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Numerical Ranges of Composition Operators !

Valentin Matache

The University of Nebraska at Omaha
Omaha, NE

vmatache@unomaha.edu

Abstract

Composition operators on the Hilbert Hardy space of the unit disk are considered.
The shape of their numerical range is determined in the case when the symbol of the
composition operator is a monomial or an inner function fixing 0. Several results
on the numerical range of composition operators of arbitrary symbol are obtained.
It is proved that 1 is an extreme boundary point if and only if 0 is a fixed point of
the symbol. If 0 is not a fixed point of the symbol 1 is shown to be interior to the
numerical range. Some composition operators whose symbol fixes 0 and has infinity
norm less than 1 have closed numerical ranges in the shape of a cone-like figure, i.e.
a closed convex region with a corner at 1, 0 in its interior, and no other corners.
Compact composition operators induced by a univalent symbol whose fixed point is

not 0 have numerical ranges without corners, except possibly a corner at 0.

1 Introduction

If H is a complex Hilbert space and T € L(#) is a bounded, linear operator on
H, the set W(T) = {< Th,h >: h € H,||h|| = 1} is called the numerical range of

T. It is well known that the numerical range is a bounded, convex subset of the
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complex plane C. This set is not necessarily closed. The problem of determining
the bounded, convex, subsets of C which are numerical ranges of operators is still
unsolved. Our intention is to determine W(T') for T = Cy4 a composition operator
acting on # = H?, the Hilbert Hardy space over the open unit disk, ID, i.e. the space
of all complex functions analytic on I with square-summable Taylor coefficients.
Recall that for each holomorphic selfmap ¢ of I, the composition operator of symbol

¢ is the (necessarily bounded, [1]) operator

Cof=fod [eH

In the second section we start this job, and are able to complete it for composition
operators acting on H?, and having symbol ¢ a monomial and for inner symbols fixing
0. We begin with the simplest possible cases, (e.g when the operator is diagonal), we
continue by proving that composition operators with constant symbol have elliptic
numerical ranges, unless the constant is 0, when the numerical range is a line segment.
When the monomial has degree bigger than 1 and its coefficient has absolute value
strictly less than 1, the numerical range has the shape of the convex hull of a set
consisting of a circle and a point situated outside the circle. The purpose of this
second section is to provide examples, and show that even in the case of such simple
symbols the shape of the numerical range can be rather diverse. In the last section
we prove that composition operators with symbol ¢ such that ||¢||c < 1 and ¢(0) =
¢'(0) = 0 have closed numerical ranges whose shape is a cone-like region with vertex
at 1 i.e. the numerical range of such operators is a closed convex region with a corner
at 1, 0 in its interior, and no other corners. We also prove that 1 is either an extreme
boundary point or an interior point of the numerical range. The former situation
occurs if and only if ¢(0) = 0. Finally we prove that if ¢ is univalent, induces a
compact composition operator, and has nonzero fixed point, then the closure m
of W(Cy) cannot have corners, except possibly 0.

In the sequel we will use more than once the elliptic range theorem, i.e. the
description of the numerical range of a complex 2 x 2 matrix. Such a matrix with

distinct eigenvalues A and p is known to have numerical range in the shape of a closed



elliptical disk of foci A and u. The major and minor axis of this elliptical disk are

given by the following equalities.

Major Axis = A — ul
VI-1<fg>]?
A=
minor axis = | <fig>|[A—u
VI—-1<fg>

where f and g are unital eigenvectors corresponding to A and y respectively. Observe
that the ellipse is degenerated, i.e. reduced to its focal axis if and only if f and g
are orthogonal. If the eigenvalues are not distinct, the numerical range is a closed

circular disk, [5].

2 The Numerical Range When the Symbol is

a Monomial

Clearly the easiest case is the case of Cy, ¢(z) = z when, trivially the numerical range
is the singleton {1}. The first step from this trivial setting is determining W (Cy) for
#(2) = Az, |A\| =1, XA # 1. With this assumptions for ¢ and A, one easily obtains the

following.

