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COMPOSITION OPERATORS WHOSE SYMBOLS HAVE
ORTHOGONAL POWERS

VALENTIN MATACHE

Communicated by Vern I. Paulsen

Abstract. Composition operators on the Hilbert Hardy space H2 whose

symbols are analytic selfmaps of the open unit disk having orthogonal pow-

ers are considered. The spectra and essential spectra of such operators are

described. In the general case of an arbitrary analytic selfmap of the open

unit disk, it is proved that the composition operator induced by that map

has essential spectral radius less than 1 if and only if the map under consid-

eration is a non–inner map with a fixed point in the unit disk. The canonical

decomposition of a non–unitary composition contraction is determined.

1. Introduction

Let H2 denote the Hilbert Hardy space on the open unit disk U, that is the
space of all functions f analytic in U satisfying the condition

(1) ‖f‖ := sup
0<r<1

(∫
∂U
|f(rζ)|2 dm(ζ)

)1/2

< +∞,

where m is the normalized Lebesgue measure.
The norm above is computable in terms of the Maclaurin coefficients {cn} of

f by the formula

‖f‖ =

√√√√+∞∑
n=0

|cn|2.

Visibly H∞ ⊆ H2, where H∞ is the space of bounded analytic functions.
P. Fatou proved that bounded analytic functions have radial limits a.e. That
result was extended to H2–functions by F. and M. Riesz. Radial limit–functions
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will be denoted by the same symbols as the functions themselves. A bounded
analytic function whose radial limit–function is unimodular a.e. is called an inner
function. We refer to [9] for the essential facts on Hardy–space theory. By the
term symbol we designate any analytic selfmap ϕ of U and call the operator

Cϕf = f ◦ ϕ f ∈ H2

the composition operator with symbol ϕ. The fact that any symbol ϕ induces a
bounded composition operator on H2 is well–known. We say that a symbol ϕ has
orthogonal powers if the set {1, ϕ, ϕ2, . . . , ϕn, . . . } is an orthogonal subset of H2.
In the literature, such symbols are sometimes called simply orthogonal or even
symbols satisfying Rudin’s orthogonality condition. A noted problem related to
them was raised in 1988 by W. Rudin. He asked if the only analytic selfmaps of U
having orthogonal powers are the constant multiples of inner functions fixing the
origin. The negative answer was obtained by Bishop [1], respectively Sundberg
[19], who worked independently of each other. Those papers raised the interest
in the class of composition operators whose symbols have orthogonal powers.

In the second section of this paper we determine when such composition opera-
tors are compact and find multiple formulas for their essential norm. We also find
the spectra and essential spectra of composition operators whose symbols have
orthogonal powers. We show that the essential norm and essential spectral radius
of such operators coincide. The third section contains some spectral properties
characteristic to composition operators induced by non–inner symbols fixing a
point (not necessarily symbols with orthogonal powers). Among those proper-
ties we note the following new result (Theorem 3.3), saying that the inequality
re(Cϕ) < 1 holds if and only if ϕ is a non–inner map fixing a point. Of course,
re denotes the essential spectral radius of an operator. The current section is
dedicated to briefly outlining the content of this paper and introducing the main
concepts. We conclude it by introducing more notation.

Let mϕ−1 be the pull–back measure of m under ϕ, that is the Borel measure
on U given by mϕ−1(E) = m(ϕ−1(E)). Bishop [1], proved that ϕ, a symbol fixing
the origin, has orthogonal powers if and only if

∫
U log(1/|z|) dmϕ−1(z) < +∞ and

mϕ−1 is rotation–invariant (he used the term radial for such a measure), that is
mϕ−1(λE) = mϕ−1(E) for each unimodular number λ and each measurable set
E. Let us denote by Eϕ the subset of the unit circle consisting of all points
where the radial limit–function of ϕ is unimodular. As a final remark in this
introductory section, we wish to mention that, in [1], the author constructed
(among other things), symbols ϕ with orthogonal powers and the property that
both Eϕ and its complement ∂U \ Eϕ have positive arc–length measure. The
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relevance of this remark will become evident in the next section which starts
with the characterization of compact composition operators having orthogonal
symbols.

