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retric S-TOEPLITZ COMPOSITION OPERATORS

pace, VALENTIN MATACHE

nger-

Abstract. Operators on function spaces acting by composition to the right
{ath. with a fixed selfmap ¥ of some set are called composition operators of symbol
- Isometric operators § on a Hilbert space with the property that the sequence

{5} tends to 0 pointwise are celled forward unilateral shifts. A Hilbert space
396) : operator T is called S-Toeplitz if $*TS = T and S-uniformly asymptotically
! : Toeplitz, (5-UAT), S-strongly asymptotically Toeplitz, {S-SAT), respectively
S—weakly asymptotically Toeplitz, (S-WAT), if the sequence {S**1'S%} is con-
e 4 vergent uniformly, strongly, respectively wenldy. We study when composition
-336. E Operators on the Hilbert Hardy space 52 are My~Toeplita, My~UAT, Ms-SAT,

or My~WAT, where ¢ is a honconstant inner function and My the multiplication
operator induced by that function, .

‘ork

IN2.
1 INTRODUCTION

Let enote the Hilbert Har Space on the open unit dis
H? ¢ he Hilbert H dy h it di

k U, that is the space of
all functions f analytic in {J satisfying the condition

1/2
Ifll2 == sup ( | lf(rc)r2dm(r:)) < oo, (1)

0<r<l

where m is the normalized Lebesgue measure.

It is well known that Il X2 is a Hilbert norm on H? with alternative description

1tz = | S feal2, (2)

n=f}

where {c, } is the sequence of Maclaurin coefficients of f.

Recall that H7? js g reproducing kernel Hilbert space with kernel-functions Kou(z)
roducing property:

Y(1 —p2), that is the functions K p have the rep

fp) =< f,K, > feH? pew.

For cach analytic selfmap ¢ of U, the tomposition operator of symbol o is the
ollowing operator
Cof =fop fed (3)
 Composition operators on H? are bounded, as a consequence of Littlewood’s Subor-
ination Principle, [7, Theorem 1.7}, which says that composition operators whose
ymbols fix the origin are contractions. The space L? is the Lebesgue space of index

and we will denote it by the same symbol as
& function itself, relying on context to distinguish between the two notions. The
“horm of f coincides to I flla.
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196 V. MATACHE

As noted in {6, Ch 7.], Toeplitz operators were originally studied as operators on
separable, infinite-dimensional Hilbert spaces, (actually spaces of square-summable
sequences) having maltrices with constant diagonals with respect to some orthonorma]
basis of choice. We will say that such an operator has a Toeplitz matrix. Denoting by
M the multiplication operator on H? fiaving symbol the coordinate function, that is

M f(z) =zf(2) z2€U, feH,

one can easily see that an operator A on H? has a Toeplits matrix with respect to
the monomial basis of that space if and only if MJAM, = A. On the other hand,
Brown and Halmos [4], noted that a bounded operator 4 has a Toeplitz matrix Wkth
respect to the monomial basis of H? if and only if A is the compression to H? of 5
multiplication operator Ly on L?; that is, there is some ¢ in L called the symbol of
the multiplication operator Lg so that

Af = Plyf = P(¢f) feH, {4)

where P is the orthogonal projection of L? onto H?. We call the operator A in {4) the
M ~Toeplitz operator of symbol ¢ and denote 4 = T. These operators are considered
the classical Toeplitz operators, due to the result above.

Now, the matricial approach to the rotion of Toeplitz operator can benefit from
the fact that any orthonormal basis of an infinite-dimensional, separable Hilbert space
can be understood as the orbit of a unit vector under a unilateral, forward shift of
multiplicity 1.

Here are some explanations of this statement. A unilatera) forward shift is any
isometric operator S on a separable, infinite-dimensional Hilbert space H with the
property that {5*"} tends strongly to 0 on H. The closed subspace L = H © SH is
called the wandering subspace of the shift § because

S*ML L ST m#n 20

and _

H=LOSLeS* Lo - &S"La.. (s) .
The Hilbert dimension dimZ is called the multiplicity of the shift §. When the .,
multiplicity is 1, there is essentially only one unit vector e in £, (modulo multiplication -
with unimodular scalars). The orbit {e, Se, 5%¢,...,5%, ...} of e under § is then an.
orthonormal basis. Conversely, given any orthono: mal basis {eg,e1,...,€n,...}, the
equation

Sey, == epq n>0

uniquely determines a urilateral forward shift § on H having multiplicity 1 and such
that the given basis is the orbit of ey under S. The fact that the matrix, with respect
to the basis above, of some operator, is a Toeplitz matrix is equivalent to the equation
§*TS =T, [15]. Therefore, given some unilateral forward shift § of any multiplicity;
we follow [lo] and call a Hilbert space operator S-Toeplitz if the aforementioned
equation holds. It should be added that, if the multiplicity of $ is more than 1, the
5-Toeplitz operators have a block-matrix with constant diagonals with respect to
direct sum decomposition (5).