Proposition 2.1 If X is a primitive root of 1 of order n > 2 then W(Cy) is the
closed segment [—1,1] if n = 2, respectively W(Cy) is the closed, regular polygonal
region with n sides and a verter at 1, inscribed in the unit circle if n > 2. If X is not

a root of 1 then W(Cy) =D U {X\" : n > 0}.

Proof. Suppose first that A is a primitive root of 1 of order n > 2. In that case Cy is
a diagonal operator with cyclic diagonal, more precisely the diagonal consists of the
finite sequence 1, A, A2, A3, ..., A", repeated infinitely many times. The diagonal
entries are eigenvalues, hence they belong to W(Cy). This last set, being convex will

contain the convex hull of the set V' = {1, \,..., A" "'}, which is the closed polygonal
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region whose boundary is the regular polygon with n sides, inscribed in the unit
circle, having one of the vertices at 1. Let’s denote the latter set by P. We proved
P C W(Cyp). The converse inclusion follows easily from the fact that Cy is a diagonal
operator, hence a normal operator. It is well-known that the closure of the numerical
range of a normal operator equals the convex hull of its spectrum. In our case the
spectrum of Cy is equal to V, so P = m, which concludes the proof, for the case
when A is a root of 1. Needless to say that in the particular case n = 2, P is reduced
to the segment [—1,1].

We consider now the case when A is not a root of 1. In that case the set V =
{A\" : n > 0} is a dense subset of the unit circle T. On the other hand V is a subset
of the point spectrum of Cy, hence V is a subset of W (Cy). Again by the convexity
of the numerical range the convex hull of V' is contained by W(Cy). By the fact
that V is a dense subset of T we easily can see that the convex hull of V is DU V.
On the other hand, using as above the fact that Cy is diagonal, we get m =D.
To see that, note also that the spectrum of Cy equals the closure of the diagonal of
Cy which is T. So the only thing to decide now is which points of T besides those
in V' can belong to W(Cy). The answer is none, which will conclude the proof. To
see that, suppose there is some unimodular complex number ™ € T \ V and some
f e H? f(z) = X0 g™, 0%, len|? = 1 such that €™ =< Cuf, f >. By the
Cauchy-Schwartz inequality 1 < [|Cyf|||[f|| = 1. We used the fact that Cy is a
diagonal operator having unimodular entries on the diagonal, for which reason Cy is
a unitary operator. The Cauchy-Schwartz inequality becomes an equality if and only
if the two vectors involved in it are linearly dependent, hence Cyf = uf ie. f must
be an eigenfunction of Cy corresponding to some eigenvalue p. The eigenvalues of
Cy are exactly the values on its diagonal. So p = A", for some m > 0. The equality

Cyof = A™f implies < Cy f, f >= A™, a contradiction. i

The next thing is to consider Cy with ¢ of the following form ¢(z) = az, |a| < 1.

In that case the description of the numerical range is as follows.



Proposition 2.2 If a ¢ R, then W (Cy) is a closed polygonal region, whose vertices
form a finite subset of the set {a™ : n > 0}. If a € R, then W(Cyp) = (0,1] if a > 0,
respectively W(Cy) = [a,1] if a < 0.

Proof. Consider first a € D\R. Cy is in this case a diagonal operator whose diagonal
is the sequence (a™),. Since |a| < 1 this sequence tends to zero. Therefore the
spectrum of this operator is o(Cy) = {0} U {a™ : n > 0}, and since the operator is
normal m will equal the convex hull of 0(Cy). This last set is a polygonal region
whose vertices belong to the set V' = {a™ : n > 0}, because the argument of a is not 0
or 7, so we have at least three non colinear points in V. On the other hand, the fact
that ™ — 0 implies that there is some positive integer N such that a™ belongs to the
convex hull of the set {1,a,a?,...,a" }, which is a closed polygonal region containing
0 in the interior, Vn > N. The vertices of the aforementioned region are eigenvalues
of Cy, which implies that the region must be contained by W (Cy). This concludes
the proof for the case a ¢ R. If a € R, repeating the same proof, and observing that,
in this case all the points of the sequence (a™), are on the real axis, one easily gets
W(Cy) = [a,1] if a < 0, respectively (0,1] C W(Cy) C W(Cy) = [0,1], if a > 0.
In this last case we get W(Cy) = (0,1] by observing that 0 ¢ W (Cy). Indeed if
f =, cnz" is in H? and ||f|| = 1, then clearly < Cysf, f >= 3, a"[c,|*® > 0 if

