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Estimating State-Industry Employment,
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ABSTRACT
We describe a method to construct an industry-by-state repeated cross-section of
employment at the most disaggregated level publicly available, covering 1963–2012.
Nondisclosed data are estimated with a procedure using the hierarchical information
structure. To illustrate the usefulness of the procedure, the resulting estimated data
are tested to determine if industrial localisation of the processed food sector has
changed over the last fifty years in the United States. Our findings suggest it has
not changed systemically despite variation in levels of localisation within industries.
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1. Introduction

The purpose of this paper is to describe a method for assembling a complete re-
peated cross-section of employment at the finest level of detail publicly provided, the
state-industry level. We compile this repeated cross-section from public releases of the
Census of Manufactures every five years from 1963 to 2012. Because of the fineness
of the data at the state-industry level, many of the observations are either not dis-
closed or obfuscated by the Census Bureau. Thus we estimate those entries. This paper
describes our estimation algorithm.

We expect that our estimation procedure will prove useful to the many scientists and
researchers confronted with datasets containing nondisclosed entries. As an illustration
of the usefulness of our method, we apply the resulting estimated data to the question
of whether industrial localisation is changing over time in the United States. Industrial
localisation occurs when industrial employment is geographically concentrated beyond
the level observed in general economic activity, or in our case, overall manufacturing
employment. Thus to study changes in industrial localisation, we need a repeated
cross-section of employment at the state-industry level because that level is detailed
enough for us to assess 1) if the level of localisation is changing within industries and
2) if the distribution of the level of localisation across industries is changing.

CONTACT Ben O Smith: bosmith@unomaha.edu



We measure the localisation of each industry in each time period using the Ellison
and Glaeser (1997, EG) index. Compared to alternative measures such as the location
quotient, the Gini index, or the Hoover index (1936), the EG measure is the appropri-
ate measure to use when the data are highly disaggregated and some industries have
few plants. Compared to measures such as that in Duranton and Overman (2005), the
EG measure is preferred because it does not require the address of each plant or the
distance between plants. That amount of information is too burdensome to acquire on
a large scale.

We examine the processed food and kindred products industries to see if industrial
localisation is changing over time individually and in aggregate. Food and kindred
products is an ideal sector to study because it is a large and important sector in U.S.
manufacturing, accounting for almost 10% of manufacturing employment. Therefore
it is big enough to yield results that are not random and small enough that it does not
define the manufacturing employment distribution. Furthermore, because one of the
main inputs is agricultural output that is largely fixed in place by the soil and land,
any changes to the overall localisation of the sector is unlikely to be due to changes in
the location of its inputs.

Though localisation is known to occur widely in the United States (Holmes and
Stevens 2004), it is not currently known if industrial localisation is changing over
time. Krenz (2012) finds evidence of increased localisation in the European Union
from 1970 to 2005 and Brakman, Garretsen, and Zhao (Forthcoming) find evidence
of increasing industrial localisation in China from 2002 to 2008. Evidence from Kim
(1995), however, suggests localisation may be decreasing in the United States from
the 1940s through the 1980s. In particular, Kim shows the locational Hoover index of
the U.S. processed food industry decreased from 0.196 in 1967 to 0.153 in 1987. This
evidence, however, is not definitive: Kim uses aggregate sectoral data that could mask
the trend at the industry level as well as regional geographic data. (Kim and Margo
(2004) survey the literature on changes in economic geography in the United States
over time, but do not discuss changes in localisation.)

To determine if localisation is changing at the level of each individual industry within
the processed food sector, for each industry-year observation of localisation value, we
use the Cassey and Smith (2014) procedure to create a 95% confidence interval. We
then examine if there are statistically significant changes within an industry over time.
To determine if localisation is changing at the level of the processed food sector, we
construct the distribution of EG statistics for each time period and compare.

We find there are statistically significant changes in the levels of localisation within
industries over time, but that the overall distribution of industrial localisation do not
differ statistically from one another. Thus there is no systemic pattern of change to
the distribution of localisation levels of processed food and kindred product industries
in the United States since the 1960s. That result contrasts with the claims of Kim
(1995) that localisation is decreasing in the U.S. processed food sector recently.

2. Measuring and Testing for Localisation

The Ellison and Glaeser (1997) measure for localisation is a ratio of the share of
industry employment in a U.S state to the share of overall manufacturing employment
in that state adjusted to account for the employment distribution of the plants in that
industry. The advantage of the EG statistic over measures such as the locational Gini
or Hoover coefficient is that it controls for the industrial organisation of each industry.
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That is, the EG measure accounts for when there are a small number of plants or there
is a small number of large plants in an industry. Thus the EG measure is best used
on highly disaggregated industry-level data.2 Unlike continuous-distance measures of
localisation such as Duranton and Overman (2005) and Billings and Johnson (2016),
the data requirements for the EG measure are met in principle by the published
information available in the Census of Manufactures. In particular, the public data
does not include the address of each plant, which is needed to calculate the distance
between plants in the Duranton and Overman or Billings and Johnson localisation
measures.3 The EG statistic is a particularly useful measure of localisation because its
values can be compared across industries, time, and levels of geographic aggregation.

The Ellison and Glaeser (1997) index for localisation requires three data inputs:

(1) for each U.S. state i, the state share of total manufacturing employment in year
t, xit,

(2) for each U.S. state i, the state share of industry k employment in year t, sikt,
and

(3) the plant-Herfindahl for industry k in year t, Hkt =
∑Nkt

j=1 z
2
jt, where Nkt is the

number of plants in industry k in year t, and zjt is plant j’s share of industry k
employment in year t.

The EG statistic for industry k in year t:

EGkt =

Gkt︷ ︸︸ ︷
51∑
i=1

(sikt − xit)2−(1−
∑

i x
2
it)Hkt

(1−
∑

i x
2
it)(1−Hkt)

.

The summation in the numerator goes to 51 since we consider the 50 U.S states and
the District of Columbia. Gkt =

∑51
i=1(sikt − xit)2 is a raw geographic concentration

measure unadjusted by distribution of plant employment in the industry.
Ellison and Glaeser prove that zero is the expected value of the EG statistic if

there is no natural, economic, or political force for localisation regardless of industry
parameters. The larger the statistic, the greater the indication of industrial localisa-
tion. Though the mean of the EG statistic does not depend on industry parameters,
the distribution of the EG statistic does. Therefore, Cassey and Smith (2014) develop
a procedure to test if an industry with a positive EG value is localised statistically.
That test uses information about the industry to simulate 100,000 random EG data
points and then compares the actual industry EG to a critical value associated with a
significance level of 5%. The data required to perform this test are state employment
shares, the number of plants in the industry, and the industry plant-Herfindahl. This
method requires an implicit assumption that every industry has a log-normal plant

2Kim’s (1995) findings are obtained using the Hoover index (a measure similar to the Gini coefficient except
using absolute difference instead of squared difference) on sector level data at a regional, rather than state,

geography. Thus he avoids the issue of small plant counts that the EG measure controls for.
3The improvement in measuring localisation with continuous distance measures over the EG statistic is that

continuous distance measures avoid the modifiable areal unit problem (MAUP) of which the EG statistic is
subject. That is, though the EG measure is robust to the fineness of the partition of geographic space, it is not
robust to moving or modifying the borders of that partition. The cost in terms of avoiding the MAUP is the

data requirement that the distance between each establishment must be known. Because we compare the EG
statistic using the same geographic partition (U.S. States) over time, the MAUP is not an important problem

in our context in that we care about changes in the localisation measure rather than the measurement itself
and U.S. state boundaries have not changed since the 1960s.
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employment distribution, though the parameters of that distribution are allowed to
differ.