"The classical Toeplitz operators are called M,-Toeplitz operators in this pap
because, as the reader will easily note, M, is a unilateral forward shift of multiplici
1 on H2. Note that we distinguish between multiplication operators on L? and thos
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on H? by denoting the former by L and the latter by M. The symbol of the multi-
plication operator is specilied as a subscript in both cases. Obviously, the symbols of
multiplication operators on H? need to belong to H, the space of bounded analytic
functions on U, so that those operators will be bounded.

Barria and Halmos [1] introduced a natural asymptotic gencralization of the no-
tion of M, -Toeplitz operator defining strong asymptotically Toeplitz operators. Other
authors, [8] extended their definition considering the other usual topologies on the
space of linear, bounded operators. More exactly, an operator T ia called uniformly
agsymptotically Toeplitz, strongly asymptotically Toeplitz, respectively weakly asymp-
totically Toeplitz if the sequence {M"T M} is convergent in the uniform operator
topology, the strong operator topology, respectively the weak operator topology.

We introduce the corresponding notions of S-asymptotic Toeplitzness by substi-
tuting above the forward shift M by any unilateral, forward shift S, with the comment
that the limit A is necessarily an S-Toeplitu operator. That operator is called the
asymptotic image of 7. We use the abreviations S-UAT, S$-SAT, respectively S-
WAT for S--uniformly asymptotically Toeplitz, S-strongly asymptotically Toeplitz,
respectively S-weakly asymptotically Toeplitz.

Recently, Nazarov and Shapiro studied M,-asymptotic Toeplitzness for composi-
tion operators on H2 [12]. The current paper is inspired by that paper and starts with
the elementary observation that some of the results proved there are easily extendable
to S-Toeplitzness with respect to forward shifts of the form § = M, where ¢ is a
nonconstant inner function. This string of immediate generalizations of results from
(12} is in the fourth sectiom of this paper. This introductory section is dedicated to
setting up the notation and introducing the main concepts. In the second section we
study which composition operators C, can be MyToeplitz. We are able to give a
complete answer in the case when ¢ has a fixed point in U, (Theorem 1). It turas out
that only composition operators of inner symbol can be M,-Toeplitz. Furthermore, ¢
must be an invariant inner function of Cy,. The third section is dedicated to operators
that are My-Toeplitz with respect to Guyker shifts, that is with respect to shifis of
the form M., where ap(z) = (p — 2)/{1 — B2}, p being any fixed constant in U. It
turns out that an operator on H? is M,~Toeplitz, respectively M,-UAT if and ounly if
it is M, —~Toeplitz, respectively My, ~UAT, where p € U is arbitrary and fixed. These
facts and the characterization of M,~-UAT composition operators {12, Theorem 1.1],
combine into showing that the only M, ~UAT composition operators are the compact
composition operators and the identity operator, (Corollary 2). In section 4 the ques-
tion of when a composition operator is My—-SAT or My—~WAT is studied. Section 5 is
dedicated to operators of form CZC.,. It is shown that they are My~Toeplitz if and
only if ¢ is inner, which extends s recent result in [2]. The operators under consid-
eration are always My~WAT, no matter the nonconstant inner function ¢ (Theorem
9}, The situations when they are Mu-UAT or SAT are also studied.

2 M~TOEPLITZ COMPOSITION OPERATORS

Note that what makes M, a forward shift is the fact that » is a non-constant in-
ner function, that is a bounded analytic {function with nontangential limit-function
unimodular a.e. on U, Indeed:

Proposition 1. If ¢ is a non-constent inner function, then the multiplication operator

Myf=¢f  feH?
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iz o unilateral, forward shift. That shift has finite multiplictty if and only if ¢ is a finite U\ {0} with
Blaschke product, {i.e. i i ¢ finite product of factors of form op(2) = (p—2)/ (1-pz),
with p € U times o unimodular constant). In that case, the multiplicity of My equals
the number of factors of the finite Blaschke product.

Proof. Obviously, Mgy is isometric if ¢ is inner. As is well known, M, ;“ = Pl lea. fa,be Z
Let & be a fixed, nonnegative integer. In relatic
by ¢ Az~inva
RO\ 2 ROFR N2 1 emHY©) | ’
WPLge I = P =D\~ ) 0,
j=0

since ¢° — 0 uniformly on compacts. Thus My f — 0 for each analytic polynomial - wherecy i3 a
he analytic polynomials dense in " Lebesgue me

f. Since the sequence {M ) is norm-bounded and t
HZ?, it follows that {M;’;”} tends strongly to 0, that is, Mg is a
The fact that dim(H* @ $H?) is finite if and only if ¢ is a finite Blaschke product,

unilateral forward shift,

(in which case, it equals the number of factors of that product), is well known [14, lid
Theorem 3.14]. M valid for eact
There is only one kind of My-shifts, (modulo ultiplication by & animodular  © P T?ff- fC,
5 Plp(dow)y)

constant), having multiplicity 1, namely the Guyker shifts Ma,, named that way
because the normalized kernel kp = 1 — |p|*Kp is a unit vector in the wandering
subspace [, = H* © cpH? of M, and hence the orbit {afk, : n = 0,1,2,. Y of

onormal basis of HZ2, (known in the literature as the Guyker

k, under M, is an orth
basis of indez p, since it was introduced by J. Guyker [9)). Visibly, if one takes

p = 0, the corresponding Guyker shift is M_, = —M, and hence, one studies classical

obtaing the ¢

llel

where the faq
pringiple wert

Toeplitz-concepts.

