

University of Nebraska at Omaha DigitalCommons@UNO

Mathematics Faculty Publications

Department of Mathematics

1987

Unitary Weighted Composition Operators

Valentin Matache University of Nebraska at Omaha, vmatache@unomaha.edu

Follow this and additional works at: https://digitalcommons.unomaha.edu/mathfacpub

Part of the Mathematics Commons

Please take our feedback survey at: https://unomaha.az1.gualtrics.com/jfe/form/ SV_8cchtFmpDyGfBLE

Recommended Citation

Matache, Valentin, "Unitary Weighted Composition Operators" (1987). Mathematics Faculty Publications. 36.

https://digitalcommons.unomaha.edu/mathfacpub/36

This Article is brought to you for free and open access by the Department of Mathematics at DigitalCommons@UNO. It has been accepted for inclusion in Mathematics Faculty Publications by an authorized administrator of DigitalCommons@UNO. For more information, please contact unodigitalcommons@unomaha.edu.

An. Univ. Timisoara Seria șt. matematice Vol. XXV,fasc.2,1987

UNITARY WEIGHTED COMPOSITION OPERATORS

by

VALENTIN MATACHE

ABSTRACT. A necessary and sufficient condition for a weighted composition operator to be unitary is given in terms of the weight-function and of the composition function.

1. INTRODUCTION

The composition operators appeared in some of Koopman's works dealing with classical mecanics, [1]. Starting with 1966 they made the object of an interesting study carried out by several mathematicians among whom we mention Nordgren whose survey-work [2], contains the basic results obtained as far as 1978. The study of this class of operators is still actual.

Let (X,S,m) be a G'-finite measure space and $T:X \to X$ a nonsingular measure transformation. By the composition operator induced by T we understand the operator

$$C_{\mathbf{T}} : L^{2}(m) \longrightarrow L^{2}(m)$$

$$C_{\mathbf{T}} f = f \bullet T . \qquad (f \in L^{2}(m))$$

The problem which measure transformation T induces a bounded composition operator C_T is solved long ago (see [2]). If mT^{-1} is the measure naturally induced by T, we know that $mT^{-1} \ll m$ and the Nicodym derivative

(2)
$$f_O = dmT^{-1}/dm$$
 must be in $L^{\infty}(m)$.

If θ is another mapping from $L^{00}(m)$ we denote by M_{Q} the multiplication operator induced by θ on $L^{2}(m)$, that is the opera-AMS (MDS) subject classification: Primary: 47B37, Secondary: 47B38.

tor

(3)
$$M_{\theta} f = f \theta$$
 ($f \in L^2(m)$).

We call weighted composition operator induced by T with light $\boldsymbol{\theta}$ the following operator

$$c_{\Upsilon}^{\Theta} = c_{\Upsilon} M_{\Omega} .$$

We aim to characterize unitary weighted composition operators.

2. UNITARY CT

We shall begin by claiming that $\, C_{\rm T}^{\mbox{\scriptsize φ}} \,$ be isometric. It is an easy calculation to prove

PROPOSITION 1. The necessary and sufficient condition that $\mathcal{C}_{qr}^{\;\Theta}$ be an isometry is

(5)
$$f_0 |\theta|^2 = 1, \quad a.e.$$

Proof. We claim that $(C_T^{\theta})^{\mathcal{H}} C_T^{\theta} = I$ where I denotes the identity on $L^2(\mathfrak{m})$. That is

$$M_{\bar{\theta}}C_{\Upsilon}^{\mathsf{X}}C_{\Upsilon}M_{\theta} = 1$$
.

Singh shows in [3] that $C_T^{\times}C_T = M_{f_0}$ and the condition above becomes

$$M_{\rm Bl}^{2}f_{\rm o}=1.$$

As we require that $\ m$ be G-finite, there are functions $\ f$ in $L^2(m)$ which are a.e. different of zero, hence

$$|\theta|^2 f_0 = 1$$
 a.e.

which concludes the proof.

We shall denote by $T^{-1}(S)$ the G-subalgebra of S induced by T that is the collection of all sets $T^{-1}(E)$ for any $E = \infty$ from S.

