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Abandoning Creativity: The evolution of creative ideas in engineering 

design course projects  

  

 
 

Abstract 

Creativity training has been widely integrated into engineering education as a means 

to prepare students to be an innovative force in design industry. However, much of 

this research has focused on training students to be creative idea generators, with 

limited attention to what happens after this generation. Thus, the current study was 

developed to understand how creative ideas are promoted or filtered throughout the 

design process in order to focus our educational efforts. In order to accomplish this, 

an 8-week study with 136 engineering students was conducted. Our results point to 

the reduction in creativity throughout the design process and student abandonment of 

novel concepts. We also expose the influence of the design task on student creativity.  
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Training our future engineers to be creative is an important and often required component 

of engineering education (Canadian Engineering Accreditation Board, 2014; Dym, Clive 

L, Agogino, Alice M, Eris, Ozgur, Frey, Daniel D, & Leifer, Larry J, 2005; International 

Engineering Alliance, 2013). This is due in part to the fact that industry is placing a larger 

emphasis on recruiting creative engineers because of the impact of innovation on 

economic and societal success (McAloone, T.C., 2007). Since product success can be 

linked to early ideas (Goldenberg, J., et al., 2001), research in engineering education has 

focused on creativity during idea generation (Daly, S.R., et al., 2012; Linsey, J.S., et al., 

2011; Vargas Hernandez, N., Schmidt, L.C., Kremer, G.O., & Lin, C.-Y., 2014). While 

effective concept generation is imperative for innovation (Daly, S.R., et al., 2012), little 

research has explored what happens after creative ideas are developed in engineering 

courses.  

What we do know is that the creative potential built up during idea generation is 

often lost throughout the design process because people do not know how to properly 

evaluate and select creative ideas (Harms, R. & Van der Zee, K., 2013). In addition, 

researchers have shown that people avoid rather than seek radical innovations during the 

design process (Goldenberg, J., Lehmann, D.R., & Mazursky, D., 2001). This research 

implies that while the availability of creative ideas is necessary for innovation to occur, 

idea generation is only a part of the innovation process and merely developing creative 

ideas is an insufficient condition for innovation (Nijstad, B.A. & De Dreu, C., 2002). 

Therefore, while training engineering students to develop creative ideas is an important 

component of engineering education, it is essential that we understand how these creative 

ideas progress or are filtered out throughout the design process, and what factors can 
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influence this process. Without this knowledge, we do not know if we should focus our 

creativity training efforts. 

In light of this inherent research gap, the current study was developed to 

understand how the novelty, quality and overall creativity of student design teams’ ideas 

change throughout the design process and what variables mediate this process. In order to 

answer these questions, an empirical study was conducted with 136 first-year engineering 

design students over the course of an 8-week (half-semester) design project in an 

engineering design course. The results of this study contributes new knowledge on the 

relationship between design outputs and the flow of creative ideas throughout the design 

process in an engineering design class, and concludes with recommendations on how to 

focus engineering pedagogy to increase student creativity outputs. Prior related research 

that motivate this research study are presented in the following sections.  

1 Background & Motivation 

Although not studied on the flow of creative ideas throughout the design process 

in engineering education, there has been research focused on creativity in engineering 

education. This section serves to highlight research in this area and lay the groundwork 

for the current study by starting with a broad overview of creativity in engineering 

education and narrowing in on moderating variables such as the influence of task 

selection.  

1.1 Creative Idea Development in Engineering Design Education 

Engineering educators have devoted much time and attention to integrating 

creativity training into the engineering curricula (Charyton, C., 2014). The thinking is 
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that by teaching students the design process, individuals will be better able to connect and 

energize innovation processes in industry (Brown, T., 2008; Dym, C.L., Agogino, A.M., 

Eris, O., Frey, D.D., & Leifer, L.J., 2005). While there are many stages to the design 

process including idea generation, idea screening (selection), idea development and 

solution verification (Zhang, W., Zhang, Q., & Song, M., 2015), engineering design 

research has focused largely on understanding how to improve student idea generation 

capacities (see for example (Daly, S.R., et al., 2012; Linsey, J.S., et al., 2011; Vargas 

Hernandez, N., Schmidt, L.C., Kremer, G.O., & Lin, C.-Y., 2014). This is due in part to 

the fact that while not every idea qualifies as creative, every creative outcome can be 

traced back to the good ideas that started it off (Goldschmidt, G. & Tatsa, D., 2005). In 

fact, research has shown that the success or failure of an innovative product can be linked 

to the very early stages of an ideas emergence (Goldenberg, J., et al., 2001) and a 

consumer’s purchase intent can be linked to the quality of the ‘raw idea’ (Kornish, L.J. & 

Ulrich, K.T., 2014).  

While research in this area has led to a better understanding of how to increase 

student idea generation capacities, the underlying assumption of this research is that 

successful innovation depends on creative idea generation. However, there has been 

mixed findings on the impact of idea generation on the quality of the final creative 

solution; while Kazakci, A.O., Gillier, T., Piat, G., and Hatchuel, A. (2015) found that the 

number of original ideas generated by a team is not necessarily a predictor of high 

performance, Zhang, W., et al. (2015) found that idea generation had a significant impact 

on the quality of the final creative solution. These findings suggest that while the 

availability of creative ideas is necessary for innovation to occur, idea generation is only 
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a part of the innovation process and merely developing creative ideas is an insufficient 

condition for innovation (Nijstad, B.A. & De Dreu, C., 2002). However, no study to date 

has explored if, or how, creative idea generation relates to the quality the final creative 

solution in engineering education. 

However, since we know that good ideas lead to a greater level of success, there 

is great value in the accurate selection of ideas throughout the design process (Kornish, 

L.J. & Ulrich, K.T., 2014). This means in order to increase the potential for innovation, 

good ideas must be appropriately selected and managed during the fuzzy front end of the 

design process (Ende, J., Frederiksen, L., & Prencipe, A., 2014). During this convergence 

process, individuals and teams must decide which (raw) ideas to drop and which to 

further develop by assessing their potential to be developed into a successful new product 

(Florén, H. & Frishammar, J., 2012; Kim, J. & Wilemon, D., 2002; Koch, R. & Leitner, 

K.H., 2008). While it may seem likely that one’s ability to generate creative ideas would 

be related to their tendency to select creative ideas during the concept selection process, a 

recent study found that these two skills were unrelated (Toh, C. & Miller, S., 2014). In 

other words, a person who is able to generate many creative ideas does not necessarily 

have a higher tendency to select creative concepts during the concept selection process.  

