
University of Nebraska at Omaha University of Nebraska at Omaha

DigitalCommons@UNO DigitalCommons@UNO

Computer Science Faculty Publications Department of Computer Science

4-2005

Hierarchical Kohonenen Net for Anomaly Detection in Network Hierarchical Kohonenen Net for Anomaly Detection in Network

Security Security

Suseela T. Sarasamma
University of Nebraska at Omaha

Qiuming Zhu
University of Nebraska at Omaha, qzhu@unomaha.edu

Julie Huff

Follow this and additional works at: https://digitalcommons.unomaha.edu/compscifacpub

 Part of the Computer Sciences Commons

Please take our feedback survey at: https://unomaha.az1.qualtrics.com/jfe/form/

SV_8cchtFmpDyGfBLE

Recommended Citation Recommended Citation
Sarasamma, Suseela T.; Zhu, Qiuming; and Huff, Julie, "Hierarchical Kohonenen Net for Anomaly
Detection in Network Security" (2005). Computer Science Faculty Publications. 29.
https://digitalcommons.unomaha.edu/compscifacpub/29

This Article is brought to you for free and open access by
the Department of Computer Science at
DigitalCommons@UNO. It has been accepted for
inclusion in Computer Science Faculty Publications by an
authorized administrator of DigitalCommons@UNO. For
more information, please contact
unodigitalcommons@unomaha.edu.

http://www.unomaha.edu/
http://www.unomaha.edu/
https://digitalcommons.unomaha.edu/
https://digitalcommons.unomaha.edu/compscifacpub
https://digitalcommons.unomaha.edu/compsci
https://digitalcommons.unomaha.edu/compscifacpub?utm_source=digitalcommons.unomaha.edu%2Fcompscifacpub%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unomaha.edu%2Fcompscifacpub%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
https://unomaha.az1.qualtrics.com/jfe/form/SV_8cchtFmpDyGfBLE
https://unomaha.az1.qualtrics.com/jfe/form/SV_8cchtFmpDyGfBLE
https://digitalcommons.unomaha.edu/compscifacpub/29?utm_source=digitalcommons.unomaha.edu%2Fcompscifacpub%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:unodigitalcommons@unomaha.edu
http://library.unomaha.edu/
http://library.unomaha.edu/

Hierarchical Kohonenen Net for Anomaly Detection
in Network Security

Suseela T. Sarasamma, Qiuming A. Zhu, and Julie Huff

Abstract—A novel multilevel hierarchical Kohonen Net (K-Map)
for an intrusion detection system is presented. Each level of the
hierarchical map is modeled as a simple winner-take-all K-Map.
One significant advantage of this multilevel hierarchical K-Map
is its computational efficiency. Unlike other statistical anomaly de-
tection methods such as nearest neighbor approach, K-means clus-
tering or probabilistic analysis that employ distance computation
in the feature space to identify the outliers, our approach does not
involve costly point-to-point computation in organizing the data
into clusters. Another advantage is the reduced network size. We
use the classification capability of the K-Map on selected dimen-
sions of data set in detecting anomalies. Randomly selected sub-
sets that contain both attacks and normal records from the KDD
Cup 1999 benchmark data are used to train the hierarchical net.
We use a confidence measure to label the clusters. Then we use the
test set from the same KDD Cup 1999 benchmark to test the hi-
erarchical net. We show that a hierarchical K-Map in which each
layer operates on a small subset of the feature space is superior to
a single-layer K-Map operating on the whole feature space in de-
tecting a variety of attacks in terms of detection rate as well as false
positive rate.

Index Terms—Computer network security, neural network ap-
plications, self-organizing feature maps.

I. INTRODUCTION

RELIABLE network communication is crucial in the
day-to-day functioning of the modern world. Businesses,

educational institutions, government departments, and even the
average individual rely heavily on the uninterrupted communi-
cation network service and computing facilities to conduct the
day-to-day operations. As the information super highway has
become more and more critical to our daily lives, attempts to
disrupt the dependable network flow have also increased sig-
nificantly. Network-based computer systems have increasingly
become the target for attackers whether they are just hackers,
enemies, or criminals. Many of these attacks are costly in terms
of financial losses.

A significant amount of research has been done in the area of
detecting intrusions in computer systems over the past 20 years.
From an architectural perspective, an intrusion detection system
(IDS) can be one of three basic types [20]: network-based IDS,

Manuscript received May 3, 2004; revised August 25, 2004. This work was
supported in part by the Air Force Research Laboratory, Rome, New York and by
the Advanced Research Development Agency under Grant F30602-03-C-0247.
This paper was recommended by Associate Editor W. Y. Wang.

S. T. Sarasamma and J. Huff are with the Northrop Grumman Mis-
sion Systems, Bellevue, NE 68005 USA (e-mail: suseela_ts@ yahoo.com;
julie.huff@ngc.com).

Q. A. Zhu is with the College of Information Science and Technology, Uni-
versity of Nebraska at Omaha, Omaha, NE 68182 USA (e-mail: qzhu@mail.un-
omaha.edu).

host-based IDS, or hybrid IDS. Network-based IDS monitor
the IP packets, usually packet headers flowing over the net-
work. Host-based IDS use the audit data of host machines. Hy-
brid IDS apply both the above methods to capture intrusions
from outside, as well as from within. Algorithmically, there
are two different approaches commonly used in detecting in-
trusions [12]. The first approach, commonly known as misuse
detection, is a rule-based approach that uses stored signatures of
known intrusion instances to detect an attack. This approach is
highly successful in detecting occurrences of previously known
attacks. However it fails to detect new attack types and variants
of known attacks whose signatures are not stored. When new
attacks occur, the signature database has to be manually mod-
ified for future use. The second approach is commonly known
as the anomaly detection approach. In this approach, usually a
profile for normal behavior is first established. Then deviants
from the normal profile are considered as anomalies. In some
cases, these anomalies may be just normal operations that are
exhibiting some behaviors adherent to unseen mode of opera-
tion. In such cases, the anomalies may be showing false posi-
tives. That is, classifying a normal behavior as abnormal, and
hence as possible attack instances. One of the techniques used
for anomaly detection is building statistical models using met-
rics derived from observation of the user’s actions [12], [21],
[25], [26]. One of the metrics used is an event counter that rep-
resents the number of events in a set time interval, for example,
the number of connections made to different destinations from
the same source IP address with in an hour. Another metric that
is commonly used is the time interval between two correlated
events. A third metric that is generally used is the resource usage
such as CPU time consumption, number of files opened, etc. A
complete listing of the statistical models built on these metrics
can be found in [12].