In [12], the authors show that the only M, Toeplitz composition operator is the Assume ¢l
identity. This result extends to Guyker shifts, as we will soon prove. First, we note

that nontrivial composition operators Can be PVI¢—Toeplitz as early as multiplicity I =<t
9, for example example, Co, 8 Mmp—--'l‘oeplitz because CopMza, = M0, Cop- The Lk by the Cauch

: Ca-'LlChy"-S(:hw
colinear. The;
I=<dow,d
‘_ that is C(qu =
= only if My an
' Assume m
Cp 158 My~Ton

example above is typical, as we prove in the following.

Theorem 1. If @ i an analytic selfmap of Uand ¢ a non-constant inner function
then, if Cy 18 M -Toeplitz, ¢ needs to be on inner function. If ¢ s inner, then Cy
is My—Toeplitz if und only if ¢ 15 an invariant function of Cp, (that is Cp¢ = ¢} or,
equivalently, if and only if My ond C, commute. If @ is an inner function, other than -
the identity, thot fizes a point p € U then the only situations when Cy, con be My~ g
Toeplitz with respect to s0ME shift My are when @ is an elliptic disk automorphism B
with property p(z) = sz(A(xp(z)) where A is some root of unity. Such a composition

operator is M- Toeplitz if and only if ¢ has the form

P(z) = (Bo ap) (Sy 0 ap) - (6)

Above B is a, (possibly constant) Blaschke product with propertied

. lal & —2 i)
B(z) = e H (—w e zel,
iy a 1@z

of Oy, if and o
the rotation 4
the singular e

where k > 0 s o fiwed integer, each j{a) > 0 is an integer, € is o unimodular constan
N ig the order of the root of unity A, and 7 is a countable, (possibly empty) subset

e e AN RN S




yis o finite
)/(1 - ijz);
M, equals

)L(}}T Lre-

ynomial
lense in
‘¢ shift.
roduct,
vn [14,
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wyker
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U\ {8} with the properties

A\ = Z, El - la| < +oo, and  ja) = j(b),

aed
if a,b € Z and a = N for some integer n. If 2 =, B(z) == ¢zkN

In relation (6), S, must be a, (possibly constant) singular inney Junction induced
by e Az-invariant measure v, that is

8,(2) = ¢ exp (— [@ utz du(u)) zeU

g Uz

where ¢i is @ unimodular constent end v is a Borel measure, singular with respect to
Lebesgue measure, and with the additional property

VAE) = v(E)
valid for each Borel subset E of U.

Proof. ¥ C,, is My-Toeplitz, then MGCuMy(z) = Cp(2) that is

P(g(pop)p) = . It arguing by contradiction, one assumes that ¢ is not inner, one
obtains the contradiction

lell? = |P(B(d 0 D)2 < [8 9180 ¢Plp dm < fa ol m,

where the fact that ¢ is a non-constant inner function and the maximum modulus
principle were used.

Assume that o is inner and Cy, is My-Toeplitz. In that case
Lo Cp(l), 1 >=< MIC,My(1),1 >=< o, ¢ >< ldowllafidflz < 1

by the Cauchy-Schwarz inequality and the fact that ¢ is inner. As is well known, the
Cauchy-Schwarz inequality is an equality if and only if the vectors involved in it are
colinear. Therefore, there is some complex number A such that P o = A¢ and, since
1l =< ¢pop,¢ >, it follows that A = 1. Thus ¢ must be an invariant function of C,,
that is Clpep = ¢, 1t is elementary to see that ¢ is an invariant function of Cly if and
only if My and C, commute, and in that case, O, is necessarily My-Toeplitz.
Assume now that the inner function ¥, not the identity, fixes a point p € U and
Cp is My-Toeplitz. For the beginning, assume p = 0. Denoting o/ = po...0 i,
n-times, note that, by the Schwarz lemma in classical complex analysis, ga{”l(z) -~ {)
pointwise, unless ¢ is a rotation or ¢ is the identity. If ¢ is neither a rotation nor
the identity, then ¢ o ol = ¢, for all n, so ¢ = $(0), that is ¢ is constant, a
contradiction. If p(z) = Az for some unimodular \, not a root of unity, then it is easy
to see that Cy has no nonconstant inveriant vectors. If A is a root of unity having
order N > 1, we begin by noting that a singular inner function is an eigenfunction
of C, if and only if that function is induced by a singular measure v invariant under
the rotation () = Xz. This is a direct consequence of [11, Theorem 3.2] where
the singular eigenfunctions of automorphic composition operators are determined.
More exactly, if ¢ is a disk automorphism, then S, is an eigenfunction of Cy if and
only if, the pull-back measure vp! ig absolutely continuous with respect to v and
dip™(u) = P(p(0), u) di{u), where P(p(0), u) is the Poisson kernel evaluated at w(0)
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and u € 8U. In our case, this means v(AE) == v(E) for each Borel set E C JY, that
is ¥ must be invariant under the rotation y(z) = Az. It is straightforward to see that
any singular inner function induced by a measure that is inveriant under the rotation
@(z) = Az is actually left invariant by C,,. This and the fact that the composite of
a Blaschke product respectively a singular inner function and ¢ is also a Blaschke
product, respectively a singular inner function, leads to the conclusion that, if ¢ is an
inner invariant function of C,,, then the Blaschke product in its representation as a
product of a Blaschke product times a singular inner function must be invariant under
Cy- The obvious relation