The fact that people desire but often reject creativity (Mueller, J.S., Wakslak, C.J., 

& Krishnan, V., 2014) has be linked to the risk associated with endorsing novel ideas 

(Rietzschel, E.F., Nijstad, B.A., & Stroebe, W., 2010; Rubenson, D.L. & Runco, M.A., 

1995) and the uncertainty regarding the success and social approval of their decisions 

(Moscovici, S., 1976). A similar effect has been found in engineering education, where it 

has been shown that students rarely discuss creativity during concept selection but instead 
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focus on the technical feasibility of the idea set (Toh, C.A. & Miller, S.R., 2015). This 

means that opportunities for successful new product development may be eliminated at 

the very beginning of the design process (Eling, K., Langerak, F., & Griffin, A., 2015). 

While researchers have reported that individuals and groups rarely select their best ideas 

(Faure, C., 2004; Putman, V.L. & Paulus, P.B., 2009), little research has been conducted 

to explore the impact of the creativity of ideas a team selects during concept selection and 

the creativity of their final design outcome. This is important because without this 

knowledge we do not know if we should gear education towards helping students better 

assess designs during this process.    

Another factor to consider is what happens after an idea is selected. For example, 

after an idea is selected, engineering designers often go through prototyping activities in 

order to detect errors and weaknesses in product design (Römer, A., Pache, M., 

Weißhahn, G., Lindemann, U., & Hacker, W., 2001). Prototyping is a key component of 

engineering design education (Yang, M.C., 2005) because it has been linked to improved 

design outcomes (Elsen, C., Haggman, A., Honda, T., & Yang, M.C., 2012), improved 

functionality of the final design (Viswanathan, V.L., JS, 2012), and an improved ability 

to meet client requirements (Jang, J. & Schunn, C., 2011). While prototyping can help 

designers identify problems and make changes to their design, it can also negatively 

impact designers by creating a “lock in effect”, keeping designers from freely changing 

their designs when a new need or constraint is identified (Kiriyama, T. & Yamamoto, T., 

1998). In addition, researchers have shown that it is mostly the team process surrounding 

prototyping that impacts the quality of the final prototype (Vetterli, C., Hoffmann, F., 

Brenner, W., Eppler, M.J., & Uebernickel, F., 2014). Because of the impact of 
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prototyping and team developmental efforts on final design deliverables, it is not clear if 

training student’s to generate or select creative ideas is sufficient for helping students 

ultimately develop creative solutions in engineering design courses or if there are some 

other mediating factors influencing the final design outputs. This paper aims to fill this 

research void.  

1.2 The impact of the design task in engineering education  

 In addition to exploring how the creativity in the fuzzy front end of the design 

process impacts the creativity of the final design output, it’s also important to consider 

other factors that might moderate this relationship. One potential moderator is the design 

task being explored because design educators tends to employee a wide range of open-

ended and ill-structured problems in education in order to nurture creative problem-

solving skills (Felder, R.M., 1987; Ghosh, S., 1993). Ill-structured problems are problems 

in which there are multiple ‘correct’ solutions (Jonassen, D.H., 1997; Stokes, P.D., 2005). 

While many universities have adopted the use of these open-ended design problems, a 

recent study exposed that the type of design task being explored can greatly influence 

ideation creativity through both a between- and within-subject study (Fabien Durand, 

M.E.H., Joanna Tsenn, Daniel A. McAdams, Julie S. Linsey, 2015). This was found to be 

true for design tasks that were subjectively intended to be ‘equivalent’. Interestingly, 

Kershaw, T.C., et al. (2015) also found that the semester in which an engineering student 

is given a particular design problem can affect the creativity of the generated ideas. While 

these studies illustrate that the type, and timing, of a design problem in engineering 

education may impact student creativity training (see discussion in (Kremer, G.E., et al., 

2011)), few studies have explored the impact of the design task being explored in the 
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phases following idea generation. Therefore, we do not know how these varying problem 

types promote or inhibit creative idea development in engineering education.  

While not studied in an engineering context, research in psychology (Hackman, 

J.R., 1968; Kabanoff, B. & O'brien, G.E., 1979; Kelly, J.R. & McGrath, J.E., 1985; 

Reiter-Palmon, R., Illies, M.Y., Cross, L.K., Buboltz, C., & Nimps, T., 2009) and 

management (Jia, L., Shaw, J., Tsui, A., & Park, T.-Y., 2013; Karni, R. & Shalev, S., 

2004; Leenders, R.T.A., Van Engelen, J.M., & Kratzer, J., 2003) has shown that the type 

of problem being explored can significantly impact the quality and originality of the final 

design. In addition, Rietzschel, E., Nijstad, B., and Stroebe, W. (2008) found that the 

scope of the problem impacted idea generation with a narrower problem scope leading 

the production of more original ideas. However, there was no impact of task on idea 

selection. This may be due in part to the type of constraints included in a given design 

task.  

On a high level, design problem constraints can be categorized as either abstract 

(e.g. low cost) or concrete (e.g. cost less than $10) (Onarheim, B. & Wiltschnig, S., 

2010). These constraints can then be further sub-categorized into one ore more of the 

following dimensions: timing, flexibility, importance, source, domain, and/or purpose 

(Onarheim, B., 2012). Since it is impossible to kindle creativity from nothing (Rosenman, 

M.A. & Gero, J.S., 1993), design constraints are a necessary condition for creativity 

(Horowitz, R., 1999). However, there have been mixed findings on the exact relationship 

between constraints and creativity. For example, while some believe that constraints limit 

creativity due to the limited size of the possible solution space (Jonassen, D.H., 1997), 

others have found a linear correlation between creativity and constraint (Joyce, C.K., 
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2009). In this way, constraints can both facilitate and limit creativity (Negus, K. & 

Pickering, M.J., 2004; Stokes, P.D., 2008). However, there is little empirical work 

investigating the impact of constraint on creativity (Joyce, C.K., 2009), especially in an 

engineering education context. Therefore, the current work was developed to respond to 

this research gap.  