Anomaly detection schemes also use data mining techniques
such as clustering, support vector machines (SVM), and dif-
ferent neural network models [11], [16], [17]. Some of these
anomaly detection techniques are capable of detecting new kind
of attacks since the techniques are mostly data-driven and do
not depend on previously observed patterns and stored signa-
tures. However, these techniques often result in high false pos-
itive rates [15]. For example, Sung et al. applied a SVM tech-
nique to realize an intrusion detection system for class-specific
detection [27]. They applied a “leave-one-out” approach to dis-
criminate features for their individual significance, and relied on
one SVM for detecting each attack type. However, the approach
is intrinsically faulted on totally ignoring the coherent relations
and dependencies of the features. Maxion and Tan conducted
some experiments to prove that differences in data regularities

can influence anomaly detector performance such as increasing
the false positive rate [15]. In their study, they hypothesize that
deploying a particular anomaly detector across several environ-
ments may not guarantee uniform performance due to differ-
ences in data regularities.

In this paper, we present a multilayer hierarchical Kohonen
Net, or Kohonen self-organizing map (K-Map) [18], to imple-
ment an anomaly based intrusion detection system (IDS sensor).
We did our training and testing using the pre-processed KDD
Cup 1999-benchmark data [1], [2]. Our objective was to detect
as many different types of attacks as possible. The experimenta-
tions were conducted in two steps. First, we used a single-layer
winner-takes-all K-Map to do an implementation of IDS. We
will soon see that there are serious limitations for a single-layer
winner-takes-all K-Map in detecting a vast set of attacks and still
keeping a low false positive rate [19]. The single-layer winner-
takes-all K-Map is a useful technique generally in the sense that
it helps to group similar input vectors into clusters [23], [24].
However, it does not guarantee optimal separation of resulting
clusters—see Fig. 1(a) and (b), for an example. Here, and
indicate two different types of objects, where objects of type
are of similar kind and objects of type are of similar kind.
Fig. 1(a) shows the cluster 1 and cluster 2 that resulted when a
two-dimensional subspace mapping was used and Fig. 1(b) il-
lustrates the grouping when a one-dimensional (1-D) subspace
mapping was used for the classification. We can see that neither
cluster 1 nor cluster 2 is homogeneous in Fig. 1(a). However the
clusters 1 and 2 in Fig. 1(b), obtained using the 1-D subspace
mapping, are homogeneous (The example does not imply that a
subspace mapping is always better than a whole-space mapping.
The case should not be generalized.). That is, the clusters can
vary significantly depending on the dimensionality of the clus-
tering boundaries. This observation forms the conceptual basis
that leads us to the development of a multilayer hierarchical
K-Map in our second step experimentation for an anomaly de-
tection based IDS.

In the context of IDS for network traffic, we observe that there
are specific features in the packet headers that are more signif-
icant indications of abnormal activities [5]. The input vectors
used for grouping packets into normal or attacks of a specific
type will be made up of such features. For instance, the flag
along with the number of wrong fragments and the service used
may indicate a certain type of anomaly. On the other hand, some
specific features alone will not be a good indicator of any kind
of anomaly.

For instance, the number of bytes that were transmitted from
the destination to the source cannot by itself be an indicator of
anomalous behavior since it can have a wide range for normal
activities alone. However, when in conjunction with other fea-
tures such as the protocol used, the number of packets from
source to destination, the number of wrong fragments, etc., they
together will be a better indicator of anomalous behavior. It is
because a network attack may not happen as one single action. It
may be preceded by many small seemingly innocuous actions.
Prior to attacking one might do several small probe actions that
are temporally spaced. Or they could launch a massive denial
of service attack. Each variation of attack will manifest with a
certain pattern of a particular set of features. So it seems more

Fig. 1. Effect of feature space dimensions on clustering.

beneficial (efficient) to apply a multilayer hierarchical approach
for the K-Map with a set of features carefully selected for each
clustering level.

However, one issue comes up when we try to do this multi-
level detection. That is, what set of features should be applied
at each detection level of the multilayer K-Map. To tackle this
problem, we applied a confidence metric as a measure of the
mapping quality on the K-Map outputs. We compute a confi-
dence factor for each neuron that will indicate the level of con-
fidence or certainty with which we can say a cluster mapped to
a neuron is normal or of a specific type of anomaly. If a group
of input feature vectors are being grouped to a neuron’s cluster
in level with 100% certainty, then we consider that set reli-
ably classified at level . Those input feature vectors that were
mapped to reliably classified clusters will not need to be fed to
subsequent levels for further processing.

In this paper, we first present our experiments with a single-
layer winner-takes-all K-Map and then with a multilevel hier-
archical winner-takes-all K-Map in detecting anomalies in the
benchmark KDD Cup 1999 data set. MIT Lincoln Laboratory
created the data sets for their IDS evaluation contests conducted
in 1998 and 1999. Detailed description of the 1998 DARPA
off-line intrusion detection contest can be found in [13]. Some of

Fig. 2. Single-layer winner-takes-all Kohonen map.

the shortcomings of the 1998 and 1999 DARPA intrusion detec-
tion evaluation are identified in [14]. This data set has served as
the first and only reliable benchmark data set that has been used
for most of the research work on intrusion detection algorithms.
Stolfo et al. extracted basic features and derived secondary fea-
tures [2] from these original data and created the KDD Cup 1999
data that was used for the Third International Knowledge Dis-
covery and Data Mining Tools competition held in conjunction
with KDD-99. This data set is archived at the University of Cal-
ifornia, Irvine site [3]. This derived set has also been commonly
used as a benchmark for evaluating anomaly detection algo-
rithms. The training set and the test set are organized in files
as connection records in ASCII format, where each record con-
tains the coma-delimited set of 41 features and the label indi-
cating whether the record is normal or an attack. For our current
experiments, we use the derived data set.

The rest of this paper is organized as follows. In Section II, we
first present a brief description of a single-layer winner-takes-all
K-Map. Then we present the training algorithm that we used
for the simple K-Map. Section II-A discusses some implemen-
tation aspects for the K-Map. Section II-B discusses the selec-
tion of feature vectors and more details on training and testing.
The preliminary results for the simple K-Map are also presented
in Section II. Section III describes a three-level hierarchical
winner-takes-all K-Map, as an implementation of our multilayer
K-Map for IDS. We describe the training, testing, and observed
results of the multilayer hierarchical K-Map in Section III. Sec-
tion IV describes related work done by other researchers, and
concludes our presentation.