lala=Xz  [a| da-2

a6 1-@z  Na |- g @2 A€, 07

implies then that the Blaschke product under consideration must have the properties
in the text of this theorem. To end the proof, note that, in the case p # 0, Qpowoay,
is a rotation Az, A function f € H? is left invariant by Cy if and only if f oy is left
invariant by C),. [}

Corollary 1. If § is any Guyker shift, the only S-Toeplitz composition operator is
the identity.

Proof. Let § = M,,. If C, is S-Toeplitz then ap ©p = ap. Since a, is selfinverse,
one gets that (z) = 2, z € U, o

It should be added that, if © fixes p € U and is ay-conformally conjugated to a
rotation by a root A of unity having order ¥ > 1, then nonconstant, Cp~invariant,
singular inner functions always exist. Indeed, consider the singular inner function
induced by the measure v = 8§; + d) + 82 + -- - + dy~v-1, where &, denotes the Dirac
unit mass concentrated at u, for each u € OU. Clearly v is Az-invariant, so S, o ay
is a nonconstant singular inner invariant function of C,. Nonconstant Cp-invariant
Blaschke products obviously exist.

The next thing is to see when fixed point—free, inner maps ¢ of U can be My
Toeplitz, for some inner, nonconstant ¢. We begin by recalling a noted theorem.

Theorem 2 (Denjoy-Wolff}. Let ¢ be an analytic selfmap of U other than the identity
or an elliptic disk automorphism. Then the sequence of iterates {¢™} converges
uniformly on compacts to a constant w € U called the Dengjoy-Wolff point of .

Thus, if a function ¢, as above, has a fixed point in U, then that point is exactly
its Denjoy-Wolff point. If ¢ is fixed point—free, then its Denjoy--Wolff point is on
the unit circle OU. We are interested in inner functions with Denjoy-Wolff point on
AdU. For any selfmap o and any z € U we denote Op(z) = {z,0(z),...,ol"(2),... }
the orbit of z under . We say that the orbis O,{z) is Blaschke if the condition
> A€0,(z){1 ~ |A) < +oo is satistied. If all orbits under ¢ are Blaschke, we say ¢ has
Blaschke orbits. Our interest in these notions is explained in the following.

Proposition 2. If p is an analytic selfmep of U and C,, has a nonconstont, bounded,
analytic, invariant function ¢ then v must have Blaschke orbits.

If y ds an inner function with Denjoy-Wolff point w € U, then the following are
equivalent.
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(i) The orbit O,(0) is Blaschke.
(i) ©™ - w a.e ondU.
(ii) The map @ has Blaschke orbits.

Proof. Let v be an analytic selfmap of U such that Cyp
analytic, invariant function ¢. Then ¢ must be consta
be an arbitrary point in U. Then the elements of the orbit Oy(p) sre zeros of the
bounded analytic function p(p) © 9. Hence Oy(p) is Blaschke. Sice p was arbitrarily
chosen, this takes care of the first statement above.

Let now ¢ be an inner function with Denjoy-Wolff point w € 8U. The equivalence
(i)¢=»(ii) was established in [3, Theorem 4.2 ]. Since clearly, (lit}==5(i}, one only
needs to show that (iii) holds if (i) holds. Let p be an arbitrary point in U. Note that,
if we denote ¢ = a0 o ap, then

has a nonconstant, bounded,
ot on each orbit of . Let p

¢[n]:apc(]pin}oap n::l,z,.?»,...

and hence, ¥ is an inner function heving Denjoy-Wolff point 7 = ap(w) with the
property %™ — 5 ae. on U. Thus 0y(0) is Blaschke. By the identity

iy o (=) - )
O e G

n=123,...

it follows that O,(p) is Blaschke. 0

If the Denjoy-Wolff point w of an analytic selfmap ¢ is on AU then the angular
derivative ¢'(w) is known to exist and satisfy the condition 0 < ¢ {w} < 1, (which,
of course, means that the aforementioned derivative is necessarily a real number). If
@'(w) < 1 then g is called of hyperbolic type. If ¢'(w) == 1 then ¢ is called of parabolic
type. Analytic selfmaps of parabolic type are classified into two categories. The first

is selfmaps of parabolic automorphic type. This means that the selfmap ¢ of parabolic
type has hyperbolically separated orbits, that is,
: [r+1] {n]
n-!irfoo ("), ™M (2)) > 0 zel, (7)

where p is the pseudohyperbolic distance plz,w) = lon,(2)|, 2, w € U. Either all the

orbits of an analytic selfmap of parabolic type are hyperbolically separated or all of
them are hyperbolically non-separated that is

Tos 00

im p(pl™H(z),lM2) =0 zew, (8)