 

2 Methodology  

Based on this literature review, the current study was developed to understand 

how creativity changes throughout the conceptual design process in engineering 

education through 3 research questions (see Figure 1 for summative graphic). As a first 

step design task was explored, due to its capability to influence the remaining research 

questions. Specifically we investigated the following research question (RQ): 

RQ1: Does the amount of constraints in the design problem impact a team’s creativity 

throughout the conceptual design process (idea generation, concept selection and 

final conceptual design)?  

Next, we wanted to explore how creativity changes throughout the stages of the design 

process by answering the following 2 research questions: 

RQ2: How does the novelty, quality, and overall creativity of a team’s idea set change 

from idea generation to concept selection?  

RQ3: Can the creativity of the final conceptual design be predicted by the best novelty, 

quality, or creativity of the teams’ idea set during the concept generation and 

selection phases?  
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To address these research questions, a controlled study was conducted with first year 

undergraduate engineering design students at a large northeastern university. During the 

study, participants were tasked with completing an idea generation activity independently 

and a concept selection activity as a team. The details of this study are provided in the 

following sections. 

 

2.1 Participants and Team Formation 

One hundred and thirty-six engineering students (100 males, 36 females) from 5 

sections of the same first-year introduction to engineering design course were recruited 

for this study. Students in each course formed 3 and 4-member design teams that were 

assigned by the instructors of the course at the start of the semester based on existing 

knowledge and expertise in engineering design. This team formation strategy was 

employed in order to balance any a priori advantage of the teams through questionnaires 

given at the start of the semester that asked about students proficiencies in 2D and 3D 

 
Figure 1: Research questions addressed through an empirical study with 130 engineering students. 
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modeling, sketching and the engineering design process. In total there were 36 teams 

including twenty-eight 4-member design teams and eight 3-member design teams.  

 

2.2 Procedure 

At the start of the study, the purpose and procedure of the study were discussed, 

any questions were answered and implied consent was obtained. Next, participants 

attended an in-class design session that was facilitated by the researchers to minimize 

instructor bias. At the beginning of this session, participants’ were asked to develop novel 

concepts for one of three design tasks. The design tasks provided to participants were: 

Milk frother (N=13 teams): “Your task is to develop concepts for a new, innovative, 

product that can froth milk in a short amount of time. This product should 

be able to be used by the consumer with minimal instruction. Focus on 

developing ideas relating to both the form and function of the product.” 

Urinary Tract Infection (UTI) test strip (N=9 teams): "Your task is to develop concepts 

for a new mechanism to expose test strips to urine samples. This product 

should be simple, inexpensive, low-waste, durable and constructed of 

locally-available materials to people in Northern Africa."  

Greenhouse grid (N=14 teams): "Your task is to develop concepts for a new tool to 

determine levelness of ground in a 7x7 meter grid for a 6x6 meter 

greenhouse, and to mark 49 frame post locations which are square. Any one 

post can be no more than 1 centimeter off and the grid should be completely 

marked in no more than 10 minutes. The device to measure levelness should 

be lightweight and ruggedized for the harsh environment in Northern Africa, 
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with a budget of $10. The materials are limited to nylon string, wood, and 

metal bars." 

These design tasks were chosen for this study to represent different levels of 

design task structure based on their design constraints (Onarheim, B., 2012). The 

structure of a design task is not only made up of the constraints, but is also categorized 

based on the type of design constraints. The type of constraint was determined by  its 

level of abstraction, which is based on whether the constraint had soft or precise 

limitations (Onarheim, B. & Wiltschnig, S., 2010). In the current study, the design 

problem was considered less structured if the constraints were abstract and/or if there 

were few of them, and more structured if the constraints were concrete and/or there were 

many of them. Based on these criteria, the milk frother task was categorized as having the 

least amount of structure due to its use of only abstract constraints (quick frothing, easy 

to use, and better than others), while the UTI test strip task was considered to have more 

structure due to the number of abstract constraints (simple, inexpensive, low-waste, 

durable, and limited materials). Finally, the greenhouse grid task was considered to be the 

most structured and constrained due to the limited number of abstract constraints 

(lightweight and ruggedized) and the numerous concrete constraints (accuracy, budget, 

and material limits) used.  

Once participants read and understood their assigned design task, each participant 

was given individual sheets of papers and provided 20 minutes to individually sketch as 

many concepts as possible for their task. They were instructed to sketch only one idea per 

sheet of paper and write notes on each sketch such that an outsider would be able to 

understand the concepts upon isolated inspection, see Table 1 for example concepts. 
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Three hours after the brainstorming session (the next class period) participants 

were provided with the ideas their team developed and asked to complete the concept 

selection process with their team members. This process included shuffling each teams 

ideas, discussing each idea as a team and then categorizing each idea into one of the 

following categories: 

Consider: Concepts in this category are the concepts that will most likely satisfy 

the design goals; you want to prototype and test these ideas immediately. 

It may be the entire design that you want to develop, or only 1 or 2 

specific elements of the design that you think are valuable for prototyping 

or testing.  

Do Not Consider: Concepts in this category have little to no likelihood of 

satisfying the design goals and you find minimal value in these ideas. 

These designs will not be prototyped or tested in the later stages of design 

Table. 1 Example concepts generated and selected for the milk frother, UTI test strip, and greenhouse 

grid (right) design tasks. 

 

Task Milk Frother Greenhouse Grid UTI 

Ideas in 

‘Consider’ 

category 

 

 
  

Ideas in 

‘Do Not 

Consider’ 

category 
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because there are no elements in these concepts that you would consider 

implementing in future designs. 

These two categories were chosen for this study to simulate the rapid filtering of 

ideas that occur in the concept selection process (Rietzchel, E.F., Nijstad, B.A., & 

Stroebe, W., 2006)[72]. After the designs were classified into these two categories, the 

teams were then instructed to rank the ideas in the consider pile from most likely to 

develop (1) to least likely to develop (n) for their final conceptual design using sticky 

notes. The experimenters took digital pictures of the final rankings. Overall, this sorting 

process took approximately 30 minutes.  

