

p.
 3

46
),

SC
-1

2
(p

.
34

8)
, S

C
-1

2(
2)

 (p
. 3

48
),

SC
-1

7
(p

. 3
51

)

C
om

m
on

 C
rit

er
ia

FI
A

_A
FL

.1
.2

 (p
. 8

9)
, F

IA
_U

A
U

.2
.1

 (p
.

96
),

FT
A

_M
C

S.
1.

1
(p

. 1
64

)
FD

P_
A

C
C

.2
.1

 (p
. 5

7)
, F

D
P_

A
C

F.
1.

1
(p

.
59

),
FI

A
_U

ID
.1

.1
 (p

. 9
9)

N
on

e
FC

S_
CK

M
.1

.1
 (p

. 5
0)

, F
C

S_
CK

M
.2

.1
 (p

.
50

),
FP

T_
IT

T.
1.

1
(p

. 1
36

),
FP

T_
IT

C
.1

.1

(p
. 1

32
),

FP
T_

IT
I.1

.1
 (p

. 1
34

)
D

oD
I a

pp
lic

at
io

n
se

cu
rit

y
ST

IG
N

on
e

A
PS

01
10

: C
A

T
II

 (p
. 2

6)
A

PS
05

10
: C

A
T

II
 (p

. 2
1)

, N
/A

a -I
b , I

Ic ,
 II

Id , I
Ve C

A
T

II
 (p

. 2
7)

A
PS

03
50

: C
A

T
I (

p.
 2

7)
, N

/A
f : C

A
T

II

(p
. 2

6)

Requirements Engineering

1 3

for the collection. Using our task results as an experimental
control for comparison against the SME panel results, we
developed four evaluation criteria E1–E4 as stated below.
Henceforth, note the difference between use of the term
control and experimental control; the former is a security
control while the latter is a control case in the sense of
experimental testing discussed in this section. Criteria E1
and E4 both address RQ1, while E2 addresses RQ2 and E3
addresses RQ3.

E1 Number of control patterns selected by the panels that
match the control patterns in the experimental control,
where “match” is defined as the selection of the same
pattern level, type, and input.
E2 Number of semantic relationships selected by the pan-
els that match the semantic relationships in the experi-
mental control, where “match” is defined as the selection
of the same relation type, two controls, and directionality.
E3 What extraneous relationships exist (if any) and what
relationships are missing (if any) from each panel’s hier-
archy as compared to the experimental control’s hierar-
chy?
E4 Inter-rater reliability and internal consistency of pat-
tern identification and hierarchy structure across panels
for the shared control collection.

6.2 Pilot study results: formative evaluation
and feedback

Across all SME panels, 43 unique controls were examined;
of those 7 were examined by all three panels, resulting in 57
patterns (36 + 21). Of the 57 identified patterns, our experi-
mental control identified 22 as performs, 30 as imposes, and
5 as protects. For evaluation criteria E1, we compared our
expectation in the control to our observations across the pan-
els. We found that 79% (45 of 57) of panel selected control
patterns matched expectations—with SMEs identifying the
same pattern type, level, and inputs as in our experimental
control. All of the errors (12 of 57) involved SME panels
erroneously identifying an imposes pattern as performs. This
result led us to believe that there was a systemic ambiguity in
the pattern selection process that made it difficult to distin-
guish between performs and imposes. Examining the misi-
dentified controls further, we found that they all used active
verbs, such as “produces” as in NIST SC-12(2) which states:

The organization produces, controls, and distributes
symmetric cryptographic keys using [Selection: NIST
FIPS-compliant; NSA approved] key management
technology and processes.

Although this control statement is imposing the use of
a certain cryptographic key management process, panels
interpreted the statement as a need for a particular system

functionality to be performed (which was actually covered
by the parent control, SC-12).

To address this issue and to make the application of
imposes versus performs unambiguous, additional syn-
tax and applicability conditions were introduced into the
imposes and performs patterns (as reflected in their ear-
lier definitions in Sects. 3.1 and 3.2). The change mainly
focused on the use of the level as a distinguishing charac-
teristic. Specifically, performs was adjusted to only apply
to the Info Sys or Comp levels, whereas imposes specifi-
cally only applies at the Org level. In post-experiment dis-
cussions with the panelists, this cleared up the ambiguity.

For evaluation criteria E2, our experimental control
expected there to be 68 semantic relations across the pan-
els—or 10 subsumedBy, 31 refines, 10 usedBy, 7 struc-
tures, and 10 forms. By contrast, the SME panels collec-
tively identified 72 semantic relations, which decomposed
to 13 subsumedBy, 24 refines, 16 usedBy, 7 structures,
and 12 forms. Comparing each of the SME identified 72
relations to our expected results, we observed 63 exact
matches, i.e., the SME panel picked the same relation type,
controls, and directionality as expected in the experimental
control. This result translated to 92% (63 of 68) for evalu-
ation criteria E2, meaning 5 relations were omitted. Look-
ing closer at the omitted relations, 3 were structures and 2
were subsumedBy. This observation meant that the other
9 of the original 72 relations were extraneous. Five of
the 9 extraneous relations were usedBy, suggesting a need
to better clarify its semantics. Other extraneous relations
included two instances of subsumedBy, and two structures.
The results of analyzing the semantic relations led us to
introduce additional text in each semantic relation section
to clarify its formal usage. In addition, Table 1 was created
to provide guidelines for the application of each relation
type. Based on anecdotal post-study discussions with our
SMEs, these changes reduced ambiguity and improved the
accuracy and consistency of relationship identification.

Using the identification and authentication collection
of 7 controls, which all panels examined, we calculated
inter-rater reliability (evaluation criteria E4) and found
it to be 71.4% across their application of the patterns and
development of their hierarchies. According to the Lan-
dis and Koch-Kappa Most of the variances observed were
in relation to the assignment of semantic relationships.
The differences did not obstruct the creation of the hier-
archies or formation of verification constructs. Overall,
the strongly positive pilot study results across E1 through
E4, the feedback received from the participants, and the
improvements made based on those discussions, suggested
that the hierarchical modeling process can be consistently
and reliably applied to produce the security profiles for use
during verification.

 Requirements Engineering

1 3

6.3 Second study methodology: summative
assessment and evaluation

The larger study sought to replicate the pilot study results,
as well as answer three additional research questions, stated
below.

RQ4 How accurately do semantic hierarchies represent
the underlying control requirements and are practitioners
affected by confirmation bias when examining modeled
control hierarchies?
RQ5 Is the semantic compliance modeling process under-
standable and easy to use by certification experts?
RQ6 Is the semantic compliance modeling process
preferable to less formal approaches, such as DIACAP,
among practitioners?

To address these questions, the study included three tasks
as described below. All tasks were completed by five secu-
rity experts with compliance and certification backgrounds
from industry that were familiar with the governance docu-
ments and who had obtained CNSSI certificates. Prior to
the first task each subject matter expert was briefed on the
extraction process and shown several examples of how the
process is applied.

6.3.1 Task 1: Assessing modeling accuracy
and confirmation bias

Task 1 addresses RQ4 and focuses on identifying how accu-
rately the model captures security requirements from the
underlying controls and measures the amount of confirma-
tion bias SMEs may have when asked to evaluate pre-exist-
ing models for accuracy. Three specific evaluation criteria
are defined for Task 1.

E5 The degree to which patterns accurately represent
control requirements, from 1 (low) to 10 (high).
E6 The degree to which semantic relations accurately
capture connections between controls, from 1 (low) to
10 (high).
E7 What degree of confirmation bias is inherent in the
assessment of E5 and E6?