For interpretation, the larger the EG measure is, the more the industry is localised
relative to the geographic distribution of manufacturing employment. Large but neg-
ative values indicate an industry is diffused in comparison to manufacturing employ-
ment. It is, however, not straightforward to compare the EG values across industries.
That is because though the expected value of the EG measure is zero in the absence
of agglomeration forces, the distribution of the EG stat for a given industry depends
on industry parameters. Thus an EG value of 0.005 may be “large” for one industry
but “small” for another. Hence we apply the Cassey and Smith (2014) procedure on
each EG value. The Cassey and Smith procedure calculates the likelihood that the
observed EG value could have arisen purely from chance. In this way, we asses the
strength of the EG measure across industries.

3. Estimating Nondisclosed Observations

We study the highly disaggregated industries falling under Food and Kindred Prod-
ucts, Standard Industrial Classification (SIC) 20 from 1963–1992, and Food Manufac-
turing, North American Industrial Classification System (NAICS) 311 from 1997–2012.
The industries considered include meat packing; poultry slaughtering and processing;
dairy products; canned or frozen fruits and vegetables; beverages, liquors, and sodas;
and processed seafood.

All of the information required to calculate the EG index are available in the U.S.
Census Bureau’s Census of Manufactures, which is released every five years. We use
every release from 1963 to 2012. We begin our sample with 1963 as that release was
the first to use administrative records to assist with identifying very small firms. The
SIC and NAICS are hierarchical industrial categorisations in which broad sector labels
are given in the higher, super-set level and then narrows progressively to the sub-set
industrial level. We consider SIC 20 and NAICS 311 to be the comparable sectoral
data. However, due to the difficulty in mapping SIC codes to their NAICS counterparts
at our level of disaggregation, we perform our analysis between all SIC and NAICS
years but not to each other.

We consider the industrial level to be the most disaggregated publicly available:
4-digit SIC and 6-digit NAICS. (For convenience, we will refer to the SIC levels of
2-digit as sector, 3-digit as subsector, and 4-digit as industry when discussing both
data given by SIC and the corresponding NAICS 3-digit, 4-digit, and 6-digit levels.)
The Census Bureau modified the names and inclusions of each category over time.
Of course the major revision comes in 1997 with the end of SIC and the beginning
of NAICS. Other major revisions occurred in 1967, 1972, and 1987. Minor revisions
occur each release. We use the Census Bureau definitions given in each year, which is
why we consider our data a repeated cross-section rather than a panel.

The “Geographic Area Statistics” of the Census of Manufactures gives the total
manufacturing employment of each state, allowing us to calculate xit. It also contains
data on the national and state employment of each industry at the industry level. This
allows us to calculate sikt. However, due to redactions to prevent the identification
of individual plant operations, the Census Bureau does not report the employment
total in all state-industry cases. There are three restrictions on the reported data.
First, there are no observations for a state-industry in which employment does not
reach a threshold. That threshold changes from release to release. For those state-
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Table 1. Information Availability By Type and Year

SIC 20 4-digit 1963 1967 1972 1977 1982 1987 1992
(percent of observations)

Provided Data 68 97 95 94 95 97 95
– Numeric value 44 36 28 32 30 25 32

– Bin and range 24 61 67 62 65 73 62

Single missing value fill 1 1 1 1 1 1 1
Parent code weight fill 31 2 4 5 4 2 4

NAICS 311 6-digit 1997 2002 2007 2012
(percent of observations)

Provided Data 84 86 86 85
– Numeric value 38 38 38 37

– Bin and range 46 48 48 48

Single missing value fill 15 14 14 13
Parent code weight fill 1 0 0 2

The percent of cells filled by procedure. For the cases when a numeric value was not provided, an employment
bin with a range of values was usually given or could be applied. Other observations were calculated by
virtue of being a single missing value with a populated parent observation. In cases where no range was
provided, weights were used from the parent code.

industries whose employment level exceeds the threshold and thus are reported, the
employment datum is either reported as the numeric value rounded to the nearest
hundred or assigned to a bin with a range of employments. Table 1 shows the percent
of observations provided by the Census Bureau by each type and year. The numerical
value is directly reported for about 30% of observations for the SIC years and 38%
for the NAICS years. Data provided in the bin and range format account for the vast
majority of the remaining observations, or about 66% in the SIC years and just under
50% in the NAICS years. No information on the remaining observations is disclosed.
We categorise those observations by whether we calculate the numeric value by virtue
of it being a single missing entry with a populated parent observation or by applying
the share from a parent observation as a weight, as described below.

For the state-industry-employment entries that are either provided as a bin and
range or are not disclosed at all, we create a procedure to estimate their precise numeric
value. The estimation procedure works from the bottom up first and then back down.
From the bottom up, if there is an industry in which all state-employment observations
are reported except for one, then we take the sum of industry employments from the
other 51 “states” and subtract from the reported total industry employment in the
parent level. Likewise if there is a state in which all state-employment observations
are reported except for one industry, then we take the sum of industry employments
from the other industries and subtract from the reported total state employment in
the parent level. These are the two adding up constraints: one for employment across
states within an industry and the other for employment across industries within a
state.

Figure 1 shows the first steps in the “bottom-up” procedure. In the figure, the
dashed areas were initially nondisclosed. The entry for State 4 Industry A can be
filled in using the Industry adding up constraint: 600− (100 + 200 + 200) = 100. The
entry for State 2 Industry C can be filled in using the State adding up constraint:
1810 − (200 − 1500 − 100) = 10. Once those entries are complete, then the entry for
State 4 Industry C can be filled in even though it could not be filled in originally.
Though there are not many observations we can complete in the SIC years using this
“single missing value fill” method, as table 1 shows, we can fill in as many as 15%
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Industry A Industry B Industry C Industry D Total State
State 1
State 2
State 3
State 4
Total Ind.

100
200
200
100
600

1000
1500
1700
1000
5200

10
10

1000
20

1040

200
100
500
100
900

3400

1310
1810

1220

Figure 1. The estimation “bottom up” procedure. Areas enclosed with a dashed line are initially nondis-
closed. The State 2 Industry C observation and State 4 Industry A observation are filled in using one of the

adding up constraints. That allows State 4 Industry C to be filled in next.