Over the course of the next two weeks, the design teams created low fidelity 

prototypes of the chosen designs from their “consider” piles. Lessons learned from these 

prototypes were used to develop the final prototype that was presented in both oral and 

written reports. The experimenters assessed these final conceptual designs presented 

through these reports. 

2.3 Metrics 

Once the study was complete, the 848 ideas generated were rated for novelty and 

quality using Shah, J.J., Vargas Hernandez, N., and Smith, S.M. (2003) metrics (SVS). 

Novelty and quality were utilized because they can be calculated at the individual level 

for each idea, while the quantity and variety metrics are for use to measure groups of 

ideas (Oman, S.K., Tumer, I.Y., Wood, K., & Seepersad, C., 2013; Sarkar, P. & 

Chakrabarti, A., 2011). In the current study, we maintained a distinction between the 

novelty and quality metrics, treating them as two separate components of creativity, since 

the conclusions that can be drawn on how design novelty changes throughout the 
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conceptual design process may be vastly different from the conclusions that can be drawn 

from how design quality changes. In addition, we also assessed the creativity of the 

designs as a combination of novelty and quality by adding the two measures together, 

each with a weight of 0.5 (Oman, S.K., et al., 2013). This was done since we are 

interested in ideas that possess both quality and novelty, and the combination of these 

two measures allow us to quickly compare the overall creativity of all designs being 

analyzed. 

In order to calculate the SVS metrics, two raters, undergraduate students in 

mechanical engineering, were recruited to assess the concepts. Prior to this assessment, 

the raters received extensive training on the design tasks and rating process. In order to 

rate the designs, a Design Rating Survey (DRS) was used to help the raters classify the 

features each design concept addressed as described in (Toh, C.A. & Miller, S.R., 2016). 

The DRS contained 24 items for the Milk Frother design task, 14 items for the UTI Test 

Strip task, and 14 items for the Greenhouse Grid design task. The first set of questions on 

the DRS were used to help the raters classify the features each design concept addressed, 

similar to the feature tree approach used in previous studies used to compute design 

novelty (see (Toh, C. & Miller, S., 2014; Toh, C.A. & Miller, S.R., 2014) and more 

details). The final 4 survey questions were used to compute design quality and helped the 

raters identify the technical feasibility of the design. The Cohen’s Kappa (inter-rater 

reliability) was 0.85 for the milk frother task, 0.86 for the UTI Test Strip task, and 0.78 

for the Greenhouse Grid task. Any disagreements were settled in a conference between 

the two raters. The DRS surveys are available at (website blank for review). 
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In order to compare idea creativity throughout the design process, the best 

novelty, quality, and creativity of the teams’ idea set were calculated for each of the three 

phases (idea generation, concept selection and final conceptual design) using the ratings 

from the DRS. While average novelty and quality are the metrics typically utilized in 

creativity literature (see for example, (Rietzschel, E.F., Nijstad, B.A., & Stroebe, W., 

2006; Shah, J., Kulkarni, S., & Vargas Hernandez, N., 2000; Toh, C. & Miller, S., 2014), 

best novelty and quality measures the possibility of attaining the maximum novelty and 

quality score (Vargas Hernandez, N., Shah, J.J., & Smith, S.M., 2010). This is of interest 

in the current investigation because ultimately, for a design team to be successful, a team 

only needs one very high quality, functional or novel idea, not dozens (Viswanathan, V. 

& Linsey, J.S., 2010). In addition, the goal of idea generation rarely is to maximize the 

average novelty or quality of an idea, but rather to maximize the novelty and quality of 

the best idea or the few best ideas (Girotra, K., Terwiesch, C., & Ulrich, K.T., 2010). 

Therefore, best novelty, quality, and creativity are investigated. This section outlines how 

these metrics were computed.  

Idea Novelty: Novelty is the “measure of how unusual or unexpected an idea is compared 

to other ideas” (Shah, J.J., et al., 2003).  In order to calculate novelty at the team 

level, the individual novelty of each idea must first be computed. This was 

accomplished using the feature tree approach developed by Shah, J.J., et al. 

(2003) where the novelty of each individual feature is used to compute the overall 

novelty of the design. Specifically, feature novelty, 𝑓𝑖, is defined as the novelty of 

each feature, i, as it compares to all other features incorporated by all the 
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generated designs. The more frequently a feature is incorporated, the lower the 

feature novelty score. We compute 𝑓𝑖 as shown in Equation 1: 

 

     𝑓𝑖 =  
𝑇−𝐶𝑖

𝑇
                               (1) 

 

 

 Where T is the total number of designs generated by all participants and 𝐶𝑖 is the 

total number of designs that incorporate feature i.  Feature novelty, 𝑓𝑖, varies from 0 

to 1, with the most novel features approaching 1.  

 Design novelty of team k’s jth idea, 𝐷𝑗,𝑘 , can then be calculated based on the 

combined effect of the Feature Novelty, 𝑓𝑖 , of all the features that the design 

addresses. Because 𝐷𝑗,𝑘 is computed for all the features addressed by a design, the 

novelty per design is computed as an average of feature novelty, as seen in Equation 

2: 

𝐷𝑗,𝑘 =  
∑(𝑓𝑖∗𝐸𝑖,𝑗,𝑘)

∑ 𝐸𝑖,𝑗,𝑘
                                  (2) 

 Where fi is the feature novelty of feature i and 𝐸𝑖,𝑗,𝑘=1 if feature i  addressed by 

team k’s jth idea and 0 otherwise.  