To assess these criteria, each SME was presented with
several collections of security controls that had been pre-
patterned following the semantic modeling process. They
were asked to read through each of the controls (raw text
from a regulatory document) and the pattern selected for the
control and then rate each identified pattern on a scale from
1 (poorly captures control requirements) to 10 (accurately
captures requirements). The subjects were then presented
with a fully modeled semantic hierarchy of the controls

and asked to rate (on a scale from 1 to 10) how well they
believed the semantic relation captured connections between
the controls, based on the formal definitions of each relation
and their understanding of how the compliance requirements
were related. Lastly, each SME was asked whether or not
they agreed with the selection of the dominant control for
each hierarchy. To assess confirmation bias, an inaccurate
hierarchy based on a grouping of controls with incorrect
relations between them, was formed and given to the sub-
jects without their knowledge. The expectation was that
SMEs would rate the accuracy of the incorrect hierarchies
poorly, while rating the correct hierarchies highly. After the
ratings were complete, we went over the findings with each
subject and cleared any misconceptions to prepare them for
the next evaluation task. A sample portion of the form used
for assessment of Task 1 is provided in Fig. 17.

6.3.2 Task 2: Control pattern identification and inter‑rater
reliability replication

Task 2 sought to replicate the inter-rater reliability data from
the pilot study, adding support for criteria E4. In Task 2, the
SMEs were presented with all four collections of controls
that the other SMEs in the pilot study had received, i.e.,
the 43 controls identified in Table 2. SMEs were shown the
control text for each control (as it appears in the regula-
tory document it originated from) and then asked to select
the most appropriate pattern that fit it. A sample portion of
the assessment form for Task 2 is provided in Fig. 18. The
expectation was that SMEs would show a similar or better
inter-rater reliability as observed in the pilot study.

6.3.3 Task 3: survey questions for ease of use
and preference measurement

Task 3 sought to answer RQ5 and RQ6 through qualitative
survey feedback regarding the ease of use and preference for
the semantic modeling process over other approaches. Three
evaluation criteria are defined below.

E8 How intuitive are control patterns for extracting
requirements in governing documents?
E9 How intuitive are the semantic relations for connect-
ing controls together?
E10 Is the compliance modeling process preferable to
informal certification approaches?

To address these criteria, Task 3 posed a number of
survey questions to our SMEs. Where applicable a scale
of 1 (bad) to 10 (good) was used. The following questions
Q1–Q7 were included in the survey. A portion of the Task
3 study form is shown in Fig. 19.

Requirements Engineering

1 3

Q1 How intuitive are the control patterns for extracting
requirements in the governing documents?
Q2 How intuitive are the semantic relations for con-
necting controls together?
Q3 What about the extraction process is most difficult?
Q4 The patterns span all possible types of controls (i.e.,
ones not shown here).
Q5 (optional) If you disagreed, what types of patterns
do you think are missing?
Q6 Extracted controls in a compliance hierarchy (the
patterns and diagrams in task 1) are easier to understand
than lists of un-extracted controls.
Q7 As a security engineer working to model the secu-
rity compliance of a system, I would rather use this
process than a checklist like the DIACAP.

6.4 Study two results: summative assessment
and evaluation

The following sections examine the expert responses to
the study in the context of each task and set of evaluation
criteria.

Fig. 17 Sample portion of the assessment form for Task 1

Fig. 18 Sample portion of the assessment for Task 2

 Requirements Engineering

1 3

6.4.1 Assessing E5–E7 with task 1 results

In Task 1, the experts individually examined 61 security
controls across control hierarchies in the overall compli-
ance model, with their associated patterned statements, as
expressed in “Appendix”. Across all of the control hierar-
chies, the experts agreed with the dominant control selec-
tion 91% of the time (64 out of 70 individual assessments).
Across all pattern types, the average accuracy rating of the
control patterns was 9.34 (out of a possible 10) for the 305
individual pattern accuracy ratings. This suggests, for E5,
that the model accurately represented the underlying secu-
rity requirements. By pattern type, the average accuracy was
9.00 (for protects with 25 individual accuracy assessments),
9.34 (for performs with 100 assessments), and 9.39 (for
imposes with 180 assessments) as determined by the experts.

Similarly, the experts assessed 68 semantic relations
across all several hierarchies. The overall accuracy of all
relation types was 9.26 across 340 individual relation accu-
racy ratings. By relation type, this decomposed to 9.51 (for
forms 65 assessments), 8.90 (for structures 20 assessments),
9.50 (for refines 90 assessments), 9.10 (for subsumedBy 150
assessments), and 9.30 (for usedBy 20 assessments). This
strongly suggests that experts agree with that the relation-
ships could capture connections between security controls.

With these results in mind, our observations regarding
criteria E7, i.e., how prevalent was confirmation bias among
the experts, was surprising. We found that their assessments
of the incorrect hierarchy, both in terms pattern accuracy and
relationship accuracy were much higher than expected (in

the 7 s for patterns and 6 s for the semantic relations). While
their overall accuracy ratings were lower than the real hier-
archies, the relatively high accuracy values provided show a
strong confirmation bias. In other words, the security experts
seemed to be inclined to believe whatever was put in front
of them, if it was fully developed into a hierarchy. The spe-
cific incorrect hierarchy that duped the experts is shown in
Fig. 20. This result means that the assessment results for E5
and E6 are less credible and require additional validation.
Thankfully, the results of Task 2 and its replication of E5,
discussed in the next section, shed further light on E5 and
E6 by assessing the internal consistency of experts select-
ing patterns when they are not provided preformed patterns.

6.4.2 Replicating internal consistency criteria E4 with Task
2 Results

The Task 2 findings alleviated some of the concerning
results of E7. Across the 5 experts, we found an overall
internal consistency, i.e., experts picked the same control
pattern, 67% of the time (with 215 individual assessments
across 43 unique controls). This result decomposed to 71%
internal consistency with selecting performs patterns (102
agreements), 75% internal consistency when selecting pro-
tects patterns (34 agreements), and 64% internal consistency
with imposes patterns (76 agreements). Evaluating their
selections in the same context as E5 from the pilot study,
we found that they picked the same control pattern type as
the SMEs in the pilot study 64% of the time.

The raw data used to tabulate these results are presented
in Table 3. All performs patterns are color-coded with blue,
protects are shown in gold, imposes are shown in red, and
no match is plain white. A control reference, including the
name and location of the control text, is provided on the left
side of Table 3. The right hand side of the table shows the
highest degree of consistency across the different types. For
instance, the highest consistency of the first row is 4, since
4 of the 5 experts selected performs.

Overall these results bolster the results of E5 and E6 sug-
gesting that non-collaborating security experts select the

Fig. 19 Sample portion of the assessment for Task 3

Fig. 20 Incorrect hierarchy with incorrect patterns and relationships

Requirements Engineering

1 3

same pattern about two-thirds of the time. In a real organiza-
tion, security experts would likely collaborate to ensure that
everyone is on the same page and understands the informa-
tion consistently. To that degree, one of the experts that took
part in the study, stated in the optional comment section, that
they believed iterative refinement to be absolutely essen-
tial to the compliance assessment process, in this model,
or any other. This anecdote when combined with the blind

two-thirds internal consistency, and the inter-rater reliabil-
ity measured in the pilot study indicates that the process is
relatively unambiguous and repeatable.