(see {3, Section 2.5] for a more thorough discussion of this phenomenon). In case
(8) holds, ¢ is called of parabolic non-automorphic type. The limits in (7) or (8)
necessarily exist because the sequence under scrutiny is decreasing, by the Schwarz—
Pick lemma [16, Section 4.3], saying that anelytic selfmaps of U are contractive under
the pseudohyperbolic distance, that is, if i is such a map, then

ple(a) pw)) < plz,w)  zwe U,

According to [3, Theorem 4.4], inner functions of hyperbolic type or of parabolic
automorphic type have Blaschke orbits, On the other hand, some inner functions
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of parabolic non-automorphic type may have non-Blaschke orbits, (e.g. w(z) =
exp{mzikz}, see [3, Example 4.6 ]). By Proposition 2, if ¢ is such a map, then
C, cannot be My~Toeplitz, no matter the nonconstant inner map ¢.

Recall that, if ¢ is a disk automorphism then ¢ is a parabolic disk automorphism
if and only if it has only one fixed point w € 6U. The automorphism ¢ is called
hyperbolic if it has exactly 2 fixed points, both on 8U. Since the composite of a
Blaschke product and a parabolic or hyperbolic disk antomorphism is again a Blaschke

product and a similar property holds for singular inner functions then:

Remark 1. An automorphic composition operator Cy, with parabolic or hyperbolic
symbol is My—Toeplitz if and only if the Blascke product B and the singuler inner
function S in the representation ¢ = ¢cBS, |c| = 1 are eigenfunctions of C, corre-
sponding to reciprocael eigenvalues.

The Blaschke products, respectively the singular inner functions that are eigen-
functions of the parabolic or hyperbolic composition operators are characterized in
(11, Section 3]. Here are some simple examples. If ¢(2) = (22 + 1)/(z + 2), then ¢ is
hyperbolic of fixed points &1 and

o0

Bz} =2 H

= 0o g

sign(n)p"!

is a convergent Blaschke product with the property Cp,B = —B, so0 Cyp Is My:-

Toeplitz. The notation !~ means (™), n =12 3,.
For a second example, consider the pa.rabolic disk automorphism

(1 —mi)z + mi
4wt~ miz

wlz) =

It is straightforward to check that the atomic singular inner function

§(x) = expl(~ 1 2)

is invariant under C, and hence C,, is Mg-Toeplitz.
'The determination of all inner invariant functions of nonantemorphic composition

operators whose symbols have no fixed poeints in U is an open problem, beyond the
scope of this paper.

3 GUYKER SHIFTS

The operator Ly, will be referred to as the bilateral Guyker shift of symbol . We
begin by showing that, indeed L,, is a bilateral shift. This means that Loy, is a
unitary operator with the property that there is some closed subspace L of L? so Lhat
Lg, L L L L for any integers m # n and L* is the direct sum of all subspaces Ly, L
no=0,%1,£2,... It is not hard to see that, for any distinct integers m 3 n, one has
that o'k, L o kp, 80, what we need to prove is that

o0
> ool =L?
n=-~co

where |
0,1,2,..
is in the
onal to ;
Thus f;

or, in ot}

It follows

Hence £,

There;
thonorma)
bilateral g
multiplica
that is £ i
L are the
multiplicit;
such that {
Hence, {L,
s {La, } -

4] to prove

Propositic
only if it is

Proof. TET
Then for an
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where L is the linear subspace spanned by kp. Let B, := {a;"kp, Gplthp f M o=
0,1,2,...} = {apky i n = 0,1,:£2,...}, (where the equality &, p = oty "kp, 1 > 0

is in the sense of boundary-value functions), and assume that some f € L? is orthog-
onal to By. Then f E“_L2 S H?, since f is orthogonal to the Guyker basis of index .
Thus f is in H% and F(0) = 0. Also, one has that

fL Q;E that is kof L oty n=1,23 ...

or, in other words .
< C;p(kPT)’zn >= n:11213,---

it follows that Cop (kuf} = c for some ¢ € U. To caleulate ¢ note that
=< Oy (kpf), 1 >=< kpf, 1 >=0.

Hence kyf = 0, since Cy, is injective and so, f = (.

Therefore, for each p € U, the set By = {ogky 0 = 0,£1,::2, ...} is an or-
thonormal basis of L? we call the bilateral Guyker basis of index p. Since Ly, is a
bilateral shift of multiplicity 1, the commutant {La, } of Ly, is the algebra £ of all
multiplication operators on L2, Indeed, by (14, Theorem 1.20}, £ is maximal abelian,
that is £ is abelian and the only operators on L2 commuting with all the operators in
L are the operators in £ themselves. Since L, and L, are bilateral forward shifts of
multiplicity 1, they are unitarily equivalent, that is there is some unitary operator [J
such that U*L,U = L. Therefore {Lop Y = U*{L, YU = U*LU, (14, Theorem 3.2},
Hence, {L,,} is a maximal abelian operator algebra containing £. The conseguence
is {La,}' = L. Keeping this in mind, one can borrow from the proof of [4, Theorem
4] to prove

Proposition 3. Let p ¢ U be fived. 4 bounded operator on H? is M, ~Toeplitz if and
only if it is Mo, ~Toeplitz.