Industry 
Employment 

Constraint

State 1
State 2
State 3
State 4
Total

300
249
49

202
800

100-249
0-49

None

20000

110,000

0.00
0.00|0.66|0.44

Parent
Employment 

% of 
Unallocated 

451*.66=298

500*.33=165

202*1.0=202

40000
30000
20000

0.00|0.00|0.33
1.00|0.33|0.22

Figure 2. The estimation “top down” procedure. Dashed areas are initially nondisclosed. The state share of

parent employment for nondisclosed entries is recalculated each step.

percent of observations in the NAICS years.
Once all nondisclosed entries that can be filled in using one of the two adding up

constraints have been entered, we then move up and look if there is a nondisclosed
entry at the parent level. This would have been the case in figure 1 if State 2 Industry
A had also been nondisclosed. If there is a single nondisclosed entry at the state-
subsector level we can fill in the observation value using the state or industry total at
the state-sector level and the adding up constraint. Finally, we move up to the top at
the state-sector level—where there are no nondisclosed entries.

With all state-sector entries filled, the estimation procedure works its way down to
the state-subsector level. It is sometimes possible to tighten the Census Bureau bins
by seeing how the state total compares to the industry sum when either the minimum
amount of employment in each bin is assigned or the maximum amount is assigned.
Even if it is not possible to tighten the employment bins, we can estimate the nondis-
closed observations recursively. Beginning with the smallest employment bin, we use
the relative employment ratio from the parent category of the states with nondisclosed
observations only to fill in the blanks. We then update the relative employment ratio
from the parent category because one of the nondisclosed observations has been filled
in and move on to the next largest bin size. We start with the smallest bin because
there is the least amount of uncertainty and thus by assigning unallocated employment
we reduce the uncertainty of the larger bins. All remaining employment is assigned to
the top-coded entries. At the end of the process we recursively check if our assignment
can be improved. Once all the sub-sector level entries are filled in, we move down to
the industry level entries, using the sub-sector data as the parent value adding up
constraints. This procedure continues until no other cells can be assigned.

Figure 2 illustrates how the “top down” procedure works. From the difference in the
sum of industry employment and the U.S. total, there are 500 unallocated employees
across States 2, 3, and 4 within the industry. We know there are 40,000 employees
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in State 2 in the parent subsector level that includes this industry and many others.
Of the three states with unallocated industry employment, the parent share of State
2 is 40, 000/(40, 000 + 30, 000 + 20, 000) = 44%. We start with the state that has
the smallest bin range. In figure 2 that is State 3, whose bin only has a range of 50
employees compared to 150 for State 2 and infinite for State 4. We apply State 3’s 33%
share of parent employment to the 500 unallocated employees from the industry. As
500× 0.33 = 165, the share runs up against the top of State 3’s bin constraint. Hence
we enter the maximum value in the bin, 49 employees. We then update the share of
unallocated workers among the two remaining states so that State 2 has a share of
40, 000/(40, 000 + 20, 000) = 66%. That share for State 2 is applied to the remaining
451 unallocated employees, 451 × 0.66 = 297.66, which is above the bin constraint.
Hence 249 is recorded as the entry and the remaining 202 employees are assigned to
State 4.

For the state-industry observations that we cannot estimate using our procedure, we
take the difference between national employment and the sum of the states including
our estimated values and assign a value by using the overall state relative employment.
Other than 1963, our procedure gives usable data or estimates for at least 96% of
observations. Thus our application of the parent code weight fill is less than 4% of
observations.

For some years, the Census Bureau releases the firm-Herfindhal for each industry,
which includes only up to the top 50 largest firms. However, the firm-Herfindahl is con-
ceptually different from the plant-Herfindahl when there are multi-plant firms. Thus
we do not use the Herfindahl reported by the Census Bureau. Instead we calculate the
Herfindahl in (2) from the data in the “Statistics for Industry Groups and Industries”
of the Census of Manufactures. Based on its employment, the Census Bureau assigns
each establishment into one of ten bins. The bins, which do not change over time,
are 1–4, 5–9, 10–19, 20–49, 50–99, 100–249, 250–499, 500–999, 1000–2499, and 2500+
employees. For each industry, the Census Bureau reports the total employment of each
bin, which is made up of all the plants assigned to that bin.

From this, we estimate the plant-Herfindahl using the Schmalensee (1977) method.
This method takes the employment total for each bin and assigns that number to
each value in the bin range so that employment shares are equal and backs out the
plant count to allow for the adding up constraint (p.187). For example, if there are
120 employees for the 1–4 bin, the method says to assign 30 employees to plants with
1 worker and thus implying 30 such plants, 30 employees to plants with 2 workers
implying 15 such plants, and so on. Then move on to the 5–9 bin and continue up.
The linear distribution within the 1000–2499 bin is extended to cover the open-ended
top-code bin. This gives us an estimate for the number of plants in each industry
nationwide in each year Nkt as well as the employment in each of those plants. From
that we can calculate the plant-Herfindahl, Hkt.

As part of this paper, we provide the code for our estimation procedure and the
data for our example sector of processed foods. The code and data are obtainable in
the accompanying online materials as well as https://goo.gl/nK1fqs. It is hoped that
the program and data will be used by other scientists and researchers. The appendix
contains further detail on how our program includes checks and balances to ensure
accuracy and prevent mistakes in the estimation, in particular in preventing errors in
estimates based on other estimated data.
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4. Assessing the Quality of the Estimation Procedure

We compare our filing procedure to one common filling procedure used: the midpoint
procedure. With the midpoint procedure, the practitioner uses the median of the range
of values for the bin indicated in the entry cell provided by the Census Bureau as the
estimated value.

To compare our procedure to the midpoint procedure, we simulated the structure
of each of the forty-three 2012 NAICS-311 industries 250 times using the number of
plants and mean plant size as the parameters for the underlying characteristics of
each industry. For each industry k, we generate Nk random plants from a lognormal
distribution with parameters (µk, σk). We parameterise µk so that the expected median
of the distribution is equal to the mean employment of the Census Bureau provided
data for industry k. Given the underlying σk is unknown in the data, we conduct our
simulation using multiple plausible values of σk: 1.00, 0.50, and 0.25. Each of the Nk

plants randomly drawn from the industry-specific distribution is then probabilistically
assigned a geographic location based on the share of state employment. Once these Nk

plants of different sizes are located, we sum the employment of the plants to generate
state and national level employment tables similar to those provided by the Census
Bureau. With these “complete” simulated data, we calculate the “true” EG index
value for each of the simulated industries. We then apply a censoring procedure to the
simulated data to obfuscate the data in a way that we believe represents the Census
Bureau’s own nondisclosure procedure.