II. ANOMALY DETECTION USING SINGLE-LAYER

WINNER-TAKES-ALL KOHONEN MAP

A. Single-Layer Winner-Take-All Kohonen Map

A simple winner-takes-all Kohonen Net consists of an input
layer, a neurons layer and an output layer [4], [18]. Since it only
employs one neuron layer, we thus also call it a single-layer
K-Map. The neurons layer consists of a set of neurons that can
be visualized as arranged in a column—see Fig. 2 for a graph-
ical illustration. Each neuron has an associated weight vector.
The input layer serves to feed each neuron from a set of input
vectors to the different neurons in the neurons layer. An input
vector is tied to a neuron by its associated weight vector. The

output layer represents a set of clusters, one for each neuron.
The elements of an output cluster, say , represent the group
of input vectors that are closest to the weight of neuron . The
best matching neuron for an input vector is determined based
on the dot product of the normalized input vector and the nor-
malized weight vector of that neuron. This value is commonly
known as the . Each input vector is fed to all the neurons.
The neuron that gives the maximum value for is declared
the winner, or the best matching unit. In other words, only one
neuron fires for a specific input vector. Note that the definition
of winner-takes-all map in the context of this paper means that
only one neuron fires at the output layer. This makes the algo-
rithm a low-cost implementation of self-organizing map.

Like any other neural network, the K-Map needs to
be trained. The training is achieved by an unsupervised
learning algorithm, which is described in the pseudo code,

below. For better
readability of the pseudocode, we give a brief description of the
symbols used. In the context of the pseudocode, represents
the learning factor for the current iteration. Current iteration is
indicated by the variable . The initial learning factor
is denoted as . The dot product of an input vector for the th
neuron is denoted as .

Algorithm Train_Simple_Winner_Take_All

Step 1: Obtain the following inputs from

the user.

� Number of neurons, numNeurons

� The size of the input vector,

numFeatures, that is determined from

the feature subset to use

� The threshold to determine the number

of training iterations

� The names of input and output files,

where input file represents the file

in which the training data set is

located and output file represents

the file to which the trained state

of the K-Map is stored.

Step 2: Read input records.

Step 3: Construct input vectors with the

specified subset of features. Let

numVectors denote the total number of

vectors.

Step 4: Construct a single-layer K-Map

with the specified number of

neurons (numNeurons) and the selected

number of features (numFeatures).

The K-Map will have a weight matrix of

size numNeurons � numFeatures.

Step 5: Initialize the weight matrix with

randomly selected input vectors and

normalize the weight matrix.

Step 6: Initialize loopCount : loopCount 0;

Choose an initial learning factor

�0 1.

Step 7: Compute maxChanges numVectors �

threshold

Step 8: Repeat

loopCount loopCount+1

� �0=
p
loopCount

numChanged 0

For each input vector I do

For each row of the weight matrix,

compute neti

neti

numFeatures�1

k=0

Wi;k�Ik

Choose the winner as the neuron

j, where

netj = max(neti); 0 � i < numNeurons

Adjust the weights for the winner as

Wwinner;k Wwinner;k + �� (Ik �Wwinner;k) ;

0 � k < numNeurons

Normalize the weight for the winner.

If the existing best matching unit

for I,

map (I) 6=winner

numChanged numChanged+ 1

until numChanged < maxChanges

B. Implementation of a Single-Layer K-Map in
Network Intrusion Detection

One aspect that makes a Network Intrusion Detection System
(NIDS) successful is its protocol awareness. An anomaly de-
tection scheme is just one piece of the puzzle in the NIDS. In
our experiments, we studied the effect of different protocol-spe-
cific aspects of the packet headers in the performance of the
single-layer K-Map for anomaly detection. In the context of
the KDD Cup 1999 data set, each record encapsulates the basic
traffic features, the features that are derived by observing the
past 100 connections, the features observed in the past two sec-
onds, and some content features. We trained the single-layer
K-Map with selected subsets of the KDD Cup 1999 record’s
features and stored the state of the trained K-Map for each such
subset in specific files. The test data sets were run against each
such feature subsets at a later time by pre-loading the stored state
from the corresponding state file. It is desirable to see the effect
of the number of neurons used, and the number of training it-
erations in the performance of the K-Map. With these in mind,
a graphical user interface was designed that drove the training
and testing of the K-Map using various parameters.

Some anomaly detection algorithms for NIDS use attack-free
or normal data for training. Then test data that contains attacks
are fed to the system to detect anomalies. In our tests we first
conducted experiments using training data that contains both at-
tacks and normal data. We then examined the composition of the
resulting clusters formed at each neuron. Some of these clus-
ters contain records of a specific label, say normal only. We call
such clusters homogeneous clusters. Others may contain records
of two or more different types, such as “smurf” and “normal”

types. We call such clusters heterogeneous clusters. We label
the homogeneous clusters with the type of its member records.
As for heterogeneous clusters, we use the following technique:

1) Let denote the number of records of type in
cluster , and the total number of records with
label in the training set. Then the probability of
a record of type mapping to cluster is taken as

.
2) Let denote the total number of records in cluster .

The probability of a record mapped to cluster being
of type is taken as .

3) We define a favorable factor for label as the joint
probability of a record of type from the set of inputs
mapping to cluster and a record that is mapped to
being of type .

Let denote the set of labels identifying
all the records that mapped to neuron . We define label of as

, where . We also define a
confidence factor that is the level of confidence with which we
choose the type of record that dominates the cluster. The confi-
dence factor serves as a base for the multilevel K-Map construc-
tion. It is used to choose the data set for training and the feature
subspace to be involved in the next level of training. The confi-
dence factor of cluster is computed as

We define a false positive as an instance where a normal
record is identified as an anomaly. If an instance of anomaly is
identified as normal, it is a case of missed detection. Let
denote the total number of false positives encountered in the
test, the total number of normal records in the test set,

the total number of attacks in the test set and the
total number of missed instances. The percentage of false posi-
tive is computed as .
The percentage of detected anomalies is computed as

. Note
that the simple K-Map could mistake one type of attack as
another type of attack. For instance, a snmpguess type attack
may be identified as a smurf attack. However at this time we
are only interested in knowing whether the record is normal or
anomalous.

The KDD Cup 1999 benchmark training data set we used con-
tains 494 021 records (Table I), each with 41 features. There are
22 different attack types in addition to normal records. We cre-
ated several subsets of these 494 021 records as training sets. We
list the composition of four of these training sets identified as
Set1, Set2, Set3 and Set4 in Table I. Set1 is selected such that it
has records of all 22 attack types with a total of 43 752 records.
There are 44 000 records in both Set2 and Set3, each with 16
and 15 attack types respectively. These records are selected ran-
domly from the 10% KDD Cup 1999 training set such that there
are no duplicates in a single set. Different seeds are used for
the random number generator for each of the three training sets.

TABLE I
COMPOSITION OF TRAINING AND TESTING DATA SETS

There are 169 000 records in Set4 that contains all the attack
types. This set has an adequate representation of all the service
types, flags and protocol types for normal, smurf and Neptune
types.

