New Approaches to Convex Polygon Formations

Rui Yang
ryang@unomaha.edu

Follow this and additional works at: https://digitalcommons.unomaha.edu/csworkshop

Part of the Artificial Intelligence and Robotics Commons

https://digitalcommons.unomaha.edu/csworkshop/2022/schedule/10

This Event is brought to you for free and open access by the Conferences and Events at DigitalCommons@UNO. It has been accepted for inclusion in Computer Science Graduate Research Workshop by an authorized administrator of DigitalCommons@UNO. For more information, please contact unodigitalcommons@unomaha.edu.
New Approaches to Convex Polygon Formations

Rui Yang, Graduate Student, Computer Science
Faculty Mentors: Azad Azadmanesh, Hassan Farhat

This in-progress study considers innovative approaches to the multi-agent formation of convex polygons via a two-phase procedure. Both regular and non-regular formations are investigated. The methodology infuses features from the behavioral and virtual structure methodologies. In the first phase, the agents form a circle. The circle formation plays a fundamental role in improving reconfiguration of virtual structures that are often faced with challenges. In the second phase, the agents are reconfigured into a polygon formation inscribed in the circle.

The study has revealed three geometrical methods to the second phase using: 1) Triangulation, 2) Systems of linear equations, and 3) Vector analysis. In comparison to other research works: 1) The circle pre-reconfiguration improves the reconfiguration process of virtual structures, 2) No distinction is made among the agents, 3) Agents are able to avoid collisions, and 4) The dimension of polygons does not depend on the number of agents deployed. Simulation results show precise formation of agents with the ability of continuous reformations. The results further indicate that the proposed approach has the potential to rotate or change the location of formation while maintaining the formation.

Keywords: Consensus, Cyber physical systems, Peer-to-Peer networks