a> 0. O

Figure 1 represents the polygonal numerical ranges of the composition operators
with symbols ¢(z) = A\e?™/3z, for \ equal to 1, 1/1.1, 1/1.2, and 1/2. The numerical
ranges are nested and the previous ordering of the values of A corresponds to the
polygons in Figure 1 going from exterior toward interior i.e. the bigger the value of

A the larger the polygon.



lambda = 1; 1/1.1; 1/1.2; 1/2

Figure 1: The numerical range of C,, for ¢(z) = Xe z
Observe now that if ¢(z) = ¢z¥, |¢| = 1, k > 2, then C, is necessarily a non

unitary isometry.

Proposition 2.3 If ¢ is an inner function other than a disk automorphism and

#(0) = 0 the numerical range of Cy is given by the equality W(Cy) =D U {1}.

Proof. It is shown in [7] that under the hypothesis above Cy is an isometry with
Wold decomposition H?> = C @ zH?, i.e. the spaces in the previous direct sum
are reducing subspaces of Cy, Cy|C is a unitary operator, and Cy|2H? a unilateral
forward shift. Obviously W (Cy|C) = {1} and the numerical range of any unilateral
shift operator is D. To find the numerical range of the direct sum of the two operators
above one takes the convex hull of the union of their numerical ranges obtaining
W(Cg) =D U {1}. The statement that unilateral shifts have numerical range D is a
direct consequence of the rather well-known fact that any A € D is an eigenvalue of
any backward unilateral shift and that unilateral shifts have no eigenvalues on the

unit circle. On the other hand eigenvalues are in the numerical range of an operator



and if an operator of norm 1 has unimodular numbers in the numerical range, then
by the Cauchy-Schwartz inequality those numbers must be eigenvalues of the given

operator. O
An immediate consequence of Proposition 2.3 is the following.
Corollary If ¢(z) = cz¥, || = 1, k > 2, then W(Cp) =D U {1}.

To finish the job for the case when the symbol of the composition operator is a
monomial we should now study symbols of the form ¢(z) = az¥, k > 2, |a| < 1,
a # 0, and the case when the symbol is a nonzero constant function. We begin with
the latter case. In the following we consider ¢ € I, a # 0 and the constant function
¢, taking the value a at each z € . If we denote the 1-dimensional subspace of the
constant functions by C C H?, one can easily see that CyoH 2CCso Cy is a rank 1
operator, hence Cy is compact, and hence 0 € o(Cy) where 0(Cy) is the spectrum of
Cy. Because Cy is compact, the nonzero values in its spectrum must be eigenvalues.
Since obviously Cyl = 1 we deduce 1 € 0(Cy), and it is trivial to see that Cyf = Af
is equivalent to f(a) = Af. So if we claim that f is not the zero function and A # 0
we deduce that f must be constant and A must equal 1. This proves that for each
choice of a € I, 0(Cy) = {0,1}. We will see that the numerical ranges for different
values of a can be different, and all are significantly larger than the spectrum. For
each zg € C and each r > 0, D(zg,r) denotes the open disk centered at zy of radius
r, and D(zg,r) is its closure. The exact description of the numerical range of the
composition operator of constant symbol ¢ = a, 0 < |a|] < 1 is contained by the

following theorem.