The Census Bureau’s nondisclosure procedure is not publicly known. Clearly, how-
ever, one of the goals of the Census Bureau nondisclosure procedure is to not reveal
the specific employment of any individual plant. Plant-specific employment could be
deduced if either there are a few plants in a given employment state-industry cell or
a large share of employment from a single employer in a given cell. Thus, our cen-
soring method calculates a plant Herfindahl index Hik for each state-industry level
from the employment of plants in that state-industry pair. (We similarly calculate a
plant Herfindahl index for each industry employment cell by establishment size in the
national data). If the calculated Hik is above a threshold, then we do not disclose that
simulated data entry, but rather report a bin entry.4

To establish the H cut-off for nondisclosure, we search across all possible thresholds
and choose the one that best matches the actual nondisclosed entries for the 2012
data. We find an H threshold of 0.25 best matches the set of nondisclosed entries in
the actual 2012 data. At an H cut-off of 0.25 and σ = 1.00, 44% of our simulated
data are obfuscated as a bin-and-range entry, whereas it is 48% in the actual data.
Furthermore, not only were we able to closely recreate the number of nondisclosed
entries with our simulated data, we were also able to recreate that all of the possible
bin ranges were used in the obfuscation, just as in the actual data. The H cut-off at
0.25 also works best when σ = 0.50 and σ = 0.25.

Once we have our simulated data with nondisclosed entries, we run our estimation
procedure. After the bottom-up and top-down algorithms estimate the nondisclosed
entries, we calculate the EG index for each of the industries. Similarly, we estimate the
nondisclosed entries using the midpoint procedure and calculate a corresponding EG
index. Thus we have three EG values for each industry: one from the complete sim-
ulated data with no nondisclosed entries, one from the simulated data whose nondis-

4All of our nondisclosure edits are recorded as a bin entry as the midpoint procedure requires a range. Our

general estimation procedure, however, works with missing entries as well as bins.
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closed entries were estimated with our procedure, and one from the simulated data
whose nondisclosed entries were estimated with the midpoint procedure.

We assess if our estimation procedure outperforms the midpoint procedure by cal-
culating the percent difference between the EG value from each procedure and the
“true” simulated EG value. We find that our estimate procedure outperforms the mid-
point procedure. When σ = 1.00, our procedure is 40% closer to the “true” simulated
EG value at the median. (Our procedure is 35% closer on average.) When σ = 0.50,
our procedure is 30% more accurate at the median, and when σ = 0.25, our procedure
is about 40% more accurate at the median than the midpoint procedure. Furthermore,
for σ = 1.00, our procedure results in 20% fewer EG values that are more than 10%
away from the “true” simulated EG value than the midpoint procedure. Thus we be-
lieve our estimation procedure results in a strong improvement in accuracy over the
midpoint estimation procedure.

5. Results for the Processed Food Sector

As an illustration of why having a complete repeated cross-section of state-industry
employment data is useful, we calculate the EG statistic for each of the disaggregated
industries in processed food and kindred products sector from 1963 through 2012 using
the industry description and code at the time the data was released. These results may
be seen in tables 2 and 3. A ∗ indicates when the level of localisation is statistically
significant at the 5% level and a � indicates when the level of localisation is significantly
different from the previous period at the 5% level.

One issue with the Cassey and Smith (2014) test is that when the distribution of
plant employment sizes is not known, there is a range of critical values that depends on
the parameters of the unknown distribution. A conservative or strict way to apply the
test is to require that the EG measure for the industry is statistically significant for all
plausible parameters of the plant employment distribution. We apply this conservative
approach in our results.

5.1. Within Industry Results

Consider the share of processed food industries that are statistically localised over time
in tables 2 and 3. Despite our strict application of the Cassey and Smith (2014) test,
tables 2 and 3 show localisation is common in the industries making up the processed
food sector. In each time period cross-section, at least 60% of industries have levels of
localisation that are statistically different from zero with 95% confidence. The percent
of localised industries fluctuates over time, but there is no trend.

Nonetheless, we see some individual industries experience dramatic changes in lo-
calisation. There are 32 SIC-4 industries in the processed food and kindred products
group whose data are present all eight years. Of those 32, 17 (44%) change from levels
of localisation that are statistically significant to not statistically significant (or vice
versa) at least once in the eight time periods. Eleven (34%) change more than once.
Similarly, there are 37 NAICS-6 industries in the processed food and kindred products
group available each applicable year. Of those, 16 (48%) have levels of localisation
that have changed from statistically significant to not statistically significant (or vice
versa). Four have changed more than once.

More formally, we compare the change in EG values year to year to the most
conservative Cassey and Smith critical value given the the number of plants in the
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Table 2. EG Values for Food Processing Industries from 1963–1992

Description SIC 1963 1967 1972 1977 1982 1987 1992

Meat Packing Plants† 2011 .033∗ .033∗ .037∗ .031∗� .037∗� .039∗ .050∗�

Meat Processing Plants?† 2013 .011∗ .006∗� .007∗ .004∗� .004∗ .007∗ .009∗�

Poultry Dressing Plants 2015 .039∗ .043∗� .057∗ .056∗

Poultry and Egg Processing 2016 .052∗ .048∗� .046∗

Creamery Butter 2021 .130∗ .127∗ .081∗� .078∗ .071∗ .048∗ .154∗�

Natural, Processed Cheese† 2022 .158∗ .150∗� .132∗� .145∗� .139∗� .136∗ .118∗�

Condensed and Evaporated Milk† 2023 .053∗ .038∗� .033∗ .044∗� .035∗ .045∗ .018∗�

Ice Cream and Frozen Desserts† 2024 .000 −.000 .002 .001 −.001 −.003 −.007∗

Fluid Milk 2026 .003∗ .003∗ .004∗ .001 .006∗� .007∗ −.001 �

Canned and Cured Seafoods 2031 .083∗ .077∗

Canned Specialties 2032 .009 −.029∗� −.005 −.017∗ −.015∗ −.012 −.012
Canned Fruits and Vegetables 2033 .037∗ .037∗ .046∗� .058∗� .040∗ .040∗

Dehydrated Food Products? 2034 .393∗ .216∗� .152∗� .174∗� .270∗� .269∗ .230∗�

Pickles, Sauces, Salad Dressing† 2035 .008∗ .008 .003 .010∗ .011∗ .003 .003
Fresh or Frozen Packaged Fish 2036 .064∗ .051∗�

Frozen Fruits and Vegetables† 2037 .028∗ .016∗� .039∗� .078∗� .069∗ .068∗ .058∗

Frozen Specialties 2038 −.002 −.001 −.001 .005 .003
Flour Mills?† 2041 .021∗ .016∗ .019∗ .019∗ .017∗ .111∗� .013∗�

Prepared Feeds for Animals and Fowls 2042 .014∗ .017∗�

Cereal Preparations? 2043 .212∗ −.055∗� −.055∗ .018∗� −.022 .006 .013

Rice Milling 2044 .161∗ .160∗ .146∗ .163∗ .158∗ .159∗ .155∗

Blended and Prepared Flour? 2045 −.012 −.003 .005 .047∗� −.008 � .005 .002
Wet Corn Milling 2046 −.212∗ −.002 � −.003 .085∗� .093∗ .132∗� .146∗