Another factor not discussed up to this point is the inher-
ent ambiguity present in the security controls themselves.
For instance, from Table 3, one can see that controls relating
to well understood topics like access control (the AC family)
were much better understood than controls relating to system

Table 3 Raw pattern assessment data for Task 2

Control (referrence) Expert 1 Expert 2 Expert 3 Expert 4 Expert 5 Highest
Consistency

AC-3 (sp-800-53-rev4, page 163) Performs Performs Performs Performs Protects 4
AC-3(2) (sp-800-53-rev4, page 163) Performs Performs Performs Performs Performs 5
AC-3(5) (sp-800-53-rev4, page 165) Performs Performs Performs Performs Performs 5
AC-3(7) (sp-800-53-rev4, page 165) Performs Protects Performs Performs Imposes 3

AC-6 (sp-800-53-rev4, page 171) Imposes Imposes Imposes Imposes Performs 4
AC-6(2) (sp-800-53-rev4, page 172) Imposes Imposes Imposes Imposes Imposes 5
AC-14.a (sp-800-53-rev4, page 178) Imposes Imposes Imposes Imposes no match 4
FDP_ACC.2.1 (CC-Part2, page 57) Performs Imposes Performs Performs Imposes 3
FDP_ACF.1.1 (CC-Part2, page 59) Performs Imposes Performs Performs Imposes 3
FIA_UID.1.1 (CC-Part2, page 99) Performs Imposes Performs Performs no match 3

APS0110: CAT II (app-stig, page 26) Performs Imposes Imposes Imposes Protects 3
AC-2.d (sp-800-53-rev4, page 160) Imposes Imposes Imposes Imposes Performs 4
AC-2(1) (sp-800-53-rev4, page 161) Imposes Imposes Imposes Performs Performs 3
AC-2(8) (sp-800-53-rev4, page 162) Performs no match Performs Performs Performs 4
AC-2(2) (sp-800-53-rev4, page 162) Performs Protects Performs Performs Imposes 3
AC-2(3) (sp-800-53-rev4, page 162) Performs Protects Performs Performs Imposes 3
AC-2(5) (sp-800-53-rev4, page 162) Imposes Protects Imposes Imposes Imposes 4
AC-2(9) (sp-800-53-rev4, page 163) Imposes Performs Imposes Imposes Imposes 4
AC-2(10) (sp-800-53-rev4, page 163) Performs Protects Performs Performs Performs 4
APS0510: CAT II (app-stig page 21) Performs Performs Imposes Imposes Imposes 3

N/A CAT II (app-stig page 27) Performs Performs Imposes Imposes Imposes 3
N/A CAT II (app-stig page 27) Performs Performs Imposes Imposes Imposes 3
N/A CAT II (app-stig page 27) Performs Performs Imposes Imposes Imposes 3
N/A CAT II (app-stig page 27) Performs Performs Imposes Imposes Imposes 3

IA-2 (sp-800-53-rev4, page 243) Performs Protects Performs Performs Performs 4
IA-2(1) (sp-800-53-rev4, page 244) Performs Protects Performs Performs Protects 3

IA-3 (sp-800-53-rev4, page 246) Performs Protects Performs Performs Performs 4
IA-3(1) (sp-800-53-rev4, page 246) Performs Protects Performs Performs Performs 4
FIA_AFL.1.2 (CC-Part2, page 89) Performs Performs Performs Performs Imposes 4
FIA_UAU.2.1 (CC-Part2, page 96) Performs Performs Performs Imposes Imposes 3

FTA_MCS.1.1 (CC-Part2, page 164) Performs Imposes Performs Imposes Imposes 3
SC-8 (sp-800-53-rev4, page 346) Protects Protects Protects Performs Protects 4

SC-8(1) (sp-800-53-rev4, page 346) Protects Protects Performs Performs Protects 3
SC-12 (sp-800-53-rev4, page 348) Protects Protects Performs Performs Imposes 2

SC-12(2) (sp-800-53-rev4, page 348) Imposes Protects Imposes Performs Performs 2
SC-17 (sp-800-53-rev4, page 351) Imposes Protects Imposes Performs Performs 2
FCS_CKM.1.1 (CC-Part2, page 50) Protects Imposes Performs Performs Imposes 2
FCS_CKM.2.1 (CC-Part2, page 50) Protects Imposes Performs Performs Imposes 2
FPT_ITT.1.1 (CC-Part2, page 136) Protects Protects Protects Performs Protects 4
FPT_ITC.1.1 (CC-Part2, page 132) Protects Protects Protects Performs Protects 4
FPT_ITI.1.1 (CC-Part2, page 134) Performs Imposes Performs Imposes Imposes 3
N/A: CAT II (app-stig, page 26) Performs Imposes Performs Imposes Protects 2

APS0350: CAT I (app-stig, page 27) Performs Imposes Performs Imposes Performs 3

 Requirements Engineering

1 3

and communication protections (SC family in the NIST) and
protection of the TSF (FPT in the CC). This could mean that
there are inherent ambiguities in the underlying documents
that make the patterning process more difficult in the same
way they would make compliance assessment in another pro-
cess more difficult. In other words, ambiguity in, ambiguity
out.

6.4.3 Assessing E8–E10 with Task 3 results

Task 3 sought to obtain a sense of how the experts felt about
the overall process in the context of other competing compli-
ance assessment processes, like DIACAP, for instance. To
this degree, the experts were asked a series of general ques-
tions as discussed in Sect. 6.3.3. For Q1, i.e., “How intuitive
are the control patterns for extracting requirements in the
governing documents?”, the experts provided an average rat-
ing of 8.8 indicating intuitive to very intuitive. Q2, i.e., the
same question, but about the semantic relations, received a
slightly lower average rating of 8.2.

One of the experts, in the comments, specifically had
trouble distinguishing between structures and refines. This
led to additional feedback in the descriptions in Table 1 to
better explain the guidelines for each. For Q3, i.e., what
about the process is most difficult, the majority of experts
selected the “determining which fields the control includes”
option. This led us to review and adjust the language for
pattern application to better express their parameters. Col-
lectively, Q1–Q5 indicated that the patterns and relation-
ships are intuitive for security experts, addressing E8 and
E9 favorably.

Lastly, and perhaps most importantly, the study sought to
determine if the security experts would prefer the compli-
ance modeling process to other less formal approaches like
DIACAP. Anecdotally, in the comments sections, several of
the experts expressed their interest in the ability of the model
to capture and represent requirements succinctly. One expert
pointed to the fact that the model would only actually need
to be developed once, and then, it could be re-used later by
any other organization.

Looking at the more numerical assessments, there were
strong results toward E10 indicating that the model would
be preferable over informal methods. Q6, asking the experts
whether or not the compliance hierarchies are easier to
understand than groups of unrelated controls, received an
average rating of 9 across the experts indicating that they
strongly agree. In the comments, two of the experts pointed
to the graphical layout as providing an idea of structure that
was not provided by DIACAP or other similar approaches.
Similarly, Q7, which directly asked the experts if they
would rather use the compliance hierarchy process over
the DIACAP, received an average rating of 8.6 indicating a
strong degree of agreement. Overall, the results of Tasks 1,

2, and 3 suggest that the requirement extraction process is
consistent and repeatable and that the resulting compliance
model semantic hierarchy is desirable to industry security
analysts.

7 Discussion and conclusion

The work presented in this paper describes a process that
includes reusable patterns, model templates, and semantic
relations to allow new or updated controls to be patterned,
formalized, and related to other controls in a new, existing,
or emerging control hierarchy. The design of a compliance
model provides clarity to the certification process and facili-
tates its application to information systems by exploiting
the connectivity not only between security controls within a
single document, but also across governing documents. The
end result of the application of the compliance model is a set
of predicates that solidify compliance interpretations so that
they can be used directly and extended or refined by other
entities that rely on the governing security documents, such
as FedRamp [74] and CSA [75] for cloud computing. By
establishing a compliance modeling process, our model can
be expanded to cover additional security areas of concern.