Once the training is complete, we store the number of features
used, the number of neurons used, the weights of the neurons,
some state information for each neuron such as label, confidence
factor etc., in the state file. At test time we construct the test
vector for each KDD Cup 1999 data record in the test set using
the feature set that was used for the training. We used the test
set labeled “corrected” from the KDD Cup 1999 benchmark set
for the testing. The test set contains 17 additional attack types
that are not present in any of the training set used. One moti-
vation of using this set is that it has labels, and hence we can
verify the accuracy of our detection scheme. Another incentive
in using this test set is that the test set and the training set have
no common elements.

C. Testing of the Single-Layer K-Map and
Feature Vector Selection

As we have discussed, choosing the entire set of 41 features
for the K-Map clustering may not be productive. First of all, it is
computationally costly to do the normalization and vector mul-
tiplication for such a large vector. Even if we disregard the com-
putational complexity, choosing the entire feature space will not
yield a reasonable grouping of the records. In selecting a subset
of the feature space, it is beneficial to take into account some
domain knowledge from the field of intrusion detection. For
instance, the ICMP protocol is some times used by malicious
hackers to create many echo requests from a spoofed IP address

that are then broadcast over a target network. If all the hosts on
the victim network start sending echo reply to the sender, it can
degrade the performance of the network. The smurf attack is an
example of such a denial of service attack [5]. However we need
to understand that a perfectly normal connection can also use
ICMP protocol and echo request service to do a harmless ping
operation. Our experiment shows that within the context of the
KDD Cup 1999 data, the ICMP protocol and the echo request

service together with the number of bytes transmitted
from source to destination can uniquely group all smurf attack
records into a cluster.

Many scanning operations to glean information about active
hosts and possible vulnerabilities in the network are also done
using ICMP protocol and echo request service. For instance, one
mode of scan uses ICMP protocol and service. In
this case, the number of bytes transmitted from source to desti-
nation is usually 8 bytes. Another vulnerability scanner that has
several manifestations is the . When a UDP-based packet
is sent to a device, the router sometimes fails to deliver the
packet to the destination, either because the destination is tem-
porarily unavailable or the destination address is nonexistent.
In such cases a Network unreachable or Port unreachable ICMP
message is returned. This is one mode of probing used by .
Another mode is through TCP protocol with half open SYN

. Besides scanning activities that may be precursors
to an attack, there are many other types of attacks that cause
denial of service attacks such as teardrop, ping of death, back
etc. The teardrop attack exploits weakness in the reassembly of
packet fragments by creating fragments with overlapping offset
fields. Attempts to reassemble such wrong fragments cause fail-
ures such as crashing, hanging or rebooting at the destination
host. Other types of attacks need observation over a period of
time to point to an anomalous activity. Then there are indications
such as number of failed login attempts that point to probable
intrusions. Thus, the different nature of features such as service,
protocol, number of bytes from source to destination, the flag,
number of wrong fragments are some of the important features
that could be used in formulating the feature subspace for the
K-Map.

For our experiments we identified different subsets of features
that are good in detecting certain types of attacks. But we will
soon see that a single such subset will not yield good detection
rate at an acceptable false positive rate for a variety of attacks.
A more comprehensive set of feature subsets that yielded good
performance is listed in Table IV in Section III. These subsets
were identified in account of domain knowledge and the na-
ture of signal types (IP-protocol based, statistical, dynamical,
etc.). Our approach of feature selection groups features in terms
of their coherent relations (such as static, IP dumping vs. dy-
namic/time-related, temporal data traffic attributes) and mutual
inclusiveness. The result of this approach is that the resulting
clusters of a hierarchical K-Map could be more cohesive com-
pared to that of random selection of feature groups. Three of
the subsets that we used for single-layer K-map testing cases
are listed as follows.

Feature set 1:
• Protocol, the protocol used such as ICMP, TCP, UDP
• Service, such as http, ftp, smtp, , etc.
• SrcBytes, the number of bytes transmitted from source

to destination

TABLE II
RESULTS FOR TESTS ON TEST SET 1 FOR SINGLE LAYER K-MAP

WITH 36 NEURONS

• DstBytes, the number of bytes transmitted from desti-
nation to source

Feature set 2:
• Protocol, the protocol used such as ICMP, TCP, UDP
• Service, such as http, ftp, smtp, , etc.
• Flag
• Duration, the length of the connection
• srcBytes, the number of bytes transmitted from source

to destination
• dstBytes, the number of bytes transmitted from desti-

nation to source
• wrongFragments, the number of wrong fragments en-

countered in reassembly.
• urgentPackets, the number of urgent packets
• count, the number of connections made to the same

host in a given time interval
• sameHstSynErrRate, fraction of connections from the

same host that had SYN errors in a specified time in-
terval

• sameSvcSynErrRate, fraction of connections with the
same host and same service that had syn errors.

• sameHstRejErrRate, fraction of connections from the
same host that had REJ error.

• sameSvcRejErrRate, fraction of connections with the
same host and same service that had REJ error.

• sameHstSameSvcRate, fraction of connections from
the same host that used the same service.

• sameHstDiffSvcRate, fraction of connections from the
same host that used different services.

• sameSvcDiffHstRate
Feature set 3:

• sameHstSynErrRate
• sameSvcSynErrRate
• sameHstRejErrRate
• sameSvcRejErrRate
• sameHstSameSvcRate
• sameHstDiffSvcRate
• sameSvcDiffHstRate
After selecting the training sets and feature subsets described

above, we selected 36 neurons and a threshold of 0.000 012 5 for
the first experiment. That is the training iterations are continued
until number of changed mappings is less than 2. The results
obtained for the test cases with respect to different feature sets
and training data sets are given in Table II. Next we used 48
neurons instead of 36 and repeated the same tests. The results
are shown in Table III.

It can be seen from Tables II and III that even though the de-
tection rate is high, the false positive rate is unacceptably high
too in most of the above test cases. Increasing the number of
neurons has not reduced the false positives much either. In fact

TABLE III
RESULTS FOR TESTS ON TEST SET 1 FOR SINGLE LAYER K-MAP

WITH 48 NEURONS

Fig. 3. Clusters formed by intersection of hyper cylinders.

the false positive rate increased in some cases when number
of neurons was increased to 48. It indicates that a single-layer
K-Map does not seem to be the ideal candidate for detecting a
variety of attacks and at the same time having low false pos-
itive rate. On the other hand, it is also seen that some feature
set has a better performance on a particular test case (with re-
spect to a selective training set). More detailed observation into
the test results reveals that some feature sets are more sensi-
tive in detecting certain types of anomalies and some for other
types. So next in our experimentations, we explored the feasi-
bility of using a multilayer hierarchical winner-takes-all K-Map
that takes advantage of the feature vector subdivisions for IDS.