2. The main results

The compactness of composition operators can be understood by using the
formulas for their essential norm. Two main alternatives exist: an asymptotic
formula in terms of the Nevanlinna counting function [17], respectively a formula
in terms of the Aleksandrov measures of the symbol [6]. In practical cases, each
of those formulas can be hard to use. For that reason, we prove easier ones for the
particular case of composition operators whose symbols have orthogonal powers.

Theorem 2.1. If the symbol ϕ of the composition operator Cϕ has orthogonal
powers then Cϕ is compact if and only if |ϕ| < 1 a.e. The essential norm ‖Cϕ‖e
of Cϕ is computable with the formulas

(2) ‖Cϕ‖e = lim
n→+∞

‖ϕn‖ =
√
mϕ−1(∂U) = inf {‖Cϕf‖ : ‖f‖ = 1} .

The operator Cϕ is in the Schatten class Sp, 0 < p < +∞ if and only if

(3)
+∞∑
n=1

‖ϕn‖p < +∞.

Proof. Indeed, by the polar decomposition theorem [10, Ch. 16 ], Cϕ is compact
if and only if

√
C∗ϕCϕ is compact. On the other hand, obviously, C∗ϕCϕ is a

diagonal operator with respect to the monomial basis of H2 if and only if ϕ has
orthogonal powers. In that case,

√
C∗ϕCϕ is the diagonal operator having diagonal

entries {‖ϕn‖}. By Lebesgue’s bounded convergence theorem, if |ϕ| < 1 a.e. then
the diagonal entries above tend to 0 and hence

√
C∗ϕCϕ is compact, [16, Corollary

1.5 ]. It is well–known that, if Cϕ is compact, then |ϕ| < 1 a.e. In our case, this is
particularly evident because, if the condition |ϕ| < 1 a.e. is not satisfied, then the
set Eϕ = {ζ ∈ ∂U : |ϕ(ζ)| = 1} has positive Lebesgue measure and its measure is
visibly a lower bound of the diagonal entries of

√
C∗ϕCϕ. Therefore, the operator√

C∗ϕCϕ (and hence Cϕ too), fails to be compact, if m(Eϕ) > 0.
We obtain the first equality in the formula (2) by applying to the diagonal

operator C∗ϕCϕ the following property:
If the diagonal operator T acting on an infinite–dimensional, separable Hilbert

space has diagonal entries {λn} with property λn → λ, then ‖T‖e = |λ|.
The property above is an immediate consequence of [16, Corollary 1.5 ]. Indeed,

by that corollary, the operator K = T−λI is compact, hence ‖T‖e = ‖λI‖e = |λ|.
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The second equality in (2) is the consequence of the following formula [1,
Lemma 6.1]:

(4) ‖Cϕf‖2 =
∫

U
|f |2 dmϕ−1 +mϕ−1(∂U)‖f‖2 f ∈ H2.

Indeed, substitute f by zn in (4) obtaining

‖ϕn‖2 =
∫

U
|z|2n dmϕ−1 +mϕ−1(∂U) n = 1, 2, 3, . . .

Letting n → +∞ above and applying Lebesgue’s bounded convergence theorem
leads to the equality limn→+∞ ‖ϕn‖2 = mϕ−1(∂U). For the third equality in (2),
choose any f ∈ H2, denote by {cn} the sequence of Maclaurin coefficients of f ,
and note that, due to the orthogonality of the set {ϕn : n = 0, 1, 2 . . . }, one can
write

‖Cϕf‖2 =
+∞∑
n=0

|cn|2‖ϕn‖2 ≥ inf
n≥1
‖ϕn‖2

+∞∑
n=0

|cn|2 = ‖Cϕ‖2e‖f‖2 f ∈ H2,

since {‖ϕn‖} is a non–increasing sequence. Thus, the infimum in (2) is larger
than or equal to ‖Cϕ‖e. The converse inequality is obtained by noting that

‖ϕn‖ = ‖Cϕ(zn)‖ ≥ inf {‖Cϕf‖ : ‖f‖ = 1} n = 1, 2, 3, . . .

and letting n→ +∞.
Relation (3) is a direct consequence of the fact that

√
C∗ϕCϕ is the diagonal

operator with diagonal entries {‖ϕn‖}. �

Here are some interesting consequences of the theorem above.