PROPOSITION 2. The necessary and sufficient condition that \mathcal{Q}^{Θ}_{+} be unitary is

(6)
$$\frac{\mathbf{r}^{-1}(\mathbf{s}) = \mathbf{s}}{|\mathbf{\theta}|^2 \mathbf{f}_0} = \mathbf{1} \qquad \text{a.e.}$$

Proof. We begin by observing that condition $T^{-1}(S) = S$ is lows from [4] that is $\overline{R(C_T)} = L^2(m)$. If (6) holds then $(C_T^\theta) \times C_T^\theta = I$ according to proposition 1. Further more the fact that $\overline{R(C_p)}$ = $=L^{2}(m)$ implies the equality

$$c_T^{~}c_T^{~}=\text{M}_{f_O^{~}o_T} \qquad \qquad \text{(see [5]).}$$
 Then we can show the equality $c_T^{\theta}(c_T^{\theta})^{\times}=\text{I.}$ Indeed

$$C_{\mathbf{T}}^{9}(C_{\mathbf{T}}^{\Theta})^{**} = C_{\mathbf{T}}^{M}_{\Theta}M_{\Theta}^{*}C_{\mathbf{T}}^{**} = C_{\mathbf{T}}^{M}_{|\Theta|} {}^{2}C_{\mathbf{T}}^{**} = M_{(|\Theta|}^{2} \cdot \mathbf{T})^{C}C_{\mathbf{T}}^{**} = M_{(|\Theta|}$$

For the converse suppose now that $C_{\!\scriptscriptstyle T\!\!\!\!/}$ is unitary hence isometric. We obtain by proposition 1, that

$$\left|\theta\right|^2 f = 1$$
 a.e.

Suppose that $\overline{R(C_{\underline{\gamma}})} \neq L^2(m)$, then there is $f \in L^2(m)$ such that $C_{\Gamma}^{N}f=0$ a.e. but f is not a.e.-equal to 0. So

$$G_{\underline{r}}^{\Theta}(C_{\underline{r}}^{\Theta})^{\times} f = C_{\underline{r}} M_{\underline{\theta}} M_{\underline{\theta}} C_{\underline{r}}^{\times} f = 0$$
,

which is absurd aslong as C_{σ}^{Θ} is supposed to be unitary. We conclude that $C_{\eta \eta}$ has dense range, hence (6) is fulfilled.

The case of weighted sequence spaces is perhaps the easyest to handle. We take X = N and S = P(N). Let $w = (w_n)_{n \in N}$ be a fixed sequence of real positive numbers. We set

$$m(E) = \sum_{n \in E} w_n$$
 (E $\subseteq N$)

The space $L^2(m)$ obtained is also denoted by L_w^2 . The composition operators on such spaces made the object of some of the author's latest works [6] and [7] .

Let us adapt the results of paragraph 2 to this particular case, which could provide us a lot of easy concrete examples. Thus c_{T}^{θ} will be isometric iff T is surjective and

(7) $m(T^{-1}(\{n\}))/m(\{n\}) = \{\theta(n)\}^{-2}$.

Indeed, in [6] we proved that $f_O(n) = m(T^{-1}(\{n\}))/m(\{n\})$ for $n \in T(N)$ and $f_O(n)$ is zero for $n \in N-T(N)$. Taking into account proposition 1. (7) easyly follows.

Next, C_T will be unitary if T is bijective and (7) holds which is obvious from the considerations above and proposition 2, noticing that $T^{-1}(S) = S$ is in this particular case fulfilled iff T is bijective. See also [6].

REFERENCES

- [1] B.O. KOOPMAN, Hamiltonian systems and transformations in Hilbert spaces, Proc. Nat. Acad. Sci. U.S.A. 17 (1931), 315-318.
- [2] E. A. NORDGREN, Composition operators in Hilbert spaces, in Hilbert space operators, Lecture notes in mathematics, 693, Springer Verlag, Berlin, 1978, 37-63.
- [3] R.K. SINGH, Compact and quasinormal composition operators, Proc. Amer. Math. Soc., 49 (1974), 82-85.
- [4] R.K. SINGH and A. KUMAR, Characterization of invertible, unitary and normal composition operators, Bull. Austral. Math. Soc., 19 (1978), 81-95.
- [5] R.K. SINGH, and A. KUMAR, Compact weighted composition operators on $L^2(\lambda)$, Acta, Sci. Math. Szeged, 49 (1985), 339-344.
- [6] V. MATACHE, The spectrum of a composition operator on weighted sequence spaces, S.L.O.H.A. 3 (1986).
- [7] V. MATACHE, Composition operators on weighted sequence spaces, S.L.O.H.A. 2 (1985).

10.05,1987

Dept. of Mathematics University of Timisoara Bul. V. Pārwan 1900 TIMISOARA

ROMANIA