III. HIERARCHICAL WINNER-TAKES-ALL K-MAP

FOR ANOMALY DETECTION

In Section II, we explored the use of a single-layer K-Map as
a classifier for KDD99 benchmark records. A conceptual inter-
pretation is that the clusters in the case of single-layer K-Maps
were modeled as hyper-spheres. In the case of a multilayer hier-
archical winner-takes-all K-Map where mutually exclusive sub-
sets of the feature vectors are fed to the multiple neuron layers,
the resulting clusters are modeled in fact as intersections of
hyper-cylinders. This enables the hierarchical K-Map to have
a high-order nonlinear classifier modeling than the single-layer
K-Map, see Fig. 3 for a graphical illustration of resulting clus-
ters in two dimensions.

In the following, first we give a brief description of the hierar-
chical K-Map model that we implemented. Our model of hierar-
chical K-Map has three levels. Each level fits the description of
a single-layer winner-takes-all K-Map. The number of neurons
used in each level is tunable by the user. The subset of features

Fig. 4. Three-level hierarchical winner-takes-all map.

to be used for each level is also selectable by the user. Addition-
ally, the threshold that determines the number of training itera-
tions for each level is tunable using the graphical user interface.
The organization of a three-level hierarchical K-Map is shown
in Fig. 4, where M represents a cluster that has a heterogeneous
mix of attack records and/or normal records.

A. Training and Testing Algorithms of Hierarchical K-Map

The training algorithm of the hierarchical K-Map has a graph-
ical user interface that allows users to select the number of
levels, and the number of neurons to be applied in each of the
K-Map neuron levels. Users also use the graphical interface to
select the feature subset, and set the training threshold for each
level. The algorithm is presented as follows.

Algorithm Train_Hierarchical_K_Map

Step 1: Get the number of levels n from

the user

Step 2: Read each KDD-99 record from the

input file. Let � denote the set of

input records. Extract the feature

subsets for levels 1; 2; . . . ; n.

Step 3: for each level s 2 f1; 2; . . . ; ng perform

steps 4 to 5.

Step 4: if � 6= empty train level s map using

the technique described in

algorithm train simple winner take all.

Step 5: for each cluster i in level s

if cluster i is homogeneous

Label cluster i with the unique

label of the records in this

cluster

Set confidence factor for i,

Ci 1:0

Let H denote the set of input

records that mapped to

homogeneous cluster i

� � � H

else begin

Compute A, the set of labels that

mapped to i.

For each label X in cluster i,

compute

Fi(X) =
Xi

Xtotal

Xi

Ni

Set the label for cluster i,

L(i) � where

Fi(�) = max
x2A

Fi(x):

Set confidence factor

Ci

maxFi(x)

x2A

Fi(x)

end (else)

Step 6: Store the multilayer network

parameters (# of neurons,

weights, thresholds, mappings) in a

state file.

We used the following algorithm to test the hierarchical
K-Map. Here denotes the number of levels of the trained
SOM.

Algorithm Test_Hierarchical_K_Map

Step 1: Initialize the hierarchical K-Map

with the parameters stored in a state

file.

Step 2: for each KDD 99 Cup test record do

Construct the test vectors for levels

1 to n using the corresponding feature

subspace.

reliablyClassified false

level 1

while (level < n) and not reliablyClassified

do

Feed the test vector for level i to

the ith level K-Map.

Look up the encapsulation of label,

neuron number, confidence, etc. for

the winner neuron.

reliablyClassified (confidence equals 1)

or(label = "Undefined")

level level + 1

end while

Step 3: Choose the label and corresponding

confidence from the level that has

highest confidence.

Step 4: Compute total number of false

positives and detected anomalies

B. Computational Complexity

Computational complexity of the hierarchical K-Map algo-
rithm can be derived in general as the following. Training is gen-
erally done offline and less frequently compared to detection.
It is the computational cost at the detection phase that is more
crucial to an intrusion detection system. Consider an -level
map with neurons in each level. Let denote the number

of features in a data record, and assume that each level uses
the same number of features but no two levels have overlap-
ping features, then the number of features at level is .
As discussed in Section I, a single feature by itself is not a
good indicator of anomaly. Hence, each level should have at
least two features. Thus, should be less than . We thus
have the weight matrix size of for each layer. For
an input, finding the winner neuron is the most costly opera-
tion. The basic operation involved in this step is floating point
multiplication. In choosing the winner neuron (as in the test
phase) for an input at level we need to perform
multiplications. If the winner has a looked up confidence of
1.0 the input is not fed to any subsequent layers. In the worst
case, an input will be fed to all layers. In that case, there
are basic multiplication oper-
ations performed. Let be the number of input records, then
the computational complexity for the hierarchical K-Map in the
test phase is , which is the same as for a single-layer
K-Map. In the traditional sense of computational complexity, as
the number of input record , is a small constant.
Hence, the computational complexity in the detection phase of
the hierarchical K-Map is .

For the training phase, the computational complexity is in-
creased due to the number of training iterations performed. In
general, the number of training iterations is proportional to the
number of training records , the number of neurons , and
the number of features . The number of training iterations
is determined by the distributive nature of clusters in the data
records but it will never exceed . In the worst case there are

basic operations performed. If we take into ac-
count the fact that is less than the number of itera-
tions is less than that in the single-layer K-Map cases that uses
all M features. This is where the computational efficiency of the
hierarchical K-Map comes from in addition to the high preci-
sion of clustering, though it is very difficult to give a quantita-
tive measurement of the computational complexity due to the
fact that it depends on the quality of the cluster distributions of
the training data set. We present our experiment results in Sec-
tion III-C.

C. Tests and Results

In addition to the four training sets listed in Section II, we
also created a Set5 with 44 000 randomly selected records from
the 10% training set in testing the hierarchical K-Map. In Set5,
we restrict the record types to neptune, portsweep, satan and
normal (Table I). For testing, we use Test set 1 as well as Test
set 2 (Table I) a subset of test set 1 that contains only records
of type normal, neptune, satan, and portsweep. We conducted
experiments with several different combinations of feature sets
for the different layers of the hierarchical K-Map. Five com-
binations of these feature subsets used in our experiments are
listed in Table IV. The motivation behind choosing the first four
feature subsets as in Table IV is to get a maximal first level sepa-
ration of normal and anomalous records. Subsequent levels will
further refine the classification to more specific types of anom-
alies. The features listed under level 1 for each of the first four
combinations help to filter out maximum normal records from

TABLE IV
SOME FEATURE SUBSET COMBINATIONS FOR

MULTILAYER HIERARCHICAL K-MAP TESTS

anomalous records, thus reducing computational cost. No such
maximal filtering is expected from the fifth combination.