Corollary 2.2. Assume ϕ is an analytic selfmap of U having orthogonal powers,
other than a rotation. If ‖Cϕ‖e > 0, then 0 is an interior point of the spectrum
σ(Cϕ) of Cϕ. Thus, if ϕ has orthogonal powers, then Cϕ is a Riesz operator (that
is re(Cϕ) = 0), if and only if Cϕ is compact. Also, Cϕ is a closed range operator
if and only if it is non–compact.

Proof. Indeed, the properties above are consequences of the fact that Cϕ is
bounded bellow if ‖Cϕ‖e > 0. Since ϕ is not a disk automorphism, clearly 0 ∈
σ(Cϕ). As is well–known, for each operator, the approximate point spectrum
contains the boundary of the spectrum. Thus 0 must be an interior point of
σ(Cϕ). Since Riesz composition operators are spectrally indistinguishable from
compact composition operators, it follows that Cϕ is not Riesz if ‖Cϕ‖e > 0.
Injective operators (and all composition operators with nonconstant symbols are
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injective), have closed range if and only if they are bounded below, that is (in our
particular case), if and only if ‖Cϕ‖e > 0, by (2). �

Let us also denote by Cϕ the operator

Cϕf = f ◦ ϕ f ∈ H(U)

acting on the space H(U) of all analytic functions on U. With this notation, the
object of study of paper [5] is: Given a specific subspace L ⊆ H(U) which is left
invariant by Cϕ, when is it true that C−1

ϕ (L) = L? Relative to this question, we
wish to note the following:

Corollary 2.3. Let ϕ be an analytic selfmap of U having orthogonal powers.
Then C−1

ϕ (H2) = H2 if and only if Cϕ is non–compact.

Proof. Indeed, this is a direct consequence of (2) combined with [1, Corollary
6.3] where it is proved that C−1

ϕ (H2) = H2 ⇐⇒ mϕ−1(∂U) > 0. �

The spectrum of a compact composition operator and that of an operator
induced by an inner function fixing a point in U have well–known descriptions.
Thus, from a spectral prospective, we are mainly interested in the case when ϕ

has orthogonal powers, is not inner, and ‖Cϕ‖e > 0. We begin with the essential
spectrum σe(Cϕ). We will show below that, if ϕ is a symbol with orthogonal
powers, other than a rotation, then σe(Cϕ) is the closed disk centered at the origin
having radius ‖Cϕ‖e. We will break the proof into some preliminary lemmas to
make it easier to follow.

First denote P =
√
C∗ϕCϕ and let U be the partial isometry UPf := Cϕf ,

f ∈ H2, in the polar representation Cϕ = UP of Cϕ. Since composition operators
with nonconstant symbols are injective and visibly the kernel of Cϕ and that of
P coincide, it follows that P has dense range and hence U is actually an isometry
(not just a partial isometry), whenever ϕ is not a constant function. After these
preliminary comments, we prove:

Lemma 2.4. If ϕ is a symbol fixing the origin then, for each j = 1, 2, 3 . . .

(5) C∗ϕ(zj) =
j∑

k=1

< zj , ϕk > zk.

If in addition, ϕ has orthogonal powers and ‖Cϕ‖e > 0, then

(6) U∗(zj) =
j∑

k=1

< zj , ϕk >

‖ϕk‖
zk.
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Proof. Let cn be the n-th Maclaurin coefficient of C∗ϕ(zj). Clearly cn =<
zj , ϕn > and, since ϕ has a zero at the origin, cn can be nonzero only if n =
1, 2, . . . , j, which proves (5). In case ϕ has orthogonal powers and ‖Cϕ‖e > 0, then
P is the invertible diagonal operator with diagonal entries {‖ϕn‖} and hence, P−1

is the diagonal operator with diagonal entries {1/‖ϕn‖}. Since both the afore-
mentioned operators are selfadjoint, the equation Cϕ = UP leads to U∗ = P−1C∗ϕ
and hence to (6). �

Recall that a forward shift is an isometry S acting on a separable, infinite–
dimensional Hilbert space, with the property S∗n → 0 in the strong operator
topology. The Hilbert dimension of the subspace kerS∗ is called the multiplicity
of the shift. Each isometry V on an infinite–dimensional, separable Hilbert space
H has a unique Wold decomposition. This means that there is a unique pair of
orthogonal, complementary, closed subspaces H0 ⊕H1 = H of H, which reduce
V , and V |H0 is unitary, whereas V |H1 is a forward shift. Clearly, if V is uni-
tary, then H = H0 and H1 = 0. Nordgren [14] found the Wold decomposition
of a composition isometry (that is of a composition operator whose symbol is an
inner function fixing the origin), in the interesting case when the operator is not
unitary (that is when the symbol is not a rotation). For such a composition op-
erator, the Wold decomposition is H2 = C⊕ zH2 (where C denotes the subspace
of constant functions). The obvious relation Cϕ1 = 1, valid for any composition
operator, makes it evident that Cϕ|zH2 is the forward shift in the Wold decom-
position of Cϕ. Note also that U = Cϕ if Cϕ is isometric so, our next lemma
extends Nordgren’s result mentioned above. In the text of the next lemma, the
term non–automorphic means, of course, that ϕ should not be a conformal disk
automorphism.

Lemma 2.5. Let ϕ be a non–automorphic symbol with orthogonal powers having
the property ‖Cϕ‖e > 0. Then the Wold decomposition of the isometry U is
H2 = C⊕ zH2 and U |zH2 is a forward shift of infinite multiplicity.

Proof. For each symbol ϕ fixing the origin, it is easy to see that C reduces
Cϕ. Hence C0, the composition operator with null symbol or, in other words, the
orthogonal projection on C, commutes with both Cϕ and its adjoint. Hence it
commutes with P and therefore with both U and U∗, since U∗ = P−1C∗ϕ. Thus,
C is a reducing subspace of U .

The next thing to show is that U |zH2 is a forward shift. If ϕ is inner, the
result was proved by Nordgren, so assume ϕ is non–inner. Since the sequence



COMPOSITION OPERATORS 851

U∗n is norm–bounded, it will suffice to show that

(7) U∗n(zj)→ 0 j = 1, 2, . . .

Working by induction, we start with j = 1. By (6), one has

‖U∗nz‖ =
∣∣∣∣< z, ϕ >

‖ϕ‖

∣∣∣∣n → 0

because | < z, ϕ > /‖ϕ‖| < 1. Indeed, if arguing by contradiction, one assumes
| < z, ϕ > /‖ϕ‖| = 1, then the Cauchy–Schwartz inequality | < z, ϕ > | ≤ ‖ϕ‖
is an equality and hence, the vectors involved in it must be colinear, that is
ϕ = λz with |λ| = 1 (since ‖Cϕ‖e > 0), a contradiction with our assumption
that ϕ is not inner. A similar argument shows that, under our assumptions,
| < zj , ϕj > /‖ϕj‖| < 1, for each j = 1, 2, . . . , a fact that will be tacitly used in
the sequel.

Assuming now that (7) holds for j = 1, . . . , k− 1, let us prove it also holds for
k. Note that, by (6), one has that

U∗n(zk) = U∗(n−1)

k−1∑
j=1

< zk, ϕj >

‖ϕj‖
zj

+
< zk, ϕk >

‖ϕk‖
U∗(n−1)(zk),

that is U∗n(zk) is representable as the sum of (< zk, ϕk >/‖ϕk‖)U∗(n−1)(zk) and
a quantity that is norm–convergent to 0 when n→ +∞. Iterating, note that, for
each fixed 1 < j < n, one has a representation of the form

(8) U∗n(zk) = Qn(j) +
(
< zk, ϕk >

‖ϕk‖

)j
U∗(n−j)(zk)

where Qn(j) tends to 0 as n → +∞. For arbitrary fixed ε > 0 choose such a
j, large enough that |(< zk, ϕk >/‖ϕk‖)|j < ε/2. Then choose a positive integer
n0 so that ‖Qn(j)‖ < ε/2 if n ≥ n0. Given the relation (8), it follows that
‖U∗n(zk)‖ < ε if n ≥ n0, which ends the inductive argument proving that (7)
holds. Thus, U |zH2 is a forward shift.

To finish the proof, we need to prove that the multiplicity of that shift is infinite.
Note that, by the relation U∗ = P−1C∗ϕ, the kernels of U∗ and C∗ϕ coincide. On
the other hand, ‖Cϕ‖e > 0, hence Cϕ is an operator bounded below (by (2)),
which is not a Fredholm operator (that is Cϕ is not a closed–range operator with
finite–dimensional kernel and cokernel). This is a consequence of the fact that
the only Fredholm composition operators on H2 are the automorphic composition
operators [8, Theorem 3.39 ]. It follows that C∗ϕ has infinite–dimensional kernel
and so, the forward shift U |zH2 must have infinite multiplicity. �
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Prior to (finally), describing the essential spectrum σe(Cϕ) of Cϕ, we wish to
review a (rather well–known) property of forward shifts of infinite multiplicity.