This paper also followed a running audit-related case
study that derived and specified all audit-related predicates
in the set of examined governing documents (NIST SP800-
53, etc.). The predicates specified here are thus reusable
across environments, systems, and organizations utilizing
those documents. Instantiating the overall compliance model
given an organization and their information systems pro-
vides a structured certification baseline that can be used to
formulate test cases, direct mitigation strategies, or specify
the organization’s desired verification constructs. Once a
document is extracted, and the resulting semantic hierar-
chy-based compliance model is verified, it can be re-used
until the underlying security control texts are changed or
extended—at which point the model can be updated. This
approach provides a stable, reusable, graphic, and formaliz-
able certification baseline that can be used in conjunction
with formal or informal accreditation processes for improved
certification against control standards.

As NIST has now separated out the original privacy con-
trols from the general families and created a new, dedicated
segment of the SP800-53r4 to only privacy related con-
trols, application of this research to those privacy controls
is part of future effort. Another future effort is to examine
the impact that constructed overlays have in clarifying cer-
tification needs by applying the controls within a specific
domain. It is possible that the overlays that form the control
sets could be “overlaid” onto the set of predicates to clarify
how predicates can be directly instantiated.

Requirements Engineering

1 3

Acknowledgements This material is based on research sponsored in
part by the Air Force Office of Scientific Research (AFOSR), under
Agreement No. FA-9550-09-1-0409.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http ://crea tive comm
ons.org/lice nses /by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

Appendix A: Study: control patterns for all
audit‑related controls in the NIST SP 800‑53,
DoDI8500.2, ISO 15408‑2, and related
documents

Group: auditable events

AU-2.G.a: The organization determines, based on a risk
assessment and mission/business needs, that the information
system must be capable of auditing the following events:
[Assignment: organization-defined list of auditable events].

Pattern:

Org imposes a set of auditable events on information
systems

FAU_SEL.1.1: The TSF shall be able to select the set of
audited events from the set of all auditable events based on
the following attributes: a) [selection: object identity, user
identity, subject identity, host identity, event type] b) [assign-
ment: list of additional attributes that audit selectivity is
based upon].

Pattern:

Org imposes audit parameters (object_id, user_id, sub-
ject_id, host_id, event_type, and additional_content)
on auditable events

FAU_GEN.1.1(b): The TSF shall be able to generate
an audit record of all auditable events for the [selection,
choose one of: minimum, basic, detailed, not specified] level
of audit.

Pattern:

Org imposes audit levels as parameters (minimum,
basic, detailed, not specified) on auditable events

APP3620: The Designer will ensure the application does
not disclose unnecessary information to users.

Pattern:

Org imposes a secrecy level on system information

AU-2.E4: The organization includes execution of privi-
leged functions in the list of events to be audited by the
information system.

Pattern:

Org imposes execution of privileged functions as a
selected auditable event

APP3660: The Designer will ensure the application has
a capability to notify the user on login of date and time of
the user’s last unsuccessful logon, IP address of the user’s
last unsuccessful logon, date and time of the user’s last suc-
cessful logon, IP address of the user’s last successful logon,
and number of unsuccessful logon attempts since the last
successful logon.

Pattern:

Org imposes use of login function as a selected audit-
able event with parameters (timestamp and IP address
of last unsuccessful logon, timestamp and IP of last
successful logon, number of unsuccessful logon
attempts since last successful logon)

APP3680.1: The Designer will ensure the applica-
tion design includes audits on all access to need-to-know
information.

Pattern:

Org imposes access control reads and writes as
selected auditable events

APP3680.2: The Designer will ensure the application
logs all failed access attempts to need-to-know information.

Pattern:

Org imposes access control read-fails and write-fails
as selected auditable events

APP3670: The Designer will ensure the application has
a capability to display the user’s time and date of the last
change in data content.

Pattern:

Org imposes data modification or deletion as selected
auditable events

APP3680.6: The Designer will ensure the application
creates an audit trail for addition, deletion, or change of the
confidentiality or integrity labels as designated by the infor-
mation owner.

Pattern:

Org imposes confidentiality and integrity label modi-
fication as selected auditable events

FAU_GEN.1.1(a): The TSF shall be able to generate an
audit record of start-up and shutdown of the audit functions.

Pattern:

Org imposes data modification or deletion as selected
auditable events

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

 Requirements Engineering

1 3

Group: audit record

AU-3.G: The information system produces audit records that
contain sufficient information to, at a minimum, establish
what type of event occurred, when (date and time) the event
occurred, where the event occurred, the source of the event,
the outcome (success or failure) of the event, and the identity
of any user/subject associated with the event.

Pattern:

Org imposes content parameters (type, timestamp,
location, source, outcome, UID) on audit records

AU-3.E1: The information system includes [Assignment:
organization-defined additional, more detailed information]
in the audit records for audit events identified by type, loca-
tion, or subject.

Pattern:

Org imposes additional content on audit records

FAU_GEN.1.2: The TSF shall record within each audit
record at least the following information: a) Date and time
of the event, type of event, subject identity (if applicable),
and the outcome (success or failure) of the event; and b) For
each audit event type, based on the auditable event defini-
tions of the functional components included in the PP/ST,
[assignment: other audit relevant information].

Pattern:

Org imposes content parameters (timestamp, location,
source, outcome, UID) on audit records

ECAR-1: Audit records for MAC-1 include: user ID, date
and time of the event, and the type of event.

Pattern:

Org imposes content parameters (type, timestamp,
UID) on audit records

ECAR-2: Audit records for MAC-2 include: user ID, date
and time of the event, type of event, success or failure of
event, [and information needed to record defined auditable
events—i.e. source].

Pattern:

Org imposes content parameters (type, timestamp, out-
come, UID, source) on audit records

ECAR-3: Audit records for MAC-3 events include: user
ID, date and time of the event, type of event, success or
failure of event [and information needed to record defined
auditable events—i.e. source].

Pattern:

Org imposes content parameters (type, timestamp, out-
come, UID, source) on audit records

APP3680.3: The Designer will ensure the application’s
publicly releasable data audit records include: user ID, date
and time of the event, and the type of event.

Pattern:

Org imposes content parameters (type, timestamp,
UID) on audit records

APP3680.4: The Designer will ensure the application’s
sensitive data audit records include: user ID, date and time
of the event, type of event, and the success or failure of
event [and information needed to record defined auditable
events—i.e. source].

Pattern:

Org imposes content parameters (type, timestamp, out-
come, UID, source) on audit records

APP3680.5: The Designer will ensure the application’s
classified data audit records include: user ID, date and time
of the event, type of event, success or failure of event [and
information needed to record defined auditable events—i.e.
source].

Pattern:

Org imposes content parameters (type, timestamp, out-
come, UID, source) on audit records

Group: audit record generation

AU-12.G.a: The information system provides audit record
generation capability for the list of auditable events defined
in AU-2 at [Assignment: organization-defined information
system components].

Pattern:

InfoSys performs audit record generation given an
auditable event occurs and parameters (set of declared
auditable events and components (imposed by Org))
that results in audit record creation

AU-12.G.c: The information system generates audit
records for the list of audited events defined in AU-2 with
the content as defined in AU-3.

Pattern:

InfoSys performs audit record generation given an
auditable event occurs and parameters (set of declared
auditable events and components (imposed by Org))
that results in audit record creation

APP3640: The Designer will ensure the application sup-
ports the creation of transaction logs for access and changes
to the data.