We trained the hierarchical K-Map using each of the four
training sets described in Section II-B for several combinations
of features, number of levels and number of neurons. Next we
tested the hierarchical K-Map with the test set 1 for each of the
training cases. Note that test set 1 contains 17 additional attack
types that are not present in any of the training sets.

A summary of sixty such test cases is presented in Table V.
From Table V, it can be seen that detection and false positives
are consistently better for the detector when trained with set 4
for each of the first four feature combinations. The presence of
all possible protocols and services for normal records in training
data seems to be the reason for the better performance in each of
these cases. As for the effect of increasing the number of neu-
rons per layer, the detection rate tends to increase for 48 neu-
rons and then it decreases for 72 neurons. Further increasing the
number of neurons reduced the detection rate. The percentage
of false positives tends to decrease by increasing the number
of neurons. However, the improvement in false positives com-
pared to the decrease in detection rate is not significant beyond
72 neurons. The percentages of detection for each attack type for
15 test cases are summarized in Tables VII–IX. Table VII shows
the results when 36 neurons were used in each layer. Tables VIII
and IX represent the cases for 48 neurons per layer and 72 neu-
rons per layer respectively. The new attacks types are shown in
bold. The number of new attacks detectable and the percentage

TABLE V
SUMMARY OF RESULTS FOR 60 TEST CASES FOR A THREE-LEVEL

HIERARCHICAL K-MAP

TABLE VI
RESULTS OBTAINED FOR TEST SET 2

of detection by type for individual attacks are comparable for
the remaining 45 test cases. Lastly, we trained the three-level
hierarchical K-MAP with trainingSet4 and tested on test set 2.
For this training and testing, we used 48 neurons in each level.
The results for each of the four combinations of features are
listed in Table VI. The results show that the false positive rates
are significantly reduced in the hierarchical K-Map than that in
the single-layer K-Map on all test cases.

On examining the results in Tables VII–IX, it is clear that not
all attack types can be effectively detected by a specific feature
combination. Some feature combinations are excellent in cap-
turing certain types of attacks. We explored the reasons for the
lack luster detection rates for buffer_overflow, guess_passwd,
and xsnoop. We noticed that for the subset of features con-
sidered, the feature vectors of those anomalies either closely
matched that of normal records or they were closely intertwined
in a cluster of normal records. In the case of xsnoop, the feature
vectors closely matched that of a normal record. See Fig. 5 for
a graphical illustration of these two situations. Here, the circle
represents a data sample corresponding to the feature vector of
a normal record and the star represents an anomaly.

IV. RELATED WORK AND CONCLUSIONS

In 1990, Fox et al. [6] proposed the use of K-Map to detect
the presence of virus in a multiuser machine. They applied the
K-Map to learn the characteristics of normal system activity.
Variations from the normal profile were considered as indica-
tions of the presence of a virus. Cannady [7] used K-Map in
network misuse detection. The approach used a hybrid neural
network in which the output of a K-Map provided input to a hy-
brid feed-forward neural network. Rhodes et al. [8] analyzed the
potential of K-Map to narrow the envelope of intrusion behavior

TABLE VII
DETECTION BY ATTACK TYPE FOR 36 NEURONS PER LAYER

(NEW ATTACK TYPES IN BOLD)

TABLE VIII
DETECTION BY ATTACK TYPE FOR 48 NEURONS PER LAYER

(NEW ATTACKS IN BOLD)

that would not be caught by a detection system. Jirapummin et
al. [9] used a hybrid neural network model that employed the

TABLE IX
DETECTION BY ATTACK TYPE FOR 72 NEURONS PER LAYER

(NEW ATTACKS IN BOLD)

output weight information from a K-Map fed to a resilient prop-
agation neural network (RPROP) to detect TCP SYN flooding
and port scan attacks. They used a Gaussian neighborhood func-
tion and a cluster matching function to realize the K-Map, and
also used the KDD Cup 1999 data for training and testing. The
hybrid model was made up of a 1,234 unit K-Map followed by a
three-layer RPROP network of 70, 12, and fourneurons, respec-
tively. Sigmoid functions were used for each level of the RPROP
network. The focus was only on three different attacks, the Nep-
tune (a SYN flood attack), the satan probe, and the portscan
probe. They achieved 90% detection rate for satan attacks at
4.5% false positive rate, 97.9% detection rate for portsweep at
4.19% false positive rate, and 99.72% detection rate for neptune
attacks at 0.06% false positive rate.

At Dalhousie University, Heywood et al. used self-orga-
nizing maps to perform host-based intrusion detection and
network based intrusion detection [10]. In both cases, they
used the K-Map Toolbox from MATLAB in realizing the
self-organizing maps. The network based IDS prototype used
the pre-processed KDD Cup 1999 data for training and testing.
They used a hierarchical neural network approach based on
K-Map and potential function clustering [10]. Six basic features
from the KDD Cup 1999 records namely duration, protocol,
service, flag, destination and source were used. At level 1,
separate K-Maps were used for each of these six features. The
second level K-Map combined the features detected by the first
level into a single view. Potential function clustering was used
to quantize the number of inputs seen by the second layer. A
Gaussian hexagonal neighborhood is used. They achieved a
89% detection rate at a false positive rate of 4.6%.

Fig. 5. Cases where anomalies intertwine with normal clusters.

The novelty of our work lies in the following aspects. First,
our approach uses the simplest form of Kohonen self-organizing
map with no neighborhood functions or transfer functions. It is
a very low-cost implementation in terms of computational com-
plexity. When coming to the stage of on-line network traffic
monitoring and real-time intrusion detection, it is only the de-
tection phase that needs to be involved. In the detection phase,
there is no iterative process involved as in the case of training
phase. Thus, each record (network connection from initiation to
termination) will pass in a single pulse (in terms of parallel pro-
cessing characteristics of neural network) of computation, with
a very minor delay of traffic. Secondly the implement of our
hierarchical K-Map allows selection of different combinations
of feature subsets with a wide range of selection for number of
neurons used in each level as well as for the training threshold.
Thirdly, the hierarchical structure we use is quite different from
that in [9] and [10] in the way that each level uses a different
subset (mutually exclusive) of features to construct the input
vector for that level. Test vectors that are reliably classified (a
confidence factor of 1.0) in level are not tested further in subse-
quent levels. When reliable classification is not achieved at level
, test continues on subsequent levels until a reliable classifica-

tion is achieved or until all three levels are covered. Based on the
tests we conducted, we have achieved detection rates between
90.94% and 93.46% at false positive rates between 2.19% and
3.99% for feature combinations 2, 3, and 4. Three of these re-
sults were achieved using 72 neurons in each level, another three
using 48 neurons in each level and two cases using 36 neurons
in each level. These are better than those achieved in [10]. We
were able to achieve 99.63% detection rate at a false positive
rate of 0.34% when the training and testing were limited to the
three attack types (Table VI). We believe that it is possible to im-
prove these results further by conducting more tests with proper
combination of feature subsets and K-Map settings.