Dog, cat, and Other pet Food? 2047 .010 .000 .004 .006 .005
Prepared Feed, nec 2048 .020∗ .021∗ .021∗ .020∗ .017∗

Bread, and Related Products† 2051 −.000 .000 −.001 −.001 −.001 .003∗� −.000�

Biscuit, Cookies and Crackers?† 2052 .006 .010 .018∗ .017∗ .014∗ .011∗ .012∗

Raw Cane Sugar 2061 .407∗ .388∗� .267∗� .263∗ .246∗ .411∗� .156∗�

Cane Sugar Refining 2062 .193∗ .000 � .001 .001 .035∗� −.048∗� −.060∗

Beet Sugar 2063 .040∗ .033∗ .025∗ .037∗� .046∗� .017∗

Confectionery Products 2065 .035∗ .042∗ .030∗�

Chocolate and Cocoa Products 2066 .285∗ .244∗ .635∗� .092∗� .171∗�

Chewing Gum 2067 −.164∗ −.051∗� −.034 −.023∗

Confectionery Products 2071 .027∗ .030∗

Chocolate and Cocoa Products 2072 .213∗ .217∗�

Chewing Gum 2073 .161∗ .415∗

Cottonseed Oil Mills 2074 .096∗ .112∗� .113∗ .009� .122∗�

Soybean Oil Mills 2075 .019∗ .079∗� .086∗ .051∗� .089∗�

Vegetable Oil Mills, nec 2076 −.024 −.017 −.038 .043∗� −.026 �

Animal and Marine Fats and Oils 2077 .003 .005∗ .007∗ .012∗ .009∗

Shortening and Cooking Oils 2079 .010 .006 .015∗ .017 .005
Malt Beverages† 2082 .010 .011 −.011 � .006 −.011 −.003 .012
Malt 2083 .150∗ .143∗ .054∗� .103∗� .175∗� .227∗� .136∗�

Wines and Brandy? 2084 .341∗ .278∗� .341∗� .447∗� .491∗� .524∗� .572∗�

Distilled Liquor, Except Brandy 2085 .119∗ .121∗ .014 � .064∗� .089∗� .075∗ .131∗�

Bottled and Canned Soft Drinks† 2086 .006∗ .005∗ .004∗ .004∗ .004∗ .006∗� −.000 �

Flavorings?† 2087 .020∗ .019∗ .033∗� .037∗ .013∗� −.003 � .017∗�

Cottonseed Oil Mills? 2091 .109∗ .130∗� .087∗� .100∗ .131∗� .053∗� .072∗

Soybean Oil Mills? 2092 .106∗ .089∗ .046∗� .042∗� .046∗ .034∗� .082∗�

Vegetable Oil Mills, nec 2093 −.008 −.025

Animal and Marine Fats and Oils 2094 −.000 .003
Shortening and Cooking Oils? 2095 .024∗ .030∗ .059∗� .047∗ .038∗ .018∗� −.001 �

Roasted Coffee? 2096 .022∗ .026∗ .011∗ .006
Manufactured Ice† 2097 .020∗ .016∗� .016∗ .017∗ .018∗ .013∗� .002 �

Macaroni and Spaghetti 2098 .002 −.011 −.010 −.001 .001 −.018∗� −.004
Food Preparations, nec† 2099 .001 .003∗� .001 .004∗� .005∗ .010∗� .011∗

Share localised .773 .750 .660 .787 .783 .750 .667
Sectoral EG .023∗ .003∗ .003∗ .003∗ .003∗ .004∗ .005∗

Sectoral G .022 .003 .003 .003 .004 .004 .005

Notes: A “*” indicates that the industry is localised beyond randomness with 95% confidence using the most
conservative critical value. A “�” indicates that the difference in EG from the previous period is greater
than the 95% critical value. Blanks indicate the code does not exist for the given year. SIC code descriptions
are based on the first year the data are available. Descriptions with a “?” indicate a definition change within
reported years. The details may be found in table 6. The 15 industries with the fewest estimated cells are
indicated with a “†.” Raw Geographic Concentration: G =

∑51
i=1 (sit − xit)

2.
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Table 3. EG Values for Food Processing Industries from 1997–2012

Description NAICS 1997 2002 2007 2012

Dog and cat Food Manufacturing† 311111 −.006 .012 � .003 .024∗�

Other Animal Food Manufacturing† 311119 .013∗ .010∗� .012∗ .012∗

Flour Milling 311211 .010∗ .009∗ .010∗ .003
Rice Milling 311212 .148∗ .183∗� .051∗� .235∗�

Malt Manufacturing 311213 .126∗ .120∗ .011 � .057∗

Wet Corn Milling 311221 .121∗ .150∗ .165∗ .123∗�

Soybean Processing 311222 .077∗ .090∗ .086∗

Other Oilseed Processing 311223 −.005 −.010 −.030
Soybean and Other Oilseed Processing 311224 .044∗

Fats and Oils Refining and Blending 311225 .009 .015 .019∗ .020∗

Breakfast Cereal Manufacturing 311230 .007 .021 .022 .050∗

Sugarcane Mills 311311 .089∗ .102∗ .044
Cane Sugar Refining 311312 −.069∗ −.117∗ −.002 �

Cane Sugar Manufacturing 311314 .073∗

Beet Sugar Manufacturing 311313 .019 .038 .051∗ .048

Chocolate and Confectionery Manufacturing from Cacao Beans 311320 .161∗ .044∗� .068∗

Confectionery Manufacturing from Purchased Chocolate 311330 .030∗ .023∗ .024∗

Non-chocolate Confectionery Manufacturing† 311340 .027∗ .033∗ .020∗ .041∗�

Chocolate and confectionery manufacturing from cacao beans 311351 .059∗

Confectionery manufacturing from purchased chocolate 311352 .015∗

Frozen Fruit, Juice, and Vegetable Manufacturing 311411 .046∗ .069∗� .076∗ .086∗

Frozen Specialty Food Manufacturing† 311412 .008∗ .011∗ .012∗ .009
Fruit and Vegetable Canning† 311421 .032∗ .032∗ .026∗� .036∗�

Specialty Canning 311422 −.006 −.029∗ −.027 −.029
Dried and Dehydrated Food Manufacturing 311423 .186∗ .135∗� .074∗� .075∗

Fluid Milk Manufacturing† 311511 .017∗ .001 � .000 −.001
Creamery Butter Manufacturing 311512 .190∗ .106∗� .032 .027
Cheese Manufacturing† 311513 .118∗ .119∗ .121∗ .124∗

Dry, Condensed, and Evaporated Dairy Product Manufacturing 311514 .009 .012 .017∗ .027∗