Remark. If S is such a shift then, for each |λ| < 1, the operator S − λI is not a
Fredholm operator.

Indeed, the adjoint of S − λI has infinite dimensional kernel, which is a conse-
quence of the fact that a shift of infinite multiplicity is unitarily equivalent to a
direct sum of infinitely many copies of Mz, the multiplication operator with the
coordinate function acting on H2. As one can readily see, the evaluation kernel at
λ, that is the H2–function kλ(z) = 1/(1 − λz) =

∑+∞
n=0 λ

n
zn is an eigenfunction

of M∗z corresponding to the eigenvalue λ. Putting the aforementioned facts to-
gether, the reader can see that the conclusion of the remark above holds. Keeping
this in mind, we describe in the following the essential spectrum of a composition
operator whose symbol has orthogonal powers.

Theorem 2.6. If ϕ is a non–automorphic symbol with orthogonal powers then

(9) σe(Cϕ) = ‖Cϕ‖eU.

Consequently

(10) re(Cϕ) = ‖Cϕ‖e.

Proof. The relations above are trivially true if Cϕ is compact. If ‖Cϕ‖e > 0
then, consider any |λ| < ‖Cϕ‖e and note that C∗ϕ − λI = P (U∗ − λP−1). Since
P is invertible, C∗ϕ − λI and U∗ − λP−1 are simultaneously Fredholm or non–
Fredholm. The same holds for U∗ − λP−1 and U∗ − (λ/‖Cϕ‖e)I, given the
obvious relation U∗−λP−1 = (U∗−(λ/‖Cϕ‖e)I)+((λ/‖Cϕ‖e)I−λP−1), because
(λ/‖Cϕ‖e)I−λP−1 is a diagonal operator whose diagonal entries tend to 0, hence
a compact operator. Finally, note that, by the remark above, U∗ − (λ/‖Cϕ‖e)I
is not Fredholm, that is ‖Cϕ‖eU ⊆ σe(Cϕ). �

Combining the theorem above, with some standard Fredholm theory facts (for
which the reader is referred to [15, Section 1]), and a theorem about the point–
spectrum of any composition operator whose non–automorphic symbol fixes a
point (due to G. Koenigs), one can find the spectrum σ(Cϕ) of Cϕ.

Theorem 2.7. If ϕ is a non–automorphic symbol with orthogonal powers then

(11) σ(Cϕ) = re(Cϕ)U ∪ {(ϕ′(0))n : n = 1, 2, 3, . . . } ∪ {1}.

Proof. Description (11) of σ(Cϕ) is known when Cϕ is compact. Thus, the
interesting case is when one has 0 < ‖Cϕ‖e. In that case, note that, if |λ| > ‖Cϕ‖e,
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then Cϕ − λI is a Fredholm operator. Thus the Fredholm index, that is the map
i(λ) = dim(ker(Cϕ − λI)) − dim(ker(Cϕ − λI)∗), is continuous on the arcwise–
connected set {Cϕ−λI : |λ| > ‖Cϕ‖e}. Since the map i is valued in a discrete set,
this means that it is constant on {Cϕ − λI : |λ| > ‖Cϕ‖e}, namely null since, for
|λ| large enough, Cϕ − λI is invertible. The conclusion is that, if λ ∈ σ(Cϕ) and
|λ| > ‖Cϕ‖e, then λ is an eigenvalue of Cϕ. On the other hand, a noted theorem of
G. Koenigs [12] (see also [17, Section 6.1 ]), says that the point spectrum σp(Cϕ) of
Cϕ is a subset of the set {(ϕ′(0))n : n = 1, 2, 3, . . . }∪{1}. The aforementioned set
is known to be a subset of σ(Cϕ) for any symbol ϕ fixing the origin [8, Proposition
7.32]. These considerations combined with (9) and (10) end the proof. �

To our knowledge, descriptions of spectra for composition operators induced by
symbols fixing a point are known in the following cases: (a) the case of compact
composition operators [4] (see also [17, Section 6.2]), (b) the case of composition
operators whose non–automorphic symbols fix a point and are extendable by
analyticity to an open neighborhood of U [11] (see also [8, Theorem 7.36]), (c) the
case of composition operators with non–automorphic, univalent symbol fixing a
point [7] (see also [8, Theorem 7.30]), and (d) the case of composition operators
whose symbols are inner maps fixing a point [8, Section 7.8]. In the interesting
case when ϕ is a non–inner symbol inducing a noncompact composition operator
Cϕ, Theorem 2.7 is rather complementary to the aforementioned results. Indeed,
the only known example of maps which are analytic on a neighborhood of U, leave
U invariant, and are symbols with orthogonal powers is that of finite Blaschke
products fixing the origin [1]. On the other hand, the only univalent symbols with
orthogonal powers are the constant multiples of z [2].

3. Final remarks

In this section we show that some spectral properties true for composition
operators whose non–inner symbols have orthogonal powers are more general,
being valid for any composition operator whose non–inner symbol fixes a point.
First recall some known results:

Theorem 3.1 ([18, Theorem 4.1]). The analytic selfmap ϕ of U is inner if and
only if

(12) ‖Cϕ‖e =

√
1 + |ϕ(0)|
1− |ϕ(0)|

.
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Given that composition operators whose symbols fix the origin are contrac-
tions (by Littlewood’s subordination principle, [9, Theorem 1.7]), an immediate
consequence is:

Corollary 3.2. If the analytic selfmap ϕ of U is not inner and fixes the origin,
then

(13) re(Cϕ) < 1.

Relative to that, we prove:

Theorem 3.3. The inequality

(14) re(Cϕ) < 1

holds if and only if ϕ is a non–inner map fixing a point in U.

Proof. Note that, if ϕ is inner, then

(15) ‖Cnϕ‖e ≥ 1 n = 1, 2, 3, . . .

by formula (12) and the fact that the iterates of an inner function are inner
functions. Also, if ϕ is fixed point free, having Denjoy–Wolff point ω ∈ ∂U then
(15) holds as well. Indeed, an immediate consequence of [6, (3.1)] is

(16) ‖Cϕ‖e ≥
1√
ϕ′(ω)

.

The angular derivative at the Denjoy–Wolff point is a positive number, less than
or equal to 1. This and the fact that each iterate of ϕ has the same Denjoy–Wolff
point, namely ω, imply that (15) must hold. The consequence is that re(Cϕ) ≥ 1

(since re(Cϕ) = limn→+∞ n

√
‖Cnϕ‖e), for all analytic selfmaps ϕ of U except the

non-inner ones fixing a point. As we noted in Corollary 3.2, if ϕ is not inner and
fixes the origin, then (14) holds. In case ϕ is not inner and fixes p ∈ U \ {0}, let
αp(z) = (p − z)/(1 − pz) and note that this is a selfinverse disk automorphism
inducing the operator similarity

(17) Cαp
CϕCαp

= Cψ

where ψ = αp ◦ ϕ ◦ αp. Visibly ψ is non–inner (since ϕ is not inner), and fixes 0.
Thus re(Cψ) = re(Cϕ) < 1. �
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The existence of a fixed point in the case of symbols inducing compact com-
position operators, was originally proved by Caughran and Schwartz [4]. That
result was eventually extended to Riesz composition operators by Bourdon and
Shapiro [3]. Theorem 3.3 is visibly an extension of those results.

Let us recall another known fact:

Theorem 3.4 ([18, Theorem 5.1]). Let ϕ be an analytic selfmap of U that fixes
the origin. Then ‖Cϕ|zH2‖ = 1 if and only if ϕ is inner.

Based on the theorem above, one can prove the following spectral property.

Proposition 3.5. Composition operators Cϕ induced by non-inner symbols ϕ

fixing a point p ∈ U have disconnected spectra contained in the closed unit disk.
More exactly, for each such operator, there is some 0 ≤ r < 1 so that

(18) {0, 1} ⊆ σ(Cϕ) ⊆ rU ∪ {1}.

For all non–automorphic symbols fixing a point in U, 1 is an eigenvalue of mul-
tiplicity 1 of both Cϕ and C∗ϕ.