ACKNOWLEDGMENT

One of the authors, S. Sarasamma, thanks R. Gilbert,
Northrop Grumman Mission Systems for pointing her to the
project that leads to this work.

REFERENCES

[1] W. Lee, S. Stolfo, and K. Mok, “A data mining framework for building
intrusion detection models,” in Proc. 1999 IEEE Symp. Security and Pri-
vacy, 1999, pp. 120–132.

[2] S. Stolfo, W. Fan, W. Lee, A. Prodromidis, and P. Chan, “Cost-based
modeling and evaluation for fraud and intrusion detection: Results from
the JAM project,” in Proc. DARPA Information Survivabilty Conf. and
Expo., vol. II, 2000, pp. 130–144.

[3] S. Stolfo et al.. (2002) The Third International Knowledge Dis-
covery and Data Mining Tools Competition. [Online]. Available:
http://kdd.ics.uci.edu/databases/kddCup99/kddCup99.html

[4] P. Wasserman, Neural Computing Theory and Practice. New York:
Van Nostrand, 1989.

[5] S. Northcut and J. Novak, Network Intrusion Detection, 3rd ed. Indi-
anapolis, IN: New Riders, 2002.

[6] K. Fox, R. Henning, and J. Reed, “A neural network approach toward
intrusion detection,” in Proc. 13th Nat. Computer Security Conf., Wash-
ington, DC, 1990.

[7] J. Cannady and J. Mahaffey, “The application of artificial intelligence to
misuse detection,” in Proc. 1st Recent Advances in Intrusion Detection
(RAID) Conf., Louvain-la-Neuve, Belgium, 1998.

[8] B. Rhodes, J. Mahaffey, and J. Cannady, “Multiple self-organizing maps
for intrusion detection,” in Proc. 23rd Nat. Information Systems Security
Conf., Baltimore, MD, Oct. 2000.

[9] C. Jirapummin, N. Wattanapongsakorn, and P. Kanthamanon. Hybrid
Neural Networks for Intrusion Detection Systems. [Online]. Available:
http://dbvis.fmi.uni-konstanz-de/members/panse/seminar_ws0203/

[10] H. Kayacik, A. Zincir-Heywood, and M. Heywood, “On the capability
of an SOM based intrusion detection system,” in Proc. IEEE Int. Joint
Conf. Neural Networks (IJCNN’03), pp. 1808–1813.

[11] W. Lee, S. Stolfo, P. Chan, E. Eskin, W. Fan, M. Miller, S. Hershkop,
and J. Zhang, “Real time data mining-based intrusion detection,” in Proc.
2nd DARPA Information Survivability Conf. and Expo., vol. 1, 2001, pp.
89–100.

[12] D. Denning, “An intrusion-detection model,” IEEE Trans. Software
Eng., vol. SE-13, no. 2, pp. 222–232, Feb. 1987.

[13] R. P. LippMann, D. J. Fried, I. Graf, J. W. Haines, K. R. Kendall, D.
McClung, D. Weber, S. E. Webster, D. Wyschogrod, R. K. Cunningham,
and M. A. Zissman, “Evaluating intrusion detection systems: The 1998
DARPA off-line intrusion detection evaluation,” in Proc. DARPA Infor-
mation Survivability Conf. and Expo., vol. 2, 2000, pp. 12–26.

[14] J. McHugh, “Testing intrusion detection systems: A critique of the 1998
and 1999 DARPA intrusion detection system evaluations as performed
by Lincoln laboratory,” ACM Trans. Inform. Syst. Security, vol. 3, pp.
262–294, 2000.

[15] R. A. Maxion and K. M. C. Tan, “Benchmarking Anomaly-based detec-
tion systems,” in Proc. 1st Int. Conf. Dependable Systems and Networks,
New York, pp. 623–630.

[16] , “Anomaly detection in embedded systems,” IEEE Trans. Comput.,
vol. 51, no. 2, pp. 108–120, Feb. 2002.

[17] K. M. C. Tan and R. A. Maxion, “Determining the operational limits of
an anomaly-based intrusion detector,” IEEE J. Select. Areas Commun.,
vol. 21, no. 1, pp. 96–110, Jan. 2003.

[18] T. Kohonen, Self-Organizing Maps, 3rd extended ed, ser. Information
Sciences. Berlin, Germany: Springer, 2001, vol. 30.

[19] H. Ying, T. Feng, J. Cao, X. Ding, and Y. Zhou, “Research on some
problems in the Kohonen SOM algorithm,” in Proc. Int. Conf. Machine
Learning and Cybernetics, vol. 3, Nov. 2002, pp. 1279–1282.

[20] R. A. Kemmerer and G. Vigna, “Intrusion detection: A brief history and
overview,” Computer, vol. 35, no. 4, pp. 27–30, Apr. 2002.

[21] S. Cho, “Incorporating soft computing techniques into a probabilistic
intrusion detection system,” IEEE Trans. Syst., Man, Cybern., pt. C, vol.
32, no. 2, pp. 154–160, May 2002.

[22] N. Ye, S. M. Emran, Q. Chen, and S. Vilbert, “Multivariate statistical
analysis of audit trails for host-based intrusion detection,” IEEE Trans.
Comput., vol. 51, no. 7, pp. 810–820, Jul. 2002.

[23] M. Hagenbuchner, A. Sperduti, and A. Tsoi, “A self-organizing map for
adaptive processing of structured data,” IEEE Trans. Neural Netw., vol.
14, no. 3, pp. 491–505, May 2003.

[24] H. Yin, “ViSOM—A novel method for multivariate data projection and
structure visualization,” IEEE Trans. Neural Netw., vol. 13, no. 1, pp.
237–243, Jan. 2002.

[25] C. Manikopoulos and S. Papavassiliou, “Network intrusion and fault de-
tection: A statistical anomaly approach,” IEEE Commun. Mag., vol. 40,
no. 10, pp. 76–82, Oct. 2002.

[26] N. Ye, Y. Zhang, and C. M. Borror, “Robustness of the Markov-chain
model for cyber-attack detection,” IEEE Trans. Rel., vol. 53, no. 1, pp.
116–123, Mar. 2004.

[27] A. H. Sung and S. Mukkamala, “Identifying important features for intru-
sion detection using support vector machines and neural networks,” in
Proc. 2003 Symp. Applications and the Internet, Jan. 2003, pp. 209–216.

Suseela T. Sarasamma received the M.Eng. degree
in electrical and computer engineering from Con-
cordia University, Montreal, QC, Canada, in 1991
and the Ph.D. degree in computer science from the
University of Nebraska at Lincoln in 1996.