Team Best Novelty (BNV): Team best novelty was developed to capture the maximum 

level of novelty for each team k’s idea set in each design phase, p. Specifically, 

team best novelty metric was calculated as the highest design novelty of all the 

designs each team generated during each design phase (idea generation, concept 

selection, and final conceptual design) as previously calculated by (Vargas 

Hernandez, N., et al., 2010), as seen in Equation 3: 

𝐵𝑁𝑉𝑘,𝑝 = ∨ (𝐷𝑗,𝑘 ∗ 𝑁𝑗,𝑘,𝑝)                                  (3) 
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Where 𝐷𝑗,𝑝 is the design novelty of team k’s jth idea and 𝑁𝑗,𝑘,𝑝 = 1 if team k’s jth 

idea was being considered during phase p (concept generation, selection or final 

conceptual design) and 0 otherwise. 

Idea Quality: Quality is defined as a measure of a concept’s feasibility and how well it 

meets the design specifications (Shah, J.J., et al., 2003). In order to calculate 

design quality at the team level, the individual quality of each idea must first be 

computed. Idea quality was measured on an anchored multi-point scale similar to 

Linsey, J.S., et al. (2011). However, we included an additional question to the 

quality scale in order to capture the improvement of the generated concept over 

the original design for both the milk frother and UTI design task. This question 

was excluded from the ratings of the greenhouse grid design task since no original 

design was presented to the participants. The quality metric was calculated using 

the raters’ answers to the following 3-point and 4-point scales, see Figure 2. 

 
  

 

 Design quality of team k’s jth idea, Qj,k, was then computed using Eqn. 4.  

Does it perform the 
intended task? 

Is it technically feasible 
to execute? 

Is it technically easy to 
execute? 

Is it a significant improvement 
over the original design? 

Figure 2: Quality scores assessed using the 4-point scale.  
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𝑄𝑗,𝑘 =  
∑ 𝑞𝑜

𝑚
𝑘=1

𝑚
                                  (4) 

 Where qo is the answer to the oth quality question, qo = 1 when the quality 

question is answered with a ‘yes’, qo = 0 when the quality question is answered 

with a ‘no’, and m is the total number of quality questions (4 for the milk frother 

and UTI tasks and 3 for the greenhouse grid task). 

Team Best Quality (BQL): Similar to BNV, BQL was calculated to capture the maximum 

level of quality present in ideas developed by each design team. In order to 

accomplish this, team best quality metric was calculated as the highest design 

quality of all the designs each team generated (Vargas Hernandez, N., et al., 

2010), as seen in Equation 5: 

𝐵𝑄𝐿𝑘,𝑝 = ∨ (𝑄𝑗,𝑘 ∗ 𝑁𝑗,𝑘,𝑝)                               (5)  

 

 Where 𝑄𝑗,𝑝 is the design quality of team k’s jth idea and 𝑁𝑗,𝑘,𝑝 = 1 if team k’s jth 

idea was being considered during phase p (concept generation, selection or final 

conceptual design) and 0 otherwise. 

Idea Creativity: Creativity is defined as a combination of a concept’s quality and novelty 

(Oman, S.K., et al., 2013). Similar to Oman et al. we average concept quality and 

novelty in order to get a creativity score with equal weights on each category. 

𝐶𝑗 =  
𝐷𝑗+𝑄𝑗

2
                                  (6) 

 

Team Best Creativity (BC): Similar to BNV and BQL, BC was calculated to capture the 

maximum level of creativity present in ideas developed by each design team. In 

order to accomplish this, the team best creativity metric was calculated as the 

highest design creativity of all the designs each team generated (Vargas 

Hernandez, N., et al., 2010), as seen in Equation 7: 
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𝐵𝐶𝑘,𝑝 = ∨ (𝐶𝑗,𝑘 ∗ 𝑁𝑗,𝑘,𝑝)                               (7) 

 

Where 𝐶𝑗,𝑝 is the design creativity of team k’s jth idea and 𝑁𝑗,𝑘,𝑝 = 1 if team k’s 

jth idea was being considered during phase p (concept generation, selection or 

final conceptual design) and 0 otherwise. 

 

3 Data Analysis and Results  

In order to address our research goals, the best novelty, quality, and creativity of 

ideas from the idea generation, concept selection and final conceptual design stages were 

analyzed. In total, 848 ideas that were developed over the course of the study were 

analyzed (333 idea for milk frothers, 304 for the greenhouse grid, and 211 for the UTI 

task), see Table 1 for sample ideas. On average, each team developed 23.56 ideas (SD = 

4.8) and chose to consider 7.03 (SD = 2.36) of those ideas for further development, see 

Table 2 for breakdown for each task. The remainder of this section presents our results 

with reference to our research questions. SPSS v.22 was used to analyze the results and a 

significance level of 0.05 was used in all analyses. 

 

Table 2: Summary statistics for the number of ideas generated, considered and not considered 

for all 3 design tasks. 

 

Task Milk Frother 

Mean (SD) 

Greenhouse Grid 

Mean (SD) 

UTI 

Mean (SD) 

# ideas generated 25.62 (5.09) 21.71 (3.50) 23.44 (5.55) 

# ideas considered 8.08 (2.93) 6.21 (1.81) 6.78 (1.79) 

# ideas not considered 17.54 (5.44) 15.43(3.96) 16.67 (6.54) 
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3.1 Does the structure of the design problem impact maximum creativity throughout 

the design process (idea generation, concept selection and final conceptual design)? 

Our first research question was developed to understand how the structure of the 

design problem impacts idea creativity throughout the conceptual design process. We 

hypothesized that the structure of the design task would impact the creativity of designs 

throughout the conceptual design process, since prior work found that constraints can 

both limit and encourage creativity (Onarheim, 2012). Prior to answering this research 

question, preliminary statistical analyses were performed to determine best novelty 