Pattern:

InfoSys performs audit record generation given an
auditable event occurs and parameters (set of declared

Requirements Engineering

1 3

auditable events and components (imposed by Org))
that results in audit record creation

FAU_GEN.1.1(c): The TSF shall be able to generate an
audit record of the following auditable events [assignment:
other specifically defined auditable events].

Pattern:

InfoSys performs audit record generation given an
auditable event occurs and parameters (set of declared
auditable events and components (imposed by Org))
that results in audit record creation

Group: audit trail compilation

AU-3.E2: The organization centrally manages the content
of audit records generated by [Assignment: organization-
defined information system components].

Pattern:

Org imposes centrally managed content on select com-
ponents

AU-12.E1: The information system compiles audit
records from [Assignment: organization-defined information
system components] into a system-wide (logical or physi-
cal) audit trail that is time correlated to within [Assignment:
organization-defined level of tolerance for relationship
between time stamps of individual records in the audit trail].

Pattern:

InfoSys performs audit record compilation given com-
ponent audit record generation and parameter (list of
components selected to be part of the trail) that results
in production of a time correlated, system-wide audit
trail

AU-12.E2: The information system produces a system-
wide (logical or physical) audit trail composed of audit
records in a standardized format.

Pattern:

InfoSys performs audit record conversion given un-
standardized audit records and parameters (list of com-
ponents selected to be part of the audit trail, standard
format) that results in audit records being in a standard
format

Group: non‑repudiation

AU-10.G: The information system protects against an indi-
vidual falsely denying having performed a particular action.

Pertinent Supplemental Guidance Non-repudiation
services are obtained by employing various techniques

or mechanisms (e.g., digital signatures, digital message
receipts).

Pattern:

InfoSys protects user action logs using digital signa-
ture mechanisms (imposed by org) to prevent repudia-
tion

AU-10.E1: The information system associates the identity
of the information producer with the information.

Pattern:

InfoSys performs identity (UID) binding given audit
record generation and parameters (audit record, user,
binding mechanism) that results in a signed UID in
the audit record

AU-10.E2: The information system validates the
binding of the information producer’s identity to the
information.

Pertinent Supplemental Guidance This control enhance-
ment is intended to mitigate the risk that information is
modified between production and review. The validation
of bindings can be achieved, for example, by the use of
cryptographic checksums.

Pattern:

InfoSys performs binding validation given audit
record review and parameter (validation mechanism)
that results in UID validation

AU-10.E3: The information system maintains reviewer/
releaser identity and credentials within the established
chain of custody for all information reviewed or released.

Pertinent Supplemental Guidance If the reviewer is a
human or if the review function is automated but separate
from the release/transfer function, the information system
associates the identity of the reviewer of the information to
be released with the information and the information label.

Pattern:

InfoSys performs reviewer identity binding given
audit record review and parameters (audit record,
user, binding mechanism) that results in signed
reviewer UID in the audit record

AU-10.E4: The information system validates the bind-
ing of the reviewer’s identity to the information at the
transfer/release point prior to release/transfer from one
security domain to another security domain.

Pattern:

InfoSys performs binding validation given audit
record transfer and parameter (audit record, valida-
tion mechanism) that results in UID validation

FAU_GEN.2.1 For audit events resulting from actions
of identified users, the TSF shall be able to associate each

 Requirements Engineering

1 3

auditable event with the identity of the user that caused
the event.

Pattern:

InfoSys performs identity (UID) binding given audit
record generation and parameters (audit record, user,
binding mechanism) that results in a signed UID in
the audit record

Group: audit failure system

AU-5.G.a: The information system alerts designated organi-
zational officials in the event of an audit processing failure.

Pattern:

Org performs a set of audit failure actions related to
audit failure events

AU-5.G.b: The information system takes the following
additional actions (in the event of an audit processing fail-
ure): [Assignment: organization-defined actions to be taken
(e.g., shut down information system, overwrite oldest audit
records, stop generating audit records)].

Pattern:

Org imposes additional actions related to audit failure
events

AU-5.E1: The information system provides a warning
when allocated audit record storage volume reaches [Assign-
ment: organization-defined percentage] of maximum audit
record storage capacity.

Pattern:

Org imposes the percentage of audit record storage
capacity which, when reached, causes a “warning
action”

AU-5.E2: The information system provides a real-time
alert when the following audit failure events occur: [Assign-
ment: organization-defined audit failure events requiring
real-time alerts].

Pattern:

Org imposes select failure events which cause real-
time alert actions

AU-5.E3: The information system enforces configurable
traffic volume thresholds representing auditing capacity for
network traffic and [Selection: rejects or delays] network
traffic above those thresholds.

Pattern:

Org imposes configurable traffic volume thresholds
for auditing capacity of network traffic which, when
reached, causes a reject or delay action

AU-5.E4: The information system invokes a system shut-
down in the event of an audit failure, unless an alternative
audit capability exists.

Pattern:

Org imposes a system shutdown action for audit failure
events without alternative audit capability

FAU_STG.3.1: The TSF shall [assignment: actions to be
taken in case of possible audit storage failure] if the audit
trail exceeds [assignment: pre-defined limit].

Pattern:

Org imposes selected actions to be applied when the
audit trail exceeds a pre-defined limit

FAU_STG.4.1: The TSF shall [selection, choose one of:
“ignore audited events”, “prevent audited events, except
those taken by the authorised user with special rights”,
“overwrite the oldest stored audit records”] and [assign-
ment: other actions to be taken in case of audit storage fail-
ure] if the audit trail is full.

Pattern:

Org imposes ignore, prevent and overwrite actions to
be applied when the audit trail is full

APP3650: The Designer will ensure the application has
a capability to notify an administrator when audit logs are
nearing capacity as specified in the system documentation.

Pattern:

Org imposes the percentage of audit record storage
capacity which, when reached, causes a “warning
action”

Group: audit protection

AU-9.G: The information system protects audit information
and audit tools from unauthorized access, modification, and
deletion.

Pertinent Supplemental Guidance Audit information
includes all information (e.g., audit records, audit settings,
and audit reports) needed to successfully audit information
system activity.

Pattern:

InfoSys protects audit records, the audit trail, auditable
event definitions, and audit review tools using {} to
prevent unauthorized access, modification or deletion

APP3690.4: The IAO will ensure the audit trail is pro-
tected against modification or deletion except by application
administrators and auditors.

Pattern:

InfoSys protects the audit trail using {} to prevent
modification or deletion

Requirements Engineering

1 3

APP3690.2: The Designer will ensure the audit trail is
protected against modification or deletion except by applica-
tion administrators and auditors.

Pattern:

InfoSys protects the audit trail using {} to prevent
modification or deletion

ECTP-1: The contents of audit trails are protected against
unauthorized access, modification or deletion.

Pattern:

InfoSys protects the audit trail using {} to prevent
unauthorized access, modification, or deletion

FAU_SAR.2.1: The TSF shall prohibit all users read
access to the audit records, except those users that have been
granted explicit read-access.

Pattern:

InfoSys protects audit records using {} to prevent
unauthorized access

FAU_STG.1.1: The TSF shall protect the stored audit
records in the audit trail from unauthorized deletion.

Pattern:

InfoSys protects the audit trail using {} to prevent
unauthorized deletion

FAU_STG.1.2: The TSF shall be able to [selection,
choose one of: prevent, detect] unauthorized modifications
to the stored audit records in the audit trail.

Pattern:

InfoSys protects the audit trail using {} to prevent
unauthorized modification

FAU_STG.2.1 The TSF shall protect the stored audit
records in the audit trail from unauthorized deletion.