Ice Cream and Frozen Dessert Manufacturing† 311520 −.005 −.006 −.012 −.012

Animal (Except Poultry) Slaughtering† 311611 .046∗ .046∗ .045∗ .041∗

Meat Processed from Carcasses† 311612 .016∗ .013∗ .019∗� .022∗�

Rendering and Meat Byproduct Processing† 311613 .005 .002 .012∗� .008∗�

Poultry Processing† 311615 .059∗ .058∗ .064∗� .053∗�

Seafood Canning 311711 .082∗ .067∗ .097∗

Fresh and Frozen Seafood Processing 311712 .075∗ .077∗ .117∗�

Seafood Product Preparation and Packaging 311710 .122∗

Retail Bakeries† 311811 .011∗ .009∗ .011∗ .010∗

Commercial Bakeries† 311812 .001 .001 .002 .002∗

Frozen Cakes, Pies, and Other Pastries Manufacturing† 311813 .013 .004 .010 .003

Cookie and Cracker Manufacturing† 311821 .018∗ .027∗ .015∗ .017∗

Flour Mixes and Dough Manufacturing from Purchased Flour 311822 .008 .009 .006
Dry Pasta Manufacturing 311823 −.000 .011 .005
Dry Pasta, Dough, and Flour Mixes Manufacturing from Purchased Flour 311824 .011∗

Tortilla Manufacturing 311830 .077∗ .079∗ .064∗� .046∗�

Roasted Nuts and Peanut Butter Manufacturing 311911 .076∗ .076∗ .071∗ .071∗

Other Snack Food Manufacturing 311919 .009∗ .015∗ .017∗ .022∗

Coffee and tea Manufacturing 311920 .423∗ −.009 � −.008 −.018∗

Flavoring Syrup and Concentrate Manufacturing 311930 .009 −.006 .035∗� .030∗

Mayonnaise, Dressing, and Other Prepared Sauce Manufacturing† 311941 −.003 −.006 −.001 −.003
Spice and Extract Manufacturing† 311942 .004 .004 .005 .012∗

Perishable Prepared Food Manufacturing† 311991 .020∗ .035∗� .031∗ .039∗

All Other Miscellaneous Food Manufacturing† 311999 .009∗ .011∗ .007∗ .014∗

Share localised .660 .638 .638 .791
Sectoral EG .005∗ .006∗ .006∗ .006∗

Sectoral G .005 .006 .006 .006

Notes: A “*” indicates that the industry is localised beyond randomness with 95% confidence using the most
conservative critical value. A “�” indicates that the difference in EG from the previous period is greater than
the 95% critical value. Blanks indicate the code does not exist for the given year. NAICS code descriptions
are based on the first year the data are available. The 20 industries with the fewest estimated cells are
indicated with a “†.” Raw Geographic Concentration: G =

∑51
i=1 (sit − xit)

2.
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industry and plant-Herfindahl. Throughout tables 2 and 3 we indicate with a � the
EG values where the difference from the previous year is greater than the largest 95%
critical value. Even using this conservative approach, statistically significant changes
are common in tables 2 and 3, occurring about 45% of the time in SIC years and about
20% of the time for the NAICS years.

Thus we see a lot of churn and changes within industry, but in general, there does not
appear to be a pattern of increasing or decreasing levels of localisation. Rather some
industries increase their levels of localisation, others decrease their levels of localisation,
some stay the same, and many fluctuate between levels of localisation. One concern
is that the reason for the churn in EG values is because of our estimation procedure
rather than the data itself. For evidence this is not the case, see the robustness section
below as well as the appendix, which details the checks in our program to ensure
quality.

5.2. Sectoral Results

We now consider the value of the EG measure for the processed food sector as a
whole. The results may be found in the bottom three rows of tables 2 and 3. We
list the percent of industries that are localised at a statistically significant level. We
also list the sectoral EG value (calculated using sector shares rather than industry
shares) and the raw geographic concentration, G. Absent the results for 1963, which
differ quite strongly from every other period, these measures show a bit of fluctuation,
but no trend. Thus using relatively simple measures of sectoral localisation, it appears
there has been no systemic change over time. Contrast this with findings of Kim (1995)
using only sectoral data. Kim reports the Hoover index decreased from 0.196 in 1967
to 0.153 in 1987.5

Now consider the distribution of the EG measure at the industry level over time.
Figures 3(a) and 3(b) show the histogramme of industry EG values for the processed
foods and kindred products sector for each time period.6 For the SIC years, we include
data from each decade only in order to have a clearer image. If localisation were
changing systemically, we would expect to see either the peak moving upwards or
the tail stretching and widening period-after-period. But instead we do not find a
pattern in either the SIC or NAICS distributions. All four distributions cross each
other repeatedly in both left and right panels. There is no trend in successive periods
for either the peak increasing or the tail getting fatter.

Another way to see this is in figures 4(a) and 4(b). The EG value for each industry
and year is on the x-axis. For the y-axis, we ordered industries by rank of their locali-
sation. Thus the industry with the highest level of localisation in each period is ranked
1. We then convert those ranks into percentiles so that the figures are conceptually
similar to a cumulative distribution function.

If localisation were increasing over time, then the distribution of each new decade
would be shifted further out in the figures. We neither see this nor do we see that the
distribution from newer periods shifted in as would be the case if localisation were
decreasing over time. In the left panel, the curves shift back and forth and cross each
other, sometimes multiple times, thus indicating there is no first-order dominance

5Kim reports data every twenty years from 1860 to 1987, thus our time overlaps only twice in 1967 and 1987.

Kim reports the following Hoover index values for the processed food sector: 1860-0.322, 1880-0.311, 1900-0.215,

1914-0.231, 1927-0.249, 1947-0.260, 1967-0.196, 1987-0.153. Unlike our procedure using Census Bureau data
from each state, Kim grouped U.S. states into nine geographic regions before calculating index values.

6For smoothed plots in the manuscript, we use Silverman’s method (1986, p.48) to select the bandwidth.
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(b) 1997–2012

Figure 3. Smooth histogramme of the EG values: 1963–2012. Frequency is on the vertical axis.
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(b) 1997–2012

Figure 4. EG values against percentile of localised industries

of one distribution of localisation over another. In the right panel, the lines cross,
but there does appear to be a shifting-in that would be consistent with decreasing
localisation.

To see if there is in fact decreasing localisation, or if it is a trick of the eye in
figure 4(b), we formally test if the EG index distributions for processed foods and
kindred products from each time period are the same. Table 4 contains the first four
moments from each distribution by period and SIC and NAICS classification system.
First we test if the first four moments match pairwise. Though the means of the
distribution change from year to year, we cannot reject the null hypothesis that the
distribution centres are the same across the distributions. This result is based on a
Mann-Whitney median test which does not rely on the normality assumption. (We
support that finding with a t-test.) Using the Fisher Ratio and Conover tests, we
also cannot reject the null hypothesis that the variances are the same across the
distributions pairwise. For the third and fourth moments, the standard tests rely on
a normality assumption that do not apply to our data. We therefore test using a
bootstrapping technique. We cannot reject that these moments are the same pairwise.