She is a Senior Software Engineer at Northrop
Grumman Mission Systems, Bellevue, NE. Her
current interests are in the design and development
of algorithms of scientific nature for practical ap-
plications. Some specific areas are global weather
prediction, network intrusion detection, and data

fusion.
Dr. Sarasamma has been a member of the ACM since 1993.

Qiuming A. Zhu received the Ph.D. degree in com-
puter and systems engineering from Rensselaer Poly-
technic Institute, Troy, NY, in 1986.

He is a Professor of computer science at the
University of Nebraska at Omaha. His postdoctoral
research was carred out in the Center for Computer
Aids for Industrial Productivity, Rutgers University,
New Brunswick, NJ. He was an Assistant Professor
of computer science and engineering at the Oakland
University, Oakland, MI, from 1986 to 1990. His
research interests include digital image processing

and computer vision, pattern recognition, neural networks, multi-agent software
systems, and artificial intelligence applications in science and engineering.

Julie Huff is currently pursuing the M. S. degree in pathology/bio-informatics
at the University of Nebraska Medical Center, Omaha.

She is a Senior Systems Architect with Northrop Grumman Mission Systems,
Bellevue, NE, where she has lead research and development teams in a number
of areas, including data discovery, dynamic agent architectures, network data
mining, and an embedded guard-on-a-card project. She is one of the originators
of the Security Kinetix patent developed for event dissemination and response
in tactical environments.

	Hierarchical Kohonenen Net for Anomaly Detection in Network Security
	Recommended Citation

	toc
	Hierarchical Kohonenen Net for Anomaly Detection in Network Secu
	Suseela T. Sarasamma, Qiuming A. Zhu, and Julie Huff
	I. I NTRODUCTION

	Fig.€1. Effect of feature space dimensions on clustering.
	Fig.€2. Single-layer winner-takes-all Kohonen map.
	II. A NOMALY D ETECTION U SING S INGLE -L AYER W INNER -T AKES -
	A. Single-Layer Winner-Take-All Kohonen Map
	Step 1: Obtain the following inputs from the user.
	Step 2: Read input records.
	Step 3: Construct input vectors with the specified subset of fea
	Step 4: Construct a single-layer K-Map with the specified number
	Step 5: Initialize the weight matrix with randomly selected inpu
	Step 6: Initialize ${\rm loopCount}: {\rm loopCount} \leftarrow
	Step 7: Compute ${\rm maxChanges}$ \leftarrow ${\rm numVectors
	Step 8: Repeat
	B. Implementation of a Single-Layer K-Map in Network Intrusion D

	TABLE I C OMPOSITION OF T RAINING AND T ESTING D ATA S ETS
	C. Testing of the Single-Layer K-Map and Feature Vector Selectio

	TABLE II R ESULTS FOR T ESTS ON T EST S ET 1 FOR S INGLE L AYER
	TABLE III R ESULTS FOR T ESTS ON T EST S ET 1 FOR S INGLE L AYER
	Fig.€3. Clusters formed by intersection of hyper cylinders.
	III. H IERARCHICAL W INNER -T AKES - ALL K-M AP FOR A NOMALY D E

	Fig.€4. Three-level hierarchical winner-takes-all map.
	A. Training and Testing Algorithms of Hierarchical K-Map
	Step 1: Get the number of levels n from the user
	Step 2: Read each KDD-99 record from the input file. Let Φ
	Step 3: for each level $s\in \{ 1,2,\ldots,n\}$ perform steps 4
	Step 4: if $\Phi\ne empty$ train level s map using
	Step 5: for each cluster i in level s
	Step 6: Store the multilayer network
	Step 1: Initialize the hierarchical K-Map with the parameters st
	Step 2: for each KDD 99 Cup test record do
	Step 3: Choose the label and corresponding
	Step 4: Compute total number of false
	B. Computational Complexity
	C. Tests and Results

	TABLE IV S OME F EATURE S UBSET C OMBINATIONS FOR M ULTILAYER H
	TABLE V S UMMARY OF R ESULTS FOR 60 T EST C ASES FOR A T HREE -L
	TABLE VI R ESULTS O BTAINED FOR T EST S ET 2
	IV. R ELATED W ORK AND C ONCLUSIONS

	TABLE VII D ETECTION BY A TTACK T YPE FOR 36 N EURONS P ER L AYE
	TABLE VIII D ETECTION BY A TTACK T YPE FOR 48 N EURONS P ER L AY
	TABLE IX D ETECTION BY A TTACK T YPE FOR 72 N EURONS P ER L AYER
	Fig.€5. Cases where anomalies intertwine with normal clusters.
	W. Lee, S. Stolfo, and K. Mok, A data mining framework for build
	S. Stolfo, W. Fan, W. Lee, A. Prodromidis, and P. Chan, Cost-bas
	S. Stolfo et al. . (2002) The Third International Knowledge Disc
	P. Wasserman, Neural Computing Theory and Practice . New York: V
	S. Northcut and J. Novak, Network Intrusion Detection, 3rd ed. I
	K. Fox, R. Henning, and J. Reed, A neural network approach towar
	J. Cannady and J. Mahaffey, The application of artificial intell
	B. Rhodes, J. Mahaffey, and J. Cannady, Multiple self-organizing
	C. Jirapummin, N. Wattanapongsakorn, and P. Kanthamanon . Hybrid
	H. Kayacik, A. Zincir-Heywood, and M. Heywood, On the capability
	W. Lee, S. Stolfo, P. Chan, E. Eskin, W. Fan, M. Miller, S. Hers
	D. Denning, An intrusion-detection model, IEEE Trans. Software E
	R. P. LippMann, D. J. Fried, I. Graf, J. W. Haines, K. R. Kendal
	J. McHugh, Testing intrusion detection systems: A critique of th
	R. A. Maxion and K. M. C. Tan, Benchmarking Anomaly-based detect
	K. M. C. Tan and R. A. Maxion, Determining the operational limit
	T. Kohonen, Self-Organizing Maps, 3rd extended ed, ser. Informat
	H. Ying, T. Feng, J. Cao, X. Ding, and Y. Zhou, Research on some
	R. A. Kemmerer and G. Vigna, Intrusion detection: A brief histor
	S. Cho, Incorporating soft computing techniques into a probabili
	N. Ye, S. M. Emran, Q. Chen, and S. Vilbert, Multivariate statis
	M. Hagenbuchner, A. Sperduti, and A. Tsoi, A self-organizing map
	H. Yin, ViSOM A novel method for multivariate data projection an
	C. Manikopoulos and S. Papavassiliou, Network intrusion and faul
	N. Ye, Y. Zhang, and C. M. Borror, Robustness of the Markov-chai
	A. H. Sung and S. Mukkamala, Identifying important features for