Pattern:

InfoSys protects the audit trail using {} to prevent
unauthorized deletion

FAU_STG.2.2 The TSF shall be able to [selection, choose
one of: prevent, detect] unauthorized modifications to the
stored audit records in the audit trail.

Pattern:

InfoSys protects the audit trail using {} to prevent
unauthorized modification

Group: audit access control

AC-3.E3: The information system enforces [Assignment:
organization-defined nondiscretionary access control poli-
cies] over [Assignment: organization-defined set of users and
resources] where the policy rule set for each policy specifies:

(a) Access control information (i.e., attributes) employed
by the policy rule set (e.g., position, nationality, age, pro-
ject, time of day); and (b) Required relationships among the
access control information to permit access.

Pattern:

InfoSys performs access control enforcement given
user access to assets or functions and org-defined
access control policy parameters (position, national-
ity, age, project, time of day, relationships between
information) that results in acceptance or rejectance
of user access

AU-9.E4: The organization: a) authorizes access to man-
agement of audit functionality to only a limited subset of
privileged users; and b) protects the audit records of non-
local accesses to privileged accounts and the execution of
privileged functions.

Pattern:

Org imposes an access control list that specifies users
authorized to access audit parameters (records, trail,
tools).

FAU_SAR.1.1: The TSF shall provide [assignment:
authorised users] with the capability to read [assignment:
list of audit information] from the audit records.

Pattern:

Org imposes an access control list that specifies users
authorized to access audit parameters (records).

APP3690.1: The Designer will ensure the audit trail is
readable only by the application administrators and auditors.

Pattern:

Org imposes an access control list that specifies users
authorized to access audit parameters (trail).

APP3690.3: The IAO will ensure the audit trail is read-
able only by application administrators and auditors.

Pattern:

Org imposes an access control list that specifies users
authorized to access audit parameters (trail).

Group: audit cryptography

AU-9.E3: The information system uses cryptographic mech-
anisms to protect the integrity of audit information and audit
tools.

Pertinent Supplemental Guidance An example of a cryp-
tographic mechanism for the protection of integrity is the
computation and application of a cryptographic-signed hash
using asymmetric cryptography, protecting the confidential-
ity of the key used to generate the hash, and using the public
key to verify the hash information.

 Requirements Engineering

1 3

Pattern:

InfoSys per forms encryption given audit
information(records, trail) modification and defined
cryptographic mechanisms(imposed by org) that
results in encrypted audit information

DCNR-1.b: NIST FIPS 140-2 validated cryptogra-
phy (e.g., DoD PKI class 3 or 4 token) is used to imple-
ment encryption (e.g., AES, 3DES, DES, Skipjack), key
exchange (e.g., FIPS 171), digital signature (e.g., DSA,
RSA, ECDSA), and hash (e.g., SHA-1, SHA-256, SHA-
384, SHA-512). Newer standards should be applied as they
become available.

Pattern:

Org imposes the encryption mechanisms for the sys-
tems as: encryption: selection(AES, 3DES, DES,
Skipjack); key exchange: selection(FIPS 171); digi-
tal signatures: selection(DSA, RSA, ECDSA); hash:
selection(SHA-1, SHA-256, SHA-384, SHA-512)

AU-10.E5 The organization employs [Selection: FIPS-
validated; NSA-approved] cryptography to implement digi-
tal signatures.

Pattern:

Org imposes the encryption mechanisms for digital
signatures: selection(FIPS-validated, NSA-approved);

Group: audit review

FAU_SAR.3.1: The TSF shall provide the ability to apply
[assignment: methods of selection and/or ordering] of audit
data based on [assignment: criteria with logical relations].

Pattern:

InfoSys performs audit reduction and report genera-
tion given parameter (audit trail, selection/ordering
method, selection criteria) that results in the creation
of an audit report

AU-7.G: The information system provides an audit reduc-
tion and report generation capability

Pattern:

InfoSys performs audit reduction and report generation
given parameter (audit trail) that results in the produc-
tion of an audit report

AU-7.E1: The information system provides the capability
to automatically process audit records for events of interest
based on selectable event criteria.

Pattern:

InfoSys performs audit reduction and report genera-
tion given parameter (audit trail, selection criteria) that
results in the production of an audit report

ECRG-1: Tools are available for the review of audit
records and for report generation from audit records.

Pattern:

InfoSys performs audit report generation given param-
eter (audit trail) that results in the production of an
audit report

FAU_SAR.1.2: The TSF shall provide the audit
records in a manner suitable for the user to interpret the
information.

Pattern:

Org imposes human readable qualities on generated
audit reports

Group: audit record backup
AU-9.E2: The information system backs up audit records

[Assignment: organization-defined frequency] onto a differ-
ent system or media than the system being audited.

Pattern:

InfoSys performs audit record backup given the backup
frequency (imposed by the Org) and parameter (audit
trail) that results in the creation of an audit records
backup on a different system or media

ECTB-1: The audit records are backed up not less than
weekly onto a different system or media than the system
being audited.

Pattern:

InfoSys performs audit record backup given the backup
frequency (no less than weekly) and parameter (audit
trail) that results in the creation of an audit records
backup on a different system or media

Group: audit user accounts (incorrect grouping,
methodological control)

AC-2.d: The organization specifies authorized users of
the information system, group and role membership, and
access authorizations (i.e., privileges) and other attributes
(as required) for each account.

Pattern:

Org imposes organizational and individual access con-
trol parameters on user accounts

AC-3.E2: The information system enforces dual authori-
zation for [Assignment: organization-defined privileged
commands and/or other organization-defined actions].

Pattern:

Requirements Engineering

1 3

InfoSys performs dual authorization given privileged
functions and actions that results in user login.

AC-3.E7: The information system enforces a role-based
access control policy over defined subjects and objects and
controls access based upon [Assignment: organization-
defined roles and users authorized to assume such roles].

Pattern:

Org imposes role-based access control policy on sub-
jects

AC-2.E3: The information system automatically disables
inactive accounts after [Assignment: organization-defined
time period].

Pattern: (wrong should be performs)

Org imposes inactive account disabling

AC-2.E5: The organization requires that users log out
when [Assignment: organization-defined time-period of
expected inactivity or description of when to log out].

Pattern: (wrong should be imposes)

InfoSys performs user log out given inactive time
period that results in log out.

References

 1. DoD (2007) Instruction 8510.01: department of defense informa-
tion assurance certification and accreditation process (DIACAP)

 2. NIST (2013) Special publication 800-53 recommended security
controls for federal information systems rev. 4., http ://csrc .nist
.gov/publ icat ions /nist pubs /800-53-Rev3 /sp80 0-53-rev3 -fina l.pdf.
Accessed Oct 2015

 3. (2009) Common criteria for information technology security
evaluation version 3.1 (Part 2: security functional requirements).
http ://www.comm oncr iter iapo rtal .org/cc/. Accessed Oct 2015

 4. DoD (2003) Instruction 8500.2, information assurance
implementation

 5. DISA (2011) Application security and development STIG ver-
sion 3 release 4. http ://iase .disa .mil/stig s/app_secu rity /app_sec/
app_sec.html . Accessed Oct 2015

 6. Hassan W, Logrippo L (2009) A governance requirements extrac-
tion model for legal compliance validation. In: Second interna-
tional workshop on requirements engineering and law

 7. Gamble M, Gamble R, Hale M (2011) Security policy foundations
in context UNITY. In: 7th International workshop on software
engineering for secure systems