(BNV), best quality (BQL), and Best Creativity (BC) were normally distributed. Because 

the Shapiro-Wilk’s test identified that the data were not normally distributed (p < 0.05) 

the non-parametric, Kruskal-Wallis tests were used to determine if there were significant 

differences in best novelty (BNV), best quality (BQL), and best creativity (BC) at each 

stage of the design process (generated ideas, selected concepts, and final conceptual 

designs) between the three design tasks: milk frother (N = 13), UTI test strip (N = 9), 

greenhouse grid (N = 14), see Figure 4. However, because each team created at least one 

completely feasible idea (BQL=1) during the concept generation and selection, statistical 

analyses were only conducted on the final conceptual design phase for BQL. Post-hoc 

analyses were also performed on significant factors using Dunn's (Dunn, O.J., 1964) 

procedure. A corrected significance level of 0.017 was used in order to maintain a family-

wise error rate of 0.05 for this analysis. As a reminder, the milk frother task was 

considered to be the least structured task in the study followed by the UTI test strip, and 

the greenhouse grid task.  
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The results of the Kruskal-Wallis tests revealed that there was a significant 

difference in BNV across design tasks during idea generation (χ2 (2) = 18.97, p < 0.001), 

concept selection (χ2 (2) = 17.19, p < 0.001), and final conceptual design (χ2 (2) = 21.36, 

p < 0.001). For BQL, the analysis revealed a statistically significant difference between 

the BQL scores of the different design tasks during the final conceptual design phase (χ2 

(2) = 6.73, p = 0.04). Finally, for BC the Kruskal-Wallis test revealed a significant 

difference across design tasks during idea generation (χ2(2) = 13.25, p < 0.001), concept 

selection (χ2(2) = 15.86, p < 0.001), and final conceptual design (χ2(2) = 21.47, p < 

0.001). Post-hoc results can be found in Table 3. 

 
Figure 4: Best Novelty (BNV), Best Quality (BQL), and Best Creativity (BC) scores for all 3 design 

tasks throughout all 3 phases of the design process. 
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These results support our hypothesis that the design task being explored impacts 

the best novelty, quality and creativity of the ideas produced throughout the design 

process. Specifically, the greenhouse grid and the milk frother tasks only produced 

significantly different ideas during the final conceptual design phase, but were significant 

in every category (BNV, BQL, and BC), while the UTI test strip and milk frother tasks 

produced ideas that were significantly different during each stage for both BNV and BC. 

The UTI test strip and the greenhouse grid tasks produced ideas that were significantly 

different during idea generation for both BNV and BC, and during concept selection for 

BNV only. These results may be due, in part, the fact that different design tasks require 

different levels of creativity. These findings lend insight into how different task 

requirements may give students different opportunities to develop their creative thinking 

skills.  

 

3.2 How does the creativity of a team’s idea set changes from idea generation to 

concept selection?  

Our second research question was developed to investigate how the creativity of 

the teams’ idea sets change from idea generation to concept selection. We hypothesized 

Table 3: Results of the Kruskal-Wallis tests and post-hoc analyses for BNV, BQL, and BC scores 

between the 3 design tasks for all 3 phases of the design process. A corrected significance level of 0.017 

was used in order to maintain a family-wise error rate of 0.05 for this analysis. 

Phase Task p-value 

Best Novelty 

(BNV) 

Best Quality 

(BQL) 

Best Creativity 

(BC) 

Generated 

Ideas 

UTI Test Strip – Greenhouse Grid < 0.001 - 0.014 

UTI Test Strip – Milk Frother < 0.001 - < 0.001 

Greenhouse Grid – Milk Frother 0.46 - 0.177 

Selected 

Concepts 

UTI Test Strip – Greenhouse Grid 0.002 - 0.021 

UTI Test Strip – Milk Frother < 0.001 - < 0.001 

Greenhouse Grid – Milk Frother 0.224 - 0.055 

Final 

Conceptual 

Design 

UTI Test Strip – Greenhouse Grid 0.024 0.094 0.823 

UTI Test Strip – Milk Frother < 0.001 0.561  < 0.001 

Greenhouse Grid – Milk Frother 0.008 0.012 < 0.001 
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that the novelty of teams’ ideas would decrease while the quality would increase from 

concept generation to selection since prior work has suggested that people are biased 

against original concepts and choose more feasible concepts during the selection process 

(Rietzchel, Nijstad, & Stroebe, 2006). In order to answer our research question, 

ANCOVAs were used to compare team best novelty (BNV), best quality (BQL), BNV, 

and best creativity (BC) between the idea generation and concept selection phases while 

taking into account design task as the covariate due to the results from RQ1. Prior to 

analysis of the differences in BNV between idea generation and concept selection, all 

assumptions of the ANCOVA were checked.  It is important to note that although the 

data violated the assumption of normality, the ANCOVA was still used because it is 

fairly robust to deviations from normality. The data presented in the remainder section 

are unadjusted mean ± standard deviation unless otherwise stated.  

The results of the first ANCOVA showed that there was a statistically significant 

difference in BNV between the idea generation (0.77  0.07) and the concept selection 

(0.71  0.07) phases F(1, 69) = 17.25, p < 0.001, partial η2 = 0.20. Specifically, of the 36 

teams in the study, 29 had a decrease in BNV between these phases. The results of the 

second ANCOVA showed that there was a statistically significant difference in BC 

between the idea generation (0.87  0.06) and the concept selection (0.84  0.05) phases 

F(1, 69) = 5.75, p = 0.019, partial η2 = 0.08. Specifically 23 of the 36 teams had a 

decrease in BC between the generation and selection phase. An ANCOVA was not 

computed for BQL scores since each of the 36 teams had at least one idea in both phases 

that received a maximum quality rating of ‘1’. 
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Due to the significant differences found when comparing BNV and BC between 

idea generation and concept selection, follow up analyses were conducted to compare 

BNV and BC between the ideas each team categorized into the ‘consider’ and ‘do not 

consider’ category in order to better understand how the idea sets are changing during 

this process. The results revealed a statistically significant difference in BNV between the 

selected concept (0.71  0.07) and the not selected concepts (0.77  0.08), F(1, 69) = 

12.532, p = 0.001, partial η2 = 0.154 and a marginally significant difference in BC 

between the selected concept (0.84  0.05) and the not selected concepts (0.86  0.05), 

F(1, 69) = 3.188, p = 0.079, partial η2 = 0.044. These results show that teams may be 

discarding highly novel ideas during the concept selection phase despite the quality of the 

idea since both the BNV and the BC decreased from idea generation to concept selection, 

and both the BNV and BC of the ideas selected for consideration were lower than those 

that were discarded. These results serve to support previous findings that found that 

people tend to choose feasible ideas over unique ideas because of their desire to reduce 

uncertainty (Rietzschel, E., BA Nijstad, & W. Stroebe, 2010).  Since only a single highly 

functional and novel idea is required in order to be successful (Girotra, K., et al., 2010; 

Viswanathan, V. & Linsey, J.S., 2010), this early filtering of the most creative ideas may 

be detrimental for the creativity of the final conceptual design in engineering education.  