Proof. If T is M,~Toeplitz then there is some w € L% so that T'f = P(pf), f e H2.
Then for any inner, nonconstant ¢

SMETMyf,g >=< pbf,dg >=<pf,g>  fge i

hence M o L'My =T, Thus, M,~Toeplitz operators are My—~Toeplitz for any ¢ inner
and nonconstant.

For ¢ = a, the converse is true. Assume M, TMy, = T. If we show that T is the
compression to H? of a multiplication operator on L?, the proof is over. Note thaf
T has a Toeplitz matrix with respect to the Guyker basis of index D, that is, for all
integers 4,5 > 0

< Tog ky, ook, >=< Talk,, k> 7m0

Imitating part of the proof of [4, Theorem 4 } with the bilateral Guyker basis
B, in place of the monomia] basis of L?, we introduce the operator sequence {1}, =
L;’:TPLgp} and claim it converges weakly to some 4. Tb see this, note that, if 4,7 > 0
are integers, then

< Tnodky, gk >=< To2*ky, al ik, =< Talky otky >  n>0. (9)
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If 4+ and J are any integral values, then there ismg > 0sothat n+i,nt+3j= 0 if
n > ng 50, the computation above can be repeated, and thus, for each choice of ¢ and
j, the sequence above is eventually constant. Given that {Tn.} is norm-bounded and
B, is an orthonormal basis of L2, it follows that {7} tends weakly to some A which
commutes with Ly, because

< L, ALg,okp, opky >= lim < LT PLY ol by, apkp >=

< Acdfp, opky > 3,7 = 0,41, 22,...
Thus A € £ and its compression to H? is T, by identity (9)- 0

Tet us note that Feintuch’s theorem [8, Theorem 4.1], characterizing M;~UAT
operasors extends to:

Theorem 3. If S is a forward unilateral shift of finite multiplicity on a Hilbert space,
then an operator on that space is S-UAT if and only if it is & compact perturbation
of an 8-Toeplitz operator.

Proof. The proof is practically the same as the original one. We include it for the
sake of completeness. If S is a forward shift, then so is S* for any k. For each such 5,
P = §S* is the projection on SH, (where H is the Hilbert space, on which S acts),
and so, Q¢ = I — P is the projection on I = H o SH, the wandering subspace of 5,
(15, 1.3]. Thus, the projections Qn = [ — S"5™" are finite-dimensional projections
because S has finite multiplicity and hence, so does any of the shifts §™. Denote
P, = §7§*". Assume T'is S-UAT with asymptotic image A. That image must be
S-Toeplitz, hence §*(I" - A)S™ = §*nPgn . A and so, ||S*(T — A)S™|| — 0. This
implies that || Py (T — A)Py|l — 0 due to the estimate

| PufT — A) Pl = 1578 (T — A)S" S| < |S*™(T — AYS™|| n=1223...
On the other hand
P (T~ A) Py = (I - QT —~ AW~ Qn) =T ~ A+ Fy n=1,23..

where F,, = ~Qn(T — AYJ — Qu) — (T — A)Q, is obviously a sequence of finite rank
operators, tending uniformly to —~(T'— A). This shows T'— A is compact if T is 5-UAT
with asymptotic image A.

The converse is easier. If 5 is any torward shift, (not necessarily one of finite
multiplicity), a compact perturbation T 4 K of a 5-Toeplitz operator T' is necessar-
ily S-UAT with asymptotic image T because ||S*KS5"|| — 0. When K is a finite
rank operator, this is a consequence of the fact that §** — 0 strongly. Since ar-
bitrary compact operators arve uniform limiss of finite rank operators it follows that
|8**KS*|| — O for any compact K. a

By ({12, Theorem 1.1}, the consequence of the two theorems above is the following:

Corollary 2. Let p € U be arbitray and fired. An operator T on H 2 js M,-UAT if
and only if it is Mq, -UAT, in particular, a composition operator is M, ~UAT if and
only if it is compact or the identity.

Proof. The fact that T"is M,~UAT if and only if it is My, -UAT is & direct consequence
of Proposition 3 and Theorem 3. The fact that a composition operator is Mg, ~UAT
if and only if it is corpact or the identity is a consequence of the fact that, by (12,
Theorem 1.1}, those are the only M ~UAT composition operators. .
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4 My-ASYMPTOTICALLY TOEPLITZ COMPOSITION OPER ATORS

"This section contains extensions of results in [12] originally proved for M, =~Toeplitzness
concepts. Those results can be extended with minimal technical efforts My~
Toeplitzness concepts. Some of the results included in this section require that the
following condition be satisfied.

Basic Assumption: Lef ¢ be an inner function and ¢ an analybic selfmap of U.
We say that o and ¢ satisfy the basic asswmption if there is a non-constant, analytic

selfmap ¥ of U such that Co¢ = . In other words, the maps  and ¢ should satisfy
the condition
¢ o p(z)

¢(2)
The basic assumption extends the situation when one studies some concept of M,

Toeplitzness and requires that the operator C, be such that ¢(0) = 0. Indeed, in such
a case, the basic assumption is satisfied by ¢(z) = 2 and P(2) = p(2)/2.