Theorem 2.4 W (Cy) is a closed elliptical disk whose boundary is the ellipse of foci

. . . 1
0 and 1, having horizontal axis of length T

Proof. Consider the functions f(z) =1, k.(2) = 1/(1 — az), and g = 1/]a| — ((1 —
la|?)/lal)kq). It is easy to check that Cyl = 1, and Cgg = 0, so f and g are norm

1, eigenvectors of Cy corresponding to the eigenvalues 1 and 0 respectively. Hence



the 2-dimensional subspace M of H? spanned by f and g is invariant for Cy. To see
this subspace is even reducing, observe that any function 4 in its orthocomplement is
perpendicular to k,, for which reason, Cyh = h(a) =< h,k, >= 0. The last equality
is the consequence of the fact that k, is a reproducing kernel function of H?, (see [5],
Ch. 4). Therefore if T is the restriction of Cy to M, Cy4 can be represented as T & 0.
For this reason, the numerical range of Cy will be the convex hull of the union of the
singleton {0} and W (T'). By the elliptic range theorem, since M is 2-dimensional,
W(T) will be a closed elliptical disk of foci, the eigenvalues of T', i.e. 0 and 1 and

having major axis |1 — 0|/4/1—| < f,g > [2=1//1 —|a|% O
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Figure 2: The numerical range of Cy for ¢ = 0.7
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Figure 3: The numerical range of Cy for ¢ = 0.1, 0.5, 0.8, 0.95

Figure 3 represents the nested numerical ranges of 4 composition operators with
constant symbols, equal respectively to 0.1, 0.5, 0.8, and 0.95. Observe that if |a] — 0
the corresponding ellipses tend to become flat and overlap the segment [0, 1], whereas
if |a| — 1, the ellipses increase in size unrestrictedly (indeed 1/4/1 — |a|? — oo if
la] — 11), and tend to become circles, i.e. the quotient of their two axes tends
to 1. We wrote a short MATLAB program in order to generate these figures. The
technique was based on an earlier proof of the previous theorem in which we rep-
resented the numerical range of Cy as the union of uncountably many closed disks
D; = E(t{tm\/ﬂw), t €[0,1]. The program graphs finitely many of the

boundary circles dD; corresponding to as many values of ¢, obtained by starting

with ¢ = 0 and successively adding a fixed increment called "step”. The smaller the



"step” the larger the number of circles graphed.

The only case we did not treat completely is when the symbol has the form
$(z) = az*, 0 < |a] < 1, and k > 2. The cases a = 0 and |a| = 1 have already been
treated.

We’ll use the non conventional terminology of ”ice-cream cone” to designate the
convex hull of a disk and a point situated outside the disk. We’ll denote by Z the set of
all integers, and by N the subset of Z consisting of all integers bigger than or equal to
0. For any sequence (ay)nez of scalars, and any I € N, Si(...,a_2,a_1,0a0,01,02,...)
will denote the circularily symmetric functions used by Q.F.Stout in [10]; we prefer
to refer the reader to that paper rather than reproduce the definitions in the text,

since they are rather lengthy. With these preliminaries we can prove the following.

Theorem 2.5 For each ¢ of the form ¢(z) = az¥, 0 < |a| < 1, and k > 2, W(Cy) is
a closed ”ice-cream cone” with vertex at 1 and disk centered at 0. The radius of this

disk is 1//t, where t is the smallest positive Toot of the entire function

oo

(8) F(Z) = Z Sl( ) a2—2a a2—15 a%, a%a a%a s )(_1/4)lzl
=0

where Si(...,a%,,a% 1,a3,a%,a3,...) corresponds to the weight sequence (an)nez, Gn =

la|*", if n >0, and a, =0 if n < 0.