 

3.3 Can the creativity of the final conceptual design be predicted by the best novelty, 

quality, or creativity of the teams’ idea set during the concept generation and selection 

phases? 

Our final research question was developed to understand if the best novelty 

(BNV), best quality (BQL), and best creativity (BC) of a team’s idea set during idea 
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generation or concept selection can significantly predict the creativity of the final 

conceptual design. We hypothesized that creativity during both stages could be used to 

predict the creativity of the final conceptual design since prior research has indicated that 

either idea generation (Daly, et al., 2012; Duffy, 1993) or concept selection (Hambali, 

Supuan, Ismail, & Nukman, 2009; King & Sivaloganathan, 1999) can impact final design 

creativity. In order to test this, a hierarchal multiple regression analysis was run to predict 

the final conceptual design’s creativity from BNV and BC during concept generation and 

selection. Since BQL was “1” for all teams at both stages of the design process, the use of 

BQL would not add to the model. In addition, since the design task was shown in RQ1 to 

play a significant role in predicting team creativity scores, the impact of creativity of the 

ideas developed during idea generation and chosen during concept selection on the 

creativity of the final designs was investigated while taking into account the effects of 

design task in order to ‘control’ for this variable. Therefore, the independent variables 

were entered in 2 blocks: (i) task (ii) BNV and BC during concept generation and 

selection.  

The results of the hierarchal multiple regression analysis showed that the BNV 

and BC scores of both the idea generation and concept selection stages could not 

statistically significantly predict the novelty of the final conceptual design, (R2 
change = 

 Table 4: Summary of the hierarchical regression analysis results between novelty and creativity scores of 

the concept generation and selection stages, and creativity scores of the final design. 

 

 

Variable p B SEB Β 

Intercept 0.003  0.88 0.28  

Tasks 0.003  0.07 0.02  0.66 

BNV idea generation 0.800 -0.08 0.32 -0.07 

BNV concept selection 0.456 -0.29 0.38 -0.23 

BC idea generation 0.179 -.081 0.59 -0.51 

BC concept selection 0.230 0.87 0.71 0.46 
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0.099, and p-value = 0.349) above and beyond the effects of task, see table 4.  These 

results indicate that the novelty of a team’s final design may be predicted by the structure, 

or the amount and type of constraints, of the design task. However, the addition of 

novelty in the earlier phases of the design process did not add significantly to this 

prediction.  

The results from the regression analysis do not support our hypothesis that 

novelty or overall creativity during the idea generation and concept selection phases 

predicts the creativity of the final conceptual design. Interestingly, these results indicate 

that while much engineering education research has focused on increasing creativity in 

the early phases of the design process (e.g. idea generation (Daly, S.R., et al., 2012; 

Linsey, J.S., et al., 2011; Vargas Hernandez, N., et al., 2014)), these efforts may not  in 

fact impact the final conceptual design creativity.  

 

4 Discussion 

The current study was developed to understand how creativity changes throughout 

the conceptual design process in engineering education. The main findings from our 

study are as follows: 

• Creativity in all phases of the conceptual design process in engineering education 

is impacted by the task being explored. 

• Engineering students are discarding their most novel ideas during the concept 

selection process in favor of more conventional alternatives 

• The creativity of student teams’ idea sets during concept generation and selection 

cannot predict final conceptual design creativity   
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The remainder of this section discusses the implications of these results for engineering 

education with regards to task selection and creativity training. 

 

4.1 The Design Task Explored Impacts Creativity Throughout the Conceptual Design 

Process   

Our results indicate that the design task being explored affects creativity during 

all three phases of the design process (generated ideas, selected concepts, and final 

conceptual design) at the team level. This result supports prior research that showed that 

final design creativity is impacted by the type of task within the problem solving domain 

(Reiter-Palmon, R., et al., 2009). At the team level, students generated and selected more 

novel designs for the milk frother task than the UTI and greenhouse grid tasks. Given that 

the UTI test strip task was a moderately constrained task in relation to the other tasks, this 

result contradicts prior research that found that moderately constrained tasks tend to elicit 

the most creative designs (Joyce, C.K., 2009). In fact, while Joyce, C.K. (2009) found 

that the most constrained and least constrained design tasks tend to elicit the least creative 

designs, our results show that the most constrained design task tended to elicit the most 

creative designs. These results show that there is a clear difference in creativity (both 

novelty and quality) between tasks, but this relationship is not necessarily linear. In 

addition, when it came to the final conceptual design, our results showed that teams in the 

milk frother task had the most novel designs and, compared to the other two tasks, were 

the only teams to have 100% feasible designs for during the final conceptual design 

phase. However, the UTI and greenhouse grid design tasks were subject to more rigorous 
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design specifications than the milk frother, which could cause lower creativity levels, due 

to the more limited solution space (Jonassen, D.H., 1997) for these design tasks. 

Due to the increasing use of ill-structured design problems in the classroom 

(Larochelle, P., Engblom, J., Gutierrez, H., Larochelle, P.M., & Larochelle, P.M., 2004), 

this findings of this study lend insights into the use of different design problem structures 

within a cornerstone design course. Because these courses typically serve as an 

introduction to design for many students (Dym, C.L., 1999), these results demonstrate the 

importance of giving students opportunities to develop their creative thinking skills 

through a variety of design problems. These results also stress the importance of the 

thoughtful selection of design tasks that align with the intended learning outcomes and 

goals (Thompson, G. & Lordan, M., 1999). While freshman cornerstone design courses 

are aimed at teaching non-discipline specific problem solving principles, students will be 

immersed in discipline-specific design courses as they process through their education 

(Plucker, J.A., 1998). Therefore, it is crucial to continue investigating how differences in 

design tasks impact student learning and creativity throughout their education. 