<1 2 €U, ¢(z) #0.

Remark 2. If some inner ¢ and some analytic selfmap ¢ of U satisfy the basic
assumnption, one has that

M"CoMy =Tynp  n=1,23,...

where Tyn ., 15 the weighted composition operator of symbols Y™ and p, that is Tyn , =
ﬂ/_["p" O(P‘

Proof. Since ¢ is inner, one has $"¢” =1 a.e. Hence Mg“()"ng f=
P(grg™y™ f o @) = Tyn ,f, for any f € HZ. -

With this remark we are ready to begin our string of extensions of results in [12].
The following is an extension of {12, Proposition 3.1].

Proposition 4. If ¢ is inner und non—constont and ¢ is an enalytic selfmap of U
with the property |p| <1 a.e., then C, is My~SAT with null asymptotic image.

Proof. Note that
1M oM A < CoMEFIP = fa ool dm -,

by Lebesgue’s dominated convergence theorem, since (¢ o )" — 0 a.e. o
Our next result extends (12, Theorem 4.2].

Proposition 5. If ¢ is an analytic selfmap of U and ¢ a non—-constant inner function
with the property that there is a non-constant, anclytic selfmap ¥ of U such that
Cod = ¥, then CJ, is My-SAT with null asymptotic image.

Proof. Since the set of all kernel-functions is a spanning subset of H? and { M CoM3}
is norm-bounded, it is enough to prove that || M;"CoMZ K[| — 0 for any p € U. It
is well known that, the action of the adjoint of a weighted composition operator on
the kernel-functions is described by

Ty oKy =90 Koy pEU.
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Pherefore, by Remark 2, one has

MR Co MG = 19" () [ el — 0
because |[¥]loo < 1 and 9 is not constant. o
As an immediate consequence we obtain an extension of {12, Proposition 2.1}.

Corollary 3. If @ and ¢ satisfy the basic assumption, then Cy is My—-WAT with null
asymptotic image.

The next result is an extenston of [12, Proposition 3.2].

Proposition 8. [fyp s an analytic selfmap of U and ¢ a non—constant inner funclion
with the property that there is a non-constant, analytic selfmap ¢ of U such that
Cptp = ¢ and Cy, 18 M;~SAT, then necessarily, |¢} <1 a.e

Proof. By Corollary 3, HM;“O(;,M};lH -+ 0. But, by Remark 2,
ML C MR = / w2 dm > m(By),
8U

where we denote
Ey={CedU:[$(Q) =1} Bp={(e€dU: le(§) = 1}

Letting n — oc one gets m(Ey) = 0. On the other hand, by the basic assumption,
E,C Ey ae. o

The following is an extension of [12, Proposition 4.1].
Proposition 7. Ifigl <1 a.c and ¢ is inner and non-constent, then Cg is Ms-SAT.
Proof. Forfixed f € H 2 and 1, choose g € H 2, a unit vector with property ||M£”C,;‘,Mg fl =<
M3" /;‘,Mgf,g >, Oune has

IMCLME ) =< M3, CoMfg > [ ¢ fGowTgopdm <

\H ¢ 0 @l*n|f12 dm ||Coll - 0,
a0

by the Cauchy-Schwarz inequality and Lebesgue’s dominated convergence theoreni
J

5 THE OPERATOR C;C,

Operators of form CgC,, are frequently M-asymptotically Toeplitz. We study them
in this section. Let

1% - 1—1z?
Plz,u) = R d

zm$u~z!2 wedl,zelU

be the usual Poisson kernel. In [2] the operator C5C, 1s shown to be the M, Taoeplitz
operator Tpiu(0)u) provided that ¢ be inner, [2, Proposition 3]. The proof is based on
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a representation, (due to Cowen [5]), of adjoints of composition operators with linear
fractional symbols as a product of two Toeplitz operators and a composition operator.
In the next theorem, we give a very short proof of that resuit, based on a pull-back
measure formula of Nordgren [13], and prove an extra fact: namely that CoCpis a
Ms—Toeplitz operator only if @ is inner.

Theorem 4. Let ¢ be o noncenstant inner function. The operator C3C,,

Toeplitz operator if and onty if @ is inner, in which case CoCp = _’I'Pw(o),u).

is o M¢,"'

Proof. If ¢ is inner then by (13], dmp~1{u) = Pp(0), w)dm(u) and, using this pull-
back measure formula, one hag

<CiCetg>= [ fowplugop(udm(u) = [ 00 Po(0),)560) dom),

for any f,g € H%. Hence
CoCo = Ti(o(o), - (10)
If ¢ is & fixed, nonconstant, inaer function it is straightforward to establish that M-

Toeplitz operators are also My—Toeplitz. To show only inner functions ¢ have the
property that CoCy is My Toeplitz, assume that CoCyp is My~Toeplitz. Then

< MECLCMyf, f >=< CoCof, f > fe H?

that is
I6owfoelle=|foplz fen2 (11)
Taking f = 1 in (11), one obtains flé o wlia = 1, hence ¢ o @ is ner. Indeed,
L—|pop(u}? > 0 ae. and Sou(1— [pop(w)|?) dm(n) = 0. This implies that ¢ is inner,
because ¢ is a nonconstant inner function and hence, if one assumes m(E,) < 1, then,
by the maximum modulus principle, it follows that m(Ey) < 1, a contradiction, (]

As an application, we obtain the following extension in the & %-context of part of
[2, Proposition 4).