Proof. Clearly {0, 1} ⊆ σ(Cϕ) since Cϕ is non–invertible and any composition
operator satisfies Cϕ1 = 1. If ϕ(0) = 0 then it is straightforward to see that
C∗ϕ1 = 1, hence the subspaces C and zH2 are reducing subspaces of Cϕ, for which
reason, σ(Cϕ) = σ(Cϕ|zH2) ∪ {1}. Thus Cϕ satisfies (18) with r = ‖Cϕ|zH2‖
and 0 < r < 1, by Theorem 3.4. By relation (17), any composition operator
whose symbol is non-inner and fixes a point in U is similar to a composition op-
erator induced by a non-inner selfmap of U fixing the origin. Thus (18) holds
in general, for all composition operators with non-inner symbol fixing a point
in U. The multiplicity of the eigenvalue 1 is 1. Indeed, if ϕ(0) = 0, then
‖(Cϕ|zH2)n‖ = ‖(Cϕ|zH2)∗n‖ → 0. Thus C is the eigenspace associated to 1
in both the case of Cϕ and C∗ϕ. Given the operator similarity (17), the same
remains true if the fixed point is not the origin. If ϕ is inner non–automorphic,
the fact that the multiplicity of 1 is 1 for both Cϕ and C∗ϕ is a consequence of
the Wold decomposition of composition isometries. Indeed, forward shifts have
no eigenvalues and contractions have the same invariant vectors as their adjoints.
These facts, combine as above with the operator similarity (17) to prove that the
multiplicity of the eigenvalue 1 is 1 in the case of an arbitrary non-automorphic,
inner symbol with a fixed point. �

In Koenigs’s theorem ([12] or [17, Section 6.1]) it is proved that the multiplicity
of the eigenvalue 1 is 1 if ϕ′(p) 6= 0 and ϕ is not a conformal automorphism (where
p is the fixed point of ϕ). According to Proposition 3.5, the restriction ϕ′(p) 6= 0
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is unnecessary. In the particular case of a composition operator whose symbol
has orthogonal powers, the quantity r = ‖Cϕ|zH2‖ in the proof above can be
calculated with the formula ‖Cϕ|zH2‖ = ‖ϕ‖, an equality very easy to establish,
given that

√
C∗ϕCϕ is the diagonal operator with diagonal entries {‖ϕ‖n}. This

is a particular case of [13, Theorem 7]. We also refer the reader to [13] for an
alternative short proof of Theorem 3.4 in the current paper.

We have already described and used the Wold decomposition H2 = C⊕zH2 of
a non–unitary composition isometry as found by Nordgren in [14]. Isometries are
particular contractions and forward shifts are particular completely non–unitary
contractions, that is contractions whose restrictions to any nonzero reducing sub-
space are not unitary. Actually, any Hilbert–space contraction has a “Wold de-
composition” (sometimes called the canonical decomposition of a Hilbert–space
contraction). This means that there is a unique representation of the whole space
as the direct sum of two reducing subspaces, so that the restriction of the given
contraction to the first subspace is unitary, whereas its restriction to the second
is completely non–unitary [20, Theorem 3.2]. Does Nordgren’s representation of
the Wold decomposition of a non-unitary composition isometry extend to any
non–unitary composition contraction? The answer is affirmative.

Proposition 3.6. The canonical decomposition of a non–unitary composition
contraction is H2 = C⊕ zH2.

Proof. We already noted that composition operators whose symbols fix the
origin are contractions. On the other hand, the well–known estimate
1/
√

1− |ϕ(0)|2 ≤ ‖Cϕ‖, valid for the norm of any composition operator, shows
that the composition contractions are exactly the composition operators whose
symbols fix the origin. We need to address only the case when ϕ is not inner.
We already noted above that the subspace C is reducing for Cϕ and Cϕ|C is the
identity on C, a unitary operator, in the case of any composition contraction. On
the other hand, if f ∈ zH2 and f 6= 0, then, by Theorem 3.4, ‖Cϕf‖ < ‖f‖, which
proves that the restriction of Cϕ to any nonzero subspace of zH2 is non–isometric,
hence Cϕ|zH2 is a completely non–unitary contraction. Given the uniqueness of
the canonical decomposition, the proof is over. �

As a concluding comment, we note that any composition operator whose sym-
bol has a fixed point p ∈ U and is conjugated via (17) to a symbol with orthogo-
nal powers, has spectrum and essential spectrum determined by our main results,
Theorems 2.6 and 2.7.
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