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Bots and Humans on Social Media
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University of Nebraska at Omaha

ABSTRACT
Social networks are an important part of today’s life. They
are used for entertainment, getting the news, advertisements,
and branding for businesses and individuals alike. Research
shows that automated accounts, also known as bots, con-
tribute to the content spread on social media allowing the
the environment pollution and public opinion manipulation.
This research aims at investigating bots’ behavior on Twitter
and examine how different and similar they are compared to
humans. I will investigate their underlying network, whether
it is an information network or social network. In the second
step, I attempt to answer whether they follow the structure
of scale-free networks. In the third step, their conformity to
the law of naturally-occurring systems. Finally, I study their
graphical attributes and perform a comparative analysis with
other existing algorithms and platforms. This research gives
insights into the better understanding of behavior of bots
and their activities leading to bot detection improvement.
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1 INTRODUCTION
Social networks make the world smaller. It makes news dis-
semination and communication faster. However, all technolo-
gies have their own demerits and bring about challenges.
Using social media to influence public opinion is a growing
trend. The reason is that businesses use social media as a
podium to introduce their services and products, politicians
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and celebrities use social media to build their public image,
and people are exposed to a huge volume of data.

Social bots are automated accounts running on social me-
dia. Cyborgs are another type of human-assisted automated
accounts. Not all social bots are malicious [1]. However, the
fact that they impersonate themselves and misrepresent their
identity makes them “unwanted minions”. Their unknown
identity can lead to unexpected or malicious operations.
Therefore, there is a need for detecting and understanding
them.

Social networks have made the world smaller and people
closer to each other. Services like Twitter, Facebook, and
Instagram have provided a ubiquitous service to connect
people. There are studies showing different characteristics of
humans and bots in terms of tweeting, replying, and befriend-
ing people [5] [6]. Some studies explored bot detection and
improvement of machine learning algorithms for detection
of bots [7][8], and a huge body of research is dedicated to use
of bots on public opinion manipulation [9][10][11]. However,
there is still lack of knowledge about the structure of bots’
networks. Knowing the bots’ underlying structure helps in
better understanding of bots, improvement of their detection,
and defining the nature of their activities. It also contributes
to the field of cyber security such that social bots play a
major role in spreading misinformation and manipulating
public opinion.
In this work, I will investigate the graphical underlying

structure of bots’ activities to gain insights into the nature
of bots and their activities that helps improve their detec-
tion. It also contributes to the field of cyber security since
social bots play a major role in spreading misinformation and
manipulating public opinion. To this end, first I investigate
whether their underlying network is an information network
or social network. In the second step, I attempt to answer
whether they follow the structure of scale-free networks.
In the third step, I will test if their activities deviate from
the law of naturally-occurring system. Finally, I study their
graphical attributes and perform a comparative analysis with
other existing algorithms and platforms [2][4].

2 RELATEDWORK
Despite the fact that the fake news detection and platforms is
grown widely, the research in social bots is not very mature.
The first paper published on social bots was in 2011 by Bosh-
maf regarding the infiltration of social networks by social
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bots [12]. According to Adewole and colleagues [2], the ma-
jority of research in social bots is on machine learning (68%),
28% used graph techniques, and only 4% focused on crowd
sourcing. Many papers on machine learning use supervised
machine learning including Naïve Bayes [13], Meta-based
[14], SVM [15], and Neural Network [20]. However, unsuper-
vised machine learning has been used including hierarchical
[15], partitional [17], PCA-based [16], Stream-based [18], and
correlated pairwise similarity [2].

Additionally, a huge body of literature in this area is on use
of social bots in public opinion manipulation and elections.
One of themajor subcategories of social bots are political bots
[19]. Political bots were used for the first time during the 2010
Massachusetts Special Election in the United States, in which
a small network of automated accounts was used to create
a campaign against one of the candidates [20]. Researchers
found that social bots have also been used to distort the
political mobilization in Syria [21] [22] and Mexico [23].

3 RESEARCH PLAN
This work tries to investigate the underlying structure of so-
cial bots’ networks in four steps. First, I will examine whether
the network ties between bots follow the structure of social
networks or information networks. This clarifies how bots’
underlying network arises and evolves, which in turn helps
us better identify, classify, and understand their purposes.
To this end, we first need to define the social network and
information network. Although there are many definitions
of a social network, here we characterize a social network by
having degree assortativity, small shortest path lengths, large
connected components, high clustering coefficients, and high
degree of reciprocity. We also define an information network
as a structure in which the main goal is content dissemina-
tion, leading to large vertex degrees, lack of reciprocity, and
large two-hop neighborhoods [24] [25]. Therefore, we try to
answer this question, “Is bots’ network a social network or
an information network?”.

Second, the topology of bots’ follower networks is of great
importance. The topology of large complex networks falls
into three categories: random, small-world, and scale-free.
Three network statistics are used to determine their topol-
ogy: average path length, average clustering coefficient, and
degree distribution [26]. Adhering to scale-free structure is
another contributing determinant of real-world networks.
We will examine the bots’ networks statistics to see their
underlying structure by measuring the goodness-of-fit of the
network statistics. To test the scale free structure, we will
look at the degree distributions and their power-tail shape
and utilize the Clauset test [27]. In this test, the null hypothe-
sis is that the distribution is power-tailed, and the alternative
hypothesis is a non-power-law distribution, leading to this
question, “Is bots’ networks a scale-free network?”.

Third, we will examine how adhering to fraudulent laws
can helpwith detecting bots. In otherwords, knowingwhether
they follow the laws of digital fraud such as Benford’s Law is
valuable to better understand their attributes. According to
Benford’s Law in normal activities on social networks 30% of
the time numbers begin with a one (1) and they are likely to
happen six times more than numbers beginning with a nine
[28]. This law has many applications in naturally-occurring
systems like natural sciences [29], stock market [3], vali-
dating survey data [30], and religions [31]. It is used as an
auditing tool in digital forensics areas like financing [32], and
accounting [33]. We are interested in finding out whether
automated accounts follow naturally-occurring laws and
show the same pattern or they deviate and can be detectable
through applying these laws.
Finally, we will run machine learning algorithms to see

the performance of graphical features in determining bots.
Features will include in-degree, out-degree, clustering co-
efficient, pagerank, propflow, jaccard coefficient, and Katz
[36]. Then, we will compare the performance of running
algorithms with existing work [7] [2] [34][1].

4 DATA
To achieve the goals mentioned, a follower (or communica-
tion) graph of humans and bots is needed. Because calculat-
ing the graphical features needs a collective connection of
bots and humans, we need to scrape Twitter over trending
topics. Then, the data need to be annotated by existing tools
like Debot [2], BotorNot [4], Botometer, using R package
tweetbobornot, using Benford’s law and also qualitatively
to ensure the quality. Once the annotated graph is ready,
we can extract the graphical features, calculate the statistics,
and compare with real human accounts.
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