Corollary 4. If ¢ is inner then the spectrum of C5C,, is the line-interval

[1 —|e(0)] 1+ Iw(O)IJ
1+ie(0)]" 1 — {0} | -

Proof. This is a direct consequence of formula (10), the Hartman-Wiener theorem,
({6, Theorem 7.20]), and the well known formulas

sup {P((0),u) : u € U} = 11%%%{'

B0, 0) - L 1e0)

0

The formula CpCy, = (Tp(wml(o)’u)) - (valid if @ is a disk-automorphism), can be
obtained as a particular case of [2, Proposition 2]. The formula can also be obtained
as an immediate consequence of (10):

AR TR : SRV
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Corollary 5. If  is a disk-automorphism, then C,Cy, = (Tp(lpwl(n)’u))_“l .

Proof. (Co08) ™4 = Ch1Cyp1 = Te(p-10)up by formula (10).

Symbols ¢ with the properly lp| < 1 a.e. are somehow at the opposite side of the
spectrum compared to inner symbols. Clearly C;C, cannot be My-Toeplitz if ¢ is
such a symbol but it can be My-WAT, My-SAT, respectively My-UAT, as we show

in the following.
Theorem 5. Let ¢ be o nonconstant inner function and @ an analytic selfmap of U.

Then:
N Ot C, is always Mg~ WAT. Its asymptotic image is the M,-Toepliz operator T
plw $ P

where ¢ has Fourier coefficients {cn} given by

Cp = P dm n=0,:x1,42,... (12)
E‘P
(i) CoCy is My ~WAT with asymptotic image 0 <= CC, 15 My -SAT with asymp-

totic image 0 &= jp| <1 a.c.

(iii) If ¢ s not an inner function and (po @)t — 0 uniformly a.e. on Ef, = 0U \ B,
(that is ess sup{j¢ o W(CH* : ¢ € EZ} — 0), then CLC, is My~UAT . In particular,
CoCyp 18 My~ UAT with asymplotic image O if ||¢ 0 @lles < 1.

Proof. (i) Note that j¢op| <1 ae on ES, since ¢ is innex and nonconstant. Hence,
for any f,g € H? one has
< M,;“G‘;Owﬂzfgf,g > C’t,,Mgf,C(ngg >

f |6 o @|*" f o o Pdm f fopgepdm,
U £,

by Lebesgue’s dominated convergence theorem. Since the weak limit above is the same
no matter ¢, it must be an M ,~Toeplitz operator Ty, whose symbol is a.e. real since
Ty is a non-negative operator. Keeping that in mind, one can calculate the Fourier

coefficients of ¥ by using the identity

<Tyhg>= [ fopgemam Lol (13)
By

Indeed, for an arbitrary integer n 2> 0, taking g = 2" and f = 1 in (13), one obtatns

(12). Since, ¥ is real a.e. Copn = Cn-
(ii) 1f | < 1 a.e. then note that, for each f & H*

1M CCo My Filz < ICIICy Mg flla == I Cll |60 @l f 0 |2 dm -+ 0,
&y

by Lebesgue’s dominated convergence theorem. Thus CZC, is My~SAT with asymp-
totic image 0 if jp| < 1 a.e. Clearly, CyCy is Ms-WAT with asymptotic image 0 if
CyCy I8 M-SAT with asymptotic image 0, so the only thing left to prove is that, if
CyCyp is My-WAT with asymptotic image 0, then || < 1 a.e. This is a consequencs
of the fact that Ty = 0. Indeed, the Fourier coefficient ¢y = m(E,) of ¥ must be null,

that is j¢] < 1 a.e.

<131
2
I/

(8]

[9]

[10]
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For the proof of (iii), recall that the norm ||7']| and the numerical radius w(T) =
sup{| < Tf,f > | : [[fli = 1} of a Hilbert space operator T satisfy the inequality
ITI < 2w(T), [10, Ch. 22]. Keeping this in mind, consider any fixed f € H?,
lfll2 = 1. One has the following estimates

< (M FCLC, MM — MIMCLC,MPVf, f > | =

ICAMF AP 10, M) = | [ 180 625 0 2 — 1) o o am

= [ 60w~ lpoui®)if o o dm

< esssup{lpo p(OI : ¢ € BSHICLIE £ e B2 | fla = 1.

Given our assumption that ess sup{l¢ o WO : ¢ € ES} -+ 0 and the relation
between norms of operators and their numerical radii, it follows that the sequence
{ MGRCLC, M3} is Cauchy and hence, norm convergent.

Clearly, ess sup{|¢po (O} : & Eg} — 0if g o plleo < 1. Actually, in that case
L = OU a.e. that is || < 1 a.e. so, by (ii), the asymptotic image is 0. |
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