 

4.2 Student Design Teams Filter out Novel Ideas but Select High Quality Ideas During 

Concept Selection 

One of the key findings of this study was that student design teams were filtering 

out their most novel ideas during the concept selection stage of the design process 

regardless of the design task being explored. Specifically, we found that while the best 

quality of team designs remained the same throughout the idea generation and concept 

selection stages of the conceptual design process, the best novelty and the best creativity 
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of team designs decreased throughout these stages. This decrease in best novelty and 

creativity while best quality remains constant indicates that design teams are filtering out 

not only their most novel ideas, but also their most creative (novel and quality) ideas 

when selecting ideas to move on in the design process.  

This finding aligns with previous research that showed that designers typically 

choose less original ideas during concept selection (Rietzschel, E., et al., 2010) due to the 

uncertainty associated with choosing more novel ideas (Amabile, T., 1996). This is 

problematic since the creative potential built up during the idea generation phase is lost 

during the later stages (Paulus, P.B., 2000) due to the filtering of novel ideas and the lack 

of effective creative concept selection tools. This could be attributed to the “lock in 

effect”, which has been studied in previous research and has been shown to keep teams 

from changing direction during the later stages of the design process due to the time and 

effort spent on developing concepts (Kiriyama, T. & Yamamoto, T., 1998). This effect 

can prevent design teams from modifying their ideas to increase novelty in the later 

stages of design, reducing the novelty of design outcomes. Another possible reason for 

this finding is that novice designers may perceive idea originality and feasibility as 

incompatible at this stage of the design process (Runco, M.A. & Charles, R.E., 1993; 

Sternberg, R.J., 1985), causing them to show preference for highly feasible ideas during 

concept selection. However, since creative ideas are widely regarded as ideas that are 

both novel and useful (Mumford, M.D., 2003, p. 110) and have the potential to contribute 

the most value to the design process (Fuge, M., Stroud, J., & Agogino, A.M., 2013), the 

filtering of creative ideas can negatively affect the effectiveness of the design process. 
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The findings from this study highlight the lack of emphasis on novelty during the 

later stages of the design process. While novelty is often emphasized during idea 

generation through the use of ideation tools aimed at increasing creativity, this focus on 

original ideas declines throughout the conceptual design process, negatively impacting 

the creativity of design outcomes. Therefore, further work is needed to develop improved 

concept selection methods that encourage student designers to select designs that are not 

only feasible, but also novel in the later stages of the conceptual design process. 

Educating student designers on the importance of selecting novel ideas in addition to 

feasible ideas will help increase awareness of what constitutes a creative idea and help to 

increase creativity throughout the design process.  

 

4.2 Creativity during idea generation and selection does not predict the creativity of 

final conceptual designs  

Much of engineering education has focused on training students to develop 

creative designs during idea generation with the intention of increasing the creativity of 

design outcomes. In addition, the concept selection stage has been emphasized as an 

important stage of the design process due to its influence on final design outcomes 

(Hambali, A., Supuan, S.M., Ismail, N., & Nukman, Y., 2009; King, A.M. & 

Sivaloganathan, S., 1999). However, our results revealed that neither the concept 

generation or selection stages of the design process could predict the novelty or creativity 

of the final conceptual design. This finding calls to question prior research that has 

advocated for the use of ideation tools for increasing creativity (Daly, S.R., et al., 2012; 

Linsey, J.S., et al., 2012), and the selection of innovative concepts during concept 
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selection to increase the success of the final design (Huang, H.-Z., Liu, Y., Li, Y., Xue, 

L., & Wang, Z., 2013). 

The results of our study may be attributed to factors other than idea generation 

and selection creativity. For instance, prototyping activities may have influenced the 

creativity of the final design, since all teams developed and tested prototypes of their 

designs between concept selection and final conceptual design phases. Surprisingly, there 

were 6 of the 36 teams that did not produce a fully feasible concept after prototyping, 

despite the fact that all teams chose at least one fully feasible concept during the concept 

selection phase. While teams did not necessarily prototype all of the concepts they 

selected, these results may indicate that prototyping did not lead all teams to develop high 

quality final designs. This contrasts previous work that found that prototyping improved 

the functionality of final designs (Viswanathan, V.L., JS, 2012)(Kiriyama, T. & 

Yamamoto, T., 1998) when completed during the idea generation stage (Viswanathan, 

V.L., JS, 2012) (Kiriyama, T. & Yamamoto, T., 1998) indicating that the stage in which 

prototyping occurs may influence functionality differently. This may be due to the 

method of measuring design quality that relied on a 4-point scale for assessing technical 

feasibility and plausibility.  However, future work is needed to truly understand the role 

of prototyping in this process. 

5 Conclusions, Limitations and Future Work 

The current study was developed in order to understand the relationship between 

creativity at each stage of the design process (idea generation, concept selection, final 

design) and to investigate the role of task on design creativity. Our results show that 

design task has an impact on creativity throughout the design process identifying the 
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importance of task selection in an engineering education setting for teaching creativity. In 

addition, the results showed that engineering students maybe discarding their most novel 

ideas during the concept selection process in favor of more conventional alternatives. 

This is an important finding given the importance of creativity and innovation on long-

term economic success in industry. Finally, the results point to the importance of 

exploring the factors that ultimately impact the creativity of the final conceptual design in 

engineering courses as neither the creativity of the ideas generated or selected in the 

current study could be used to predict the final conceptual design.  

While this study identifies the importance of the design task on creativity 

throughout the design process, there are several limitations. First, the design task 

constraints were not specifically manipulated in this study leaving to question how much 

constraint, or what type of constraints, impact design creativity. Therefore, while this 

work highlights the importance of the selection of the design task for creativity learning 

in an engineering context, future work is needed to specifically understand the role of 

constraints in this process and how these constraints are perceived by students. In 

addition, while we looked at different types of constraints, more aspects of the structure 

of the design task need to be investigated to fully understand the role of the design task 

on creativity. However, our results provide empirical evidence for differences in novelty 

and creativity at all stages of the design process for different design tasks. In addition, our 

study was conducted with first-year engineering students. While this work highlights the 

impact of these criteria on engineering creativity, future work should explore the 

generalizability of these findings across different design domains and education levels.  
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