In addition to testing if the moments match, we use a pairwise Kolmogorov-Smirnov
(KS) test to see if the entire distributions are the same. Those results, available in ta-
ble 5, indicate that we cannot reject the null hypothesis that the distributions are
the same. The table lists the p-values for the two-sample KS test. Each result has a
p-value much greater than the 0.05 threshold. Thus, despite the differences in appear-
ance among the four distributions in figure 4(b), the distributions are not statistically
different from one another.
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Table 4. Moments from the Industry Distribution of Localisation Values by Period

Moment SIC 1963 1967 1972 1977 1982 1987 1992

Mean 0.073 0.065 0.042 0.056 0.068 0.058 0.057
Standard Deviation 0.112 0.103 0.084 0.087 0.127 0.106 0.098
Skewness 1.269 1.895 1.662 2.515 2.934 2.811 3.218
Kurtosis 5.220 6.264 7.251 10.673 12.220 11.346 16.750

Moment NAICS 1997 2002 2007 2012

Mean 0.049 0.036 0.032 0.038
Standard Deviation 0.079 0.053 0.040 0.047
Skewness 2.601 0.476 1.249 2.006
Kurtosis 12.156 4.195 4.523 8.575

Notes: The first four moments. In all cases, we cannot reject the null hypothesis that the pairwise difference
in values are zero.

Table 5. Kolmogorov-Smirnov P-Values

Year SIC 1963 1967 1972 1977 1982 1987

1967 .814
1972 .324 .816
1977 .462 .788 .508
1982 .791 .997 .886 .900
1987 .557 .915 .571 .841 .960
1992 .183 .923 .656 .371 .777 .960

Year NAICS 1997 2002 2007

2002 .996
2007 .508 .844
2012 .453 .683 .559

Notes: The p-values from a Kolmogorov-Smirnov test on each pair of EG year-distributions.

5.3. Robustness of Results

To ensure that our results are robust, we consider five issues. The first issue is that
compared to the other years, 1963 has many observations for which we use the par-
ent code fill. But, as table 4 shows, the skewness and the kurtosis of the 1967–1992
distributions are not statistically different from the 1963 distribution. Nor does the
KS test reject that the 1963 distribution is statistically different from any other year.
Further, our analysis of the NAICS years comes to the same conclusion that localisa-
tion is not changing systemically. Thus, our results hold when 1963 is removed from
consideration.

The second issue is that we used the industry classification from each year. The
industry classification scheme, however, changes over time. Sometimes the changes
in classification are minor. SIC 2034, 2043, 2045, and 2047 are examples where the
definition undergoes a minor revision to be more precise. It is unlikely that there was
a radical change in plant counts or structure that would alter the EG stat for this
industry because of the classification revision. Sometimes the changes in classification
are more substantial. For example, roasted coffee was SIC 2096 in 1963 but 2095 in
1967–1992. Worse, roasted coffee replaced Shortening and cooking oil as SIC 2095.
Thus to see changes in localisation within this industry one needs to use 2096 in
1963 but then 2095 for all other years. Table 6 shows the minor and major changes
in industry classification over all available periods. (While some NAICS codes are
created, and others are joined together, for example 311222 and 311223 merged to
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Table 6. Four Digit SIC-20 Definition Changes 1963–1992

Code 1963 1967 1972–1982 1987 1992

2013 Meat processing
plants

Sausages and Other
Prepared Meats

Sausages and Other
Prepared Meats

Sausages and Other
Prepared Meats

Sausages and Other
Prepared Meats

2034 Dehydrated food
products

Dehydrated food
products

Dehydrated fruits,
vegetables, and
soups

Dehydrated fruits,
vegetables, and
soups

Dehydrated fruits,
vegetables, and
soups

2041 Flour mills Flour and other
grain mill products

Flour and other
grain mill products

Flour and other
grain mill products

Flour and other
grain mill products

2043 Cereal preparations Cereal preparations Cereal breakfast
foods

Cereal breakfast
foods

Cereal breakfast
foods

2045 Blended and pre-
pared flour

Blended and pre-
pared flour

Blended and pre-
pared flour

Prepared flour
mixes and doughs

Prepared flour
mixes and doughs

2047 Dog, cat, and other
pet food

Dog, cat, and other
pet food

Dog and cat food

2052 Biscuit, cookies and
crackers

Cookies and crack-
ers

Cookies and crack-
ers

Cookies and crack-
ers

Cookies and crack-
ers

2084 Wines and brandy Wines, brandy, and
brandy spirits

Wines, brandy, and
brandy spirits

Wines, brandy, and
brandy spirits

Wines, brandy, and
brandy spirits

2087 Flavorings Flavoring extracts,
syrups nec

Flavoring extracts,
syrups nec

Flavoring extracts,
syrups nec

Flavoring extracts,
syrups nec

2091 Cottonseed oil mills Cottonseed oil mills Canned and cured
seafood

Canned and cured
seafood

Canned and cured
seafood

2092 Soybean oil mills Soybean oil mills Fresh or frozen
packaged fish

Fresh or frozen
packaged fish

Fresh or frozen pre-
pared fish

2095 Shortening and
cooking oils

Roasted coffee Roasted coffee Roasted coffee Roasted coffee

2096 Roasted coffee Shortening and
cooking oils

Potato chips and
similar snacks

Potato chips and
similar snacks

become 311224, no code changed definition.)
Despite the different classification definitions, it does not seem likely that the clas-

sification changes are driving our result. Nonetheless, we applied the KS test to the
subset of industries that have remained constant over time. Thus these industries con-
stitute a balanced panel. The results may be found in table 7. As can be seen, the
smallest p-value among the pairwise tests (amongst both SIC and NAICS years) is
0.388, indicating the distributions using just the subset of industries that were not
reclassified are not statistically significantly different from each other.

Table 7. Kolmogorov-Smirnov P-Values Same-Definition EG Values

Year SIC 1963 1967 1972 1977 1982 1987

1967 .773
1972 .773 .944
1977 .773 .773 .944
1982 .998 .773 .773 .998
1987 .651 .587 .388 .651 .858
1992 .773 .998 .944 .944 .944 .982

Year NAICS 1997 2002 2007

2002 .894
2007 .528 .723
2012 .528 .723 .528

Notes: The p-values from a Kolmogorov-Smirnov test on each pair of EG year-distributions for codes that
did not change definitions.
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Table 8. Kolmogorov-Smirnov P-Values for Industries with Fewest Estimated Observations

Year SIC 1963 1967 1972 1977 1982 1987

1967 .678
1972 .938 .678
1977 .938 .678 .938
1982 .938 .938 .938 .938
1987 .938 .678 .678 .938 .938
1992 .678 .938 .678 .938 .999 .999

Year NAICS 1997 2002 2007

2002 .983
2007 .983 .983
2012 .983 .983 .983

Notes: The p-values from a Kolmogorov-Smirnov test on each pair distributions for the 15 SIC and 20
NAICS industries with the fewest estimated observations.