 8. Taguchi K, Yoshioka N, Tobita T, Kaneko H (2010) Aligning
security requirements and security assurance using the common
criteria. Presented at the fourth international conference on secure
software integration and reliability improvement

 9. Li N, Wang Q (2006) Beyond separation of duty: an algebra for
specifying high-level security policies. In: Proceedings of the 13th
ACM conference on computer and communications security

 10. (2003) Summary of the HIPAA privacy rule. http ://www.hhs.gov/
ocr/priv acy/hipa a/unde rsta ndin g/summ ary/priv acys umma ry.pdf.
Accessed Oct 2015

 11. Best B, Jürjens J, Nuseibeh B (2007) Model-based security engi-
neering of distributed information systems using UMLsec. In:
29th International conference on software engineering

 12. Adir A, Asaf S, Fournier L, Jaeger I, Peled O (2007) A framework
for the validation of processor architecture compliance. In: Pro-
ceedings of the 44th annual design automation conference

 13. NIST (2010) Special publication 800-37, guide for applying the
risk management framework to federal information systems a
security life cycle approach

 14. Hale M, Gamble R (2012) Risk propagation of security SLAs
in the cloud In: Proceeding of the workshop on management
and security technologies for cloud computing 2012, IEEE
GLOBECOM

 15. MITRE. The common weakness enumeration (CWE) initiative.
MITRE Corporation. http ://cwe.mitr e.org/. Accessed Oct 2015

 16. MITRE. Common vulnerabilities and exposures (CVE) initiative/
MITRE Corporation. http ://cve.mitr e.org/. Accessed Oct 2015

 17. Minkiewicz A (2011) Cloud Nine, are we there yet? J Softw
Technol 14(4):4–8

 18. CSA (2012) Cloud controls matrix. http s://clou dsec urit yall ianc
e.org/wp-cont ent/them es/csa/down load -box-ccm-v1-3.php.
Accessed Oct 2015

 19. Breaux T, Anton A (2005) Deriving semantic models from pri-
vacy policies. In: Proceedings of the sixth IEEE international
workshop on policies for distributed systems and networks

 20. DoD (1999) Directive 5200.2: personnel security program
 21. DoD (1997) Instruction 5200.40: DoD information technology

security certification and accreditation process (DITSCAP)
 22. DoD (2002) Directive 8500.1: information assurance
 23. OMB (1996) Circular no. A-130: memorandum for heads of

executive departments and establishments—management of
federal information resources

 24. (2009) Common criteria for information technology security
evaluation version 3.1 (Part 1: introduction and general model).
http ://www.comm oncr iter iapo rtal .org/cc/. Accessed Oct 2015

 25. (2009) Common criteria for information technology security
evaluation version 3.1 (Part 3: security assurance requirements).
http ://www.comm oncr iter iapo rtal .org/cc/. Accessed Oct 2015

 26. Haley C, Laney R, Moffett J, Nuseibeh B (2008) Security
requirements engineering: a framework for representation and
analysis. Trans Softw Eng (IEEE) 34(1):133–153

 27. Haley C, Moffett J, Laney R, Nuseibeh B (2006) A framework
for security requirements engineering. In: Proceedings of the
2006 international workshop on Software engineering for secure
systems

 28. Redl C, Breskovic I, Brandic I, Dustdar S (2012) Automatic
SLA matching and provider selection in grid and cloud comput-
ing markets. In: Proceedings of the 13th international confer-
ence on grid computing

 29. Modica G, Petralia G, Tomarchio O (2012) A business ontol-
ogy to enable semantic matchmaking in open cloud markets. In:
Eighth international conference on semantics, knowledge and
grids

 30. Belhajjame K, Embury S, Paton N (2013) Verification of semantic
web service annotations using ontology-based partitioning. In:
IEEE transactions on services computing (preprint)

 31. Zhu W (2012) Semantic mediation bus (TM): an ontology-based
runtime infrastructure for service interoperability. In: Proceedings
of 16th IEEE international enterprise distributed object computing
conference workshops

 32. Dobson G, Sanchez-Macian A (2006) Towards unified QoS/
SLA ontologies. In: Proceedings of the IEEE services computing
workshops

 33. Khoury P, Mokhtari A, Coquery E, Hacid M-S (2008) An ontolog-
ical interface for software developers to select security patterns.

http://csrc.nist.gov/publications/nistpubs/800-53-Rev3/sp800-53-rev3-final.pdf
http://csrc.nist.gov/publications/nistpubs/800-53-Rev3/sp800-53-rev3-final.pdf
http://www.commoncriteriaportal.org/cc/
http://iase.disa.mil/stigs/app_security/app_sec/app_sec.html
http://iase.disa.mil/stigs/app_security/app_sec/app_sec.html
http://www.hhs.gov/ocr/privacy/hipaa/understanding/summary/privacysummary.pdf
http://www.hhs.gov/ocr/privacy/hipaa/understanding/summary/privacysummary.pdf
http://cwe.mitre.org/
http://cve.mitre.org/
https://cloudsecurityalliance.org/wp-content/themes/csa/download-box-ccm-v1-3.php
https://cloudsecurityalliance.org/wp-content/themes/csa/download-box-ccm-v1-3.php
http://www.commoncriteriaportal.org/cc/
http://www.commoncriteriaportal.org/cc/

 Requirements Engineering

1 3

In: Proceedings of the 19th international conference on database
and expert systems application

 34. W3C (2004) OWL web ontology language guide. http ://www.
w3.org/TR/owl-guid e/. Accessed Oct 2015

 35. Wongthongtham P, Chang E, Dillon T, Sommerville I (2009)
Development of a software engineering ontology for mul-
tisite software development. IEEE Trans Knowl Data Eng
21(8):1205–1217

 36. Mace J, Parkin S, Moorsel AV (2010) A collaborative ontology
development tool for information security managers. In: Proceed-
ings of the 4th symposium on computer human interaction for the
management of information technology

 37. Evesti A, Ovaska E, Savola R (2009) From security modelling
to run-time security monitoring. In: Proceeedings of European
workshop on security in model driven architecture (SECMDA)

 38. Lee S, Gandhi R, Muthurajan D, Yavagal D, Ahn G (2006) Build-
ing problem domain ontology from security requirements in regu-
latory documents. In: Proceedings of the international workshop
on software engineering for secure systems

 39. Tsoumas B, Gritzalis D (2006) Towards an ontology-based secu-
rity management. In: Proceedings of the 20th international confer-
ence on advanced information networking and applications, vol
01

 40. Lee S, Gandhi R, Wagle S (2007) Towards a requirements-driven
workbench for supporting software certification and accreditation.
In: Proceedings of the third international workshop on software
engineering for secure systems

 41. Weber-Jahnke J, Onabajo A (2009) Mining and analysing security
goal models in health information systems. In: Proceedings of the
ICSE workshop on software engineering in health care

 42. Mathews AW, Yadron D (2015) Health insurer anthem hit by hack-
ers. Wall Str J

 43. Daramola O, Sindre G, Stalhane T (2012) Pattern-based security
requirements specification using ontologies and boilerplates. In:
2012 Second IEEE international workshop on requirements pat-
terns (RePa), pp 54–59

 44. Sharma V, Sarkar S, Verma K, Panayappan A, Kass A (2009)
Extracting high-level functional design from software require-
ments. In: 16th Asia-Pacific software engineering conference

 45. Ambriola V, Gervasi V (1997) Processing natural language
requirements. In: Proceedings of the 12th international confer-
ence on automated software engineering