Table 9. Kolmogorov-Smirnov P-Values for Distribution of Plant-Herfindahls by Period

Year SIC 1963 1967 1972 1977 1982 1987

1967 .999
1972 .563 .909
1977 .553 .961 .999
1982 .436 .668 .746 .973
1987 .429 .601 .897 .818 .986
1992 .248 .615 .897 .818 .963 .853

Year NAICS 1997 2002 2007

2002 .956
2007 .956 .996
2012 .473 .333 .870

Notes: The p-values from a Kolmogorov-Smirnov test on each pair of HHI year-distributions.

The third issue we consider is to assess if the churn in the EG values seen in tables 2
and 3 are due to our estimation procedure rather than the true underlying data. To
see this is not the case, we repeat our analysis using only the 15 SIC and 20 NAICS
industries that needed the fewest estimates. The rows in tables 2 and 3 marked by a
“†” indicate those industries. As can be seen, the results still show churn in levels of
localisation, but no systemic pattern. We also compare the sectoral results from the
industry distributions. The KS test p-values in table 8 may be compared to those in
table 5. As can be seen, our results from this subsample of industries using the fewest
estimated observations is qualitatively the same as for the full sample. Thus it does
not appear that our results are being driven by the industries whose data relied most
heavily on our estimation procedure. See the appendix for details of the checks and
balances in our algorithm to ensure the accuracy of our data estimates.

The fourth issue is to assess if our results are being driven by changes in industry
structure as measured by the distribution of plant-Herfindahls. Because of the west-
ward migration of labour over time, we know the result of localisation stability in the
processed food industries cannot be due to the population distribution across U.S.
states. However, no pairwise combination of Herfindahl distributions resulted in a KS
test p-value below the 0.05 threshold. Thus there is constancy in industrial organisa-
tion as well as industrial localisation over time.

The fifth issue is about which benchmark we use to compare industrial employment.
The most commonly used measures of localisation such as the location quotient, the
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locational Gini coefficient, and the EG index are relative measures. That is, industrial
localisation is assessed by comparing the geographic distribution of industry employ-
ment to the geographic distribution of manufacturing employment. Since we are in-
terested in the localisation of industries within the processed food sector, we repeat
our test using employment in the processed food sector as our benchmark. We have
performed all tests described in this paper using processed food manufacturing em-
ployment as the baseline geography rather than total manufacturing employment. All
pairwise tests are statistically insignificant for the NAICS years. All pairwise tests for
the SIC years are statistically insignificant, unless they involve the year 1963. Given
that 1963 is our lowest quality dataset with many missing values, we suspect data
quality is likely the underlying reason for this result. The smallest p-value of any
Kolmorogov-Smirnov test, outside of those involving 1963, is 0.358.

6. Conclusion

We describe a procedure to estimate the nondisclosed and obfuscated observations
of state-industry employment provided by the public releases of the Census Bureau’s
Census of Manufactures. In an online appendix, we provide the code as well as the data
for the repeated cross-section of state-industry employment from 1963–2012. We hope
the data or this procedure can be used by other researchers to estimate state-industry
employment for other data sources and for their own applications.

To show the usefulness and accuracy of our estimation procedure, we analyse our
estimated data to consider if industrial localisation for the processed food and kindred
products industry has changed in the last fifty years in the United States. Though
it is well-known that industrial localisation is not rare, it remains an open question
if localisation is changing over time at the industrial and sectoral level. We focus on
the processed food industries because it is one of the largest manufacturing sectors
by employment and it pulls one of its major inputs from the land, which is fixed
geographically.

Though we find that levels of localisation are changing significantly within indus-
tries, we do not find a pattern overall in that some industries have levels of localisation
that are increasing, some have levels of localisation that are decreasing, some have lev-
els of localisation that remain fairly constant, and others have levels of localisation
that bounce around. Additionally, we do not find that the distribution of levels of
localisation are changing within the sector. Our finding of little to no change in the
distribution of localisation over time contrasts with evidence from the European Union
and China that indicates industrial localisation is increasing and evidence from Kim
(1995) that levels of localisation are decreasing in the United States.
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Appendix A. Robustness of Estimation Procedure

There are two kinds of potential errors in the estimates from our method: miskeyed
entries and incorrect estimates due to other entries almost entirely derived from other
estimated data. To prevent these errors, we have programmed checks and balances
that when in violation, output an error to the program log. For instance, if a four digit
code exists, then the three digit parent must also exist. Similarly, if national or state
employment is non-numerical, or differs by more than 10%, the program outputs to a
log. If national employment is distributed in a way that is counter to the assumptions in
Schmalensee (1977), for example that the slope of plant distribution changes direction,
then this occurrence is output to the log. We also have programmed checks for if there
is a state with zero reported employment and if the algorithm has to climb more than
one level to find weights. Additionally, we use the repeated cross-section aspect of the
data and our estimates to detect errors. We can compare our results across time for a
given code five years before and ahead. Our procedure outputs an error to the log if
there is a period-to-period change of an order of magnitude for any of the following:
EG, geographic raw concentration G, number of plants, plant Herfindahl H, total
state employment, state with the largest employment, total national employment, and
national bin with the largest employment.

Every entry from the structural and time-series logs is further investigated manually.
We examine the published Census of Manufacturing data to confirm that our keyed
data are accurate. Additionally, we check each parent code of the logged error to
confirm that a error is not cascading down the tree structure of the data. In the
case of a time-series log entry, we check both years in question. Once an entry error
is located, the procedure is run again, regenerating the entire dataset. In addition,
we check to make sure outlier industries are not unduly affecting our state-industry
estimates.

We would note that, if anything, our procedure would tend to decrease the indus-
try level volatility. The Census Bureau groups industries together that are similar in
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production methods. For instance, all SIC-4 codes under a 3-digit parent are similar.
As noted in the main body of the paper, our procedure uses these aggregate values as
weights when no other information are available. As aggregate localisation is constant
over time (as seen at the bottoms of tables 2 and 3), aggregate weights for each state
will trend towards the average, which is nearly constant over time. For example, if
there were to be an industry with no data at the 4-digit level, our procedure would
estimate the 4-digit data by proportionally matching the parent code’s employment at
the state and national level. Therefore, given no change in localisation at the aggregate
level, this industry would show no change in localisation at the industry level.

Despite this tendency, while we show no overall change in localisation, our estimated
data are volatile at the industry level. A little less than half of the tested industries
have changed more than what would be expected by chance from one time period to
the next. Our results suggest that localisation is constant at the aggregate level due to
changes at the industry level that offset each other – not constant levels of localisation
at the industry level.
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