 46. Bernsmed K, Jaatun M, Meland P, Undheim A (2012) Thunder in
the clouds: security challenges and solutions for federated clouds.
In: 4th International IEEE conference on cloud computing tech-
nology and science

 47. Bleikertz S, Groß T, Mödersheim S (2011) Automated verification
of virtualized infrastructures. In: Proceedings of the 3rd ACM
workshop on cloud computing security workshop

 48. She W, Yen I, Thuraisingham B, Huang S (2011) Rule-based run-
time information flow control in service cloud. In: IEEE interna-
tional conference on web services

 49. Singaravelu L, Pu C (2007) Fine-grain, end-to-end security for
web service compositions In: IEEE international conference on
services computing

 50. Roman G-C, Julien C, Payton J (2007) Modeling adaptive behav-
iors in context UNITY. Theor Comput Sci 376(3):185–204

 51. deNicola R, Ferrari G, Pugliese R (1998) KLAIM: a kernel lan-
guage for agents interaction and mobility. IEEE Trans Softw Eng
24(5):315–330

 52. Bravetti M, Busi N, Gorrieri R, Lucchi R, Zavattaro G (2004)
Security issues in the tuple-space coordination model. In: Pro-
ceedings of workshop on formal aspects in security and trust

 53. Gamble MT, Gamble R (2008) Isolation in design reuse. J Softw
Process Improv Pract 13:145–156

 54. Xie R, Gamble R (2013) An architecture for cross-cloud audit-
ing. In: 8th Cyber security and information intelligence research
workshop

 55. Raj H, Nathuji R, Singh A, England P (2009) Resource manage-
ment for isolation enhanced cloud services. In: Proceedings of the
ACM workshop on Cloud computing security workshop

 56. Bernsmed K, Jaatun M, Meland P, Undheim A (2011) Security
SLAs for federated cloud services. In: Sixth international confer-
ence on availability, reliability and security

 57. Handorean R, Roman G-C (2003) Secure sharing of tuple spaces
in ad hoc settings. ENTCS 85(3):122–141

 58. Merrick I, Wood A (2000) Coordination with scopes. In: Proceed-
ings of the 2000 ACM symposium on applied computing

 59. Sudhir A, Carriero N, Gelernter D (1986) Linda and friends. IEEE
Comput 19(8):26–34

 60. Mani Chandy K (1988) Parallel program design: a foundation.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA

 61. Wang W, Gupta A, Wu Y (2015) Continuously delivered? Periodi-
cally updated? Never changed? Studying an open source project’s
releases of code, requirements, and trace matrix. In: 2015 IEEE
workshop on just-in-time requirements engineering (JITRE).
IEEE, pp 13–16

 62. Ghezzi C, Menghi C, Sharifloo AM, Spoletini P (2014) On
requirement verification for evolving Statecharts specifications.
Requir Eng 19(3):231–255

 63. Mahmoud A, Niu N (2014) Supporting requirements to code
traceability through refactoring. Requir Eng 19(3):309–329

 64. Hermoye L, Lamsweerde A, Perry D (2014) A reuse-based
approach to security requirements engineering. http ://user s.ece.
utex as.edu/~perr y/work /pape rs/0609 08-LH-reus e.pdf

 65. van Hermoye LA, Perry DE (2006) Attack patterns for security
requirements engineering

 66. Saeki M, Kaiya H (2008) Security requirements elicitation using
method weaving and common criteria. In: International con-
ference on model driven engineering languages and systems.
Springer, pp 185–196

 67. Vyatkin V (2013) Software engineering in industrial automation:
state-of-the-art review. IEEE Trans Ind Inf 9(3):1234–1249

 68. Yu Y, Franqueira VNL, Tun TT, Wieringa RJ, Nuseibeh B (2015)
Automated analysis of security requirements through risk-based
argumentation. J Syst Softw 106(Supplement C):102–116

 69. Darimont R, Delor E, Massonet P, van Lamsweerde A (1997)
GRAIL/KAOS: an environment for goal-driven requirements
engineering. In: Proceedings of the 19th international conference
on software engineering. ACM, pp 612–613

 70. Profile EP, E-COFC public business class. ECMA Technical
Report TR/781999

 71. MITRE. Common attack pattern enumeration and classification
(CAPEC) initiative. MITRE Corporation. http ://cwe.mitr e.org/.
Accessed Oct 2015

 72. Davies J, Woodcock J (1996) Using Z: specification, refinement
and proof. Prentice Hall International Series in Computer Science.
ISBN 0-13-948472-8

 73. Clarkson M, Schneider F (2010) Hyperproperties. J Comput Secur
18(6):1157–1210

 74. (2012) FedRamp Baseline Security Controls. www.gsa.gov/
grap hics /staff offi ces /FedR AMP_Secu rity _Cont rols _Fina l.zip.
Accessed Oct 2015

 75. (2009) Cloud security alliance, security guidance for critical areas
of focus in cloud computing v3.0. http s://clou dsec urit yall ianc
e.org/wp-cont ent/uplo ads/2011 /07/csag uide .v2.1.pdf. Accessed
Oct 2015

http://www.w3.org/TR/owl-guide/
http://www.w3.org/TR/owl-guide/
http://users.ece.utexas.edu/~perry/work/papers/060908-LH-reuse.pdf
http://users.ece.utexas.edu/~perry/work/papers/060908-LH-reuse.pdf
http://cwe.mitre.org/
http://www.gsa.gov/graphics/staffoffices/FedRAMP_Security_Controls_Final.zip
http://www.gsa.gov/graphics/staffoffices/FedRAMP_Security_Controls_Final.zip
https://cloudsecurityalliance.org/wp-content/uploads/2011/07/csaguide.v2.1.pdf
https://cloudsecurityalliance.org/wp-content/uploads/2011/07/csaguide.v2.1.pdf

	Semantic hierarchies for extracting, modeling, and connecting compliance requirements in information security control standards
	Recommended Citation

	Semantic hierarchies for extracting, modeling, and connecting compliance requirements in information security control standards
	Abstract
	1 Introduction
	2 Background
	2.1 Federal and industry regulatory documents
	2.2 Security requirement extraction and modeling
	2.3 Formal system modeling
	2.4 Addressing security requirements during development

	3 Governance patterns and formalization
	3.1 Imposes
	3.2 Performs
	3.3 Protects

	4 Creating semantic hierarchies using semantic relations
	4.1 SubsumedBy
	4.2 UsedBy
	4.3 Structures
	4.4 Refines
	4.5 Forms

	5 Compliance interconnectivity spanning hierarchies in the audit case study
	5.1 Top-level semantic relations
	5.2 Auditable events
	5.3 AuditRecord
	5.4 Audit Record Generation
	5.5 Audit trail compilation
	5.6 Non-repudiation, audit access control, audit cryptography, and audit protection
	5.7 Audit review
	5.8 Audit record backup
	5.9 Audit failure response and failure mapping

	6 Evaluation of extraction, formalization, and hierarchy creation process
	6.1 Pilot study methodology: formative evaluation and feedback
	6.2 Pilot study results: formative evaluation and feedback
	6.3 Second study methodology: summative assessment and evaluation
	6.3.1 Task 1: Assessing modeling accuracy and confirmation bias
	6.3.2 Task 2: Control pattern identification and inter-rater reliability replication
	6.3.3 Task 3: survey questions for ease of use and preference measurement

	6.4 Study two results: summative assessment and evaluation
	6.4.1 Assessing E5–E7 with task 1 results
	6.4.2 Replicating internal consistency criteria E4 with Task 2 Results
	6.4.3 Assessing E8–E10 with Task 3 results

	7 Discussion and conclusion
	Acknowledgements
	References