Proof. Observe that if P is the orthogonal projection onto the subspace C of constant
functions, then PC,f = C,Pf = f(0) for any f € H?, which proves that C is a
reducing subspace of Cy. The restriction of Cy4 to C is the identity operator on C,
so its numerical range will be the singleton {1}. Let’s denote by A the restriction
of Cy to zH?, the orthocomplement of C. If we show that W(A) is the closed
disk centered at O of radius 1/ V't we are done because the numerical range of a
direct sum of two operators equals the convex hull of the union of the numerical
ranges of those operators. To find W(A) we observe that A is unitarily equivalent
to a direct sum of countably many forward weighted shifts. Let E be the set of
all integers bigger than or equal to 1 which are not multiples of k. For each fixed

m € E we denote by E, the set E, = {mk"™ : n € N}. The obvious relation
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C¢zmkn = amknzmkn+1, Vn € N, shows that if S, denotes the closed subspace of
2H? spanned by all the functions z°, s € E,,, then Cy|Sm, is a forward weighted

k" and is therefore unitarily equivalent to a forward

shift of weight sequence u, = a™
weighted shift of weight sequence wy, = |a|™", [9]. This last weighted shift will be
denoted by T,. The fact that (Ep)mer is a partition of N\ {0} shows that A is
unitarily equivalent to ), - ©Tr,, so W(A) will be the convex hull of Up,e g W (Tip,).
But for each m, W(T,,) is a disk centered at 0, [10]; therefore W(A) will be a disk
centered at 0 of radius sup,,,cp w(Ty), where for each operator T we denote by w(T')
its numerical radius. If (W,), is the weight sequence of the weighted shift 77, and
for an arbitrary fixed m € E, (wy)y is the weight sequence of T),, then the obvious
relation Wy, > wy,, Yn € N, implies w(T1) > w(T),), hence w(A) = w(T1). Clearly
T1 has the same numerical range as the bilateral, forward weighted shift with weight
sequence (ap)necz, an = Wy, if n € N, a, = 0, if n < 0. To see that, recall that
if 0 € W(T), then W(T) = {< Tz,z >: ||z|| < 1}, ([5], solution of Problem 213).
The weight sequence (an)necz is square-summable so the aforementioned bilateral
weighted shift is Hilbert-Schmidt, and by [10], Theorem 3, its numerical radius is
equal to 1/+/t. Finally, the numerical range of A is a closed disk, because it contains
0 and A is compact [2]. The compactness of A can be proved in several ways, for
instance observe that Cy is compact because ||¢||oc < 1, [1] or [8]. O

Figure 4 shows the numerical range of Cy for ¢(z) = 22/2. It was generated by
using a similar technique as the one used for Figures 2 and 3. The numerical range
of a composition operator with symbol ¢(z) = az¥, 0 < |a| < 1, can be represented
as a union of disks as follows.

W(C) = | (t+(1-tw(4)
t€[0,1]

where A is the restriction of the composition operator under consideration to the
reducing subspace zH?, i.e. an operator whose numerical range is a closed disk,
according to the proof of the previous theorem. The term step which appears in

Figure 4 has the same meaning as in the case of Figure 2.
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step = 0.005

step = 0.001

2

Figure 4: The numerical range of Cy for ¢(z) = &

3 More Properties

We call a point z in the closure of a convex subset C C C, an extreme point of C if it
is not in the interior of a line segment with endpoints in C. A point z in the closure
of C is a corner of C if there is a closed angle with vertex at z and aperture angle
smaller than 7 containing C. A support line L of C at z is any line through z such
that C lies in one of the closed half-planes determined by that line.

All the symbols of the composition operators in the previous section, with the
exception of the nonzero, constant ones, had the same, interior fixed point, namely
0. As we saw, the shapes of the numerical ranges were rather diverse. So, one
cannot expect to show that all symbols having the same fixed, interior point, induce

composition operators with numerical ranges of the same shape. However some
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general, common properties can be proved. For instance, in most of our examples
contained by the previous section, 0 was an interior point of the numerical range.
Straight-forward considerations about the spectra of compositions operators lead to

the following.

Remark Zero is an interior point of W(Cy) in each of the following situations.
(1) & has an interior fized point a € D, and ¢'(a) ¢ R
(12) ¢ is univalent, but not a disk automorphism, has an interior fized point,

and Cy is not essentially quasinilpotent (i.e. has positive essential spectral radius).

(141) ¢, not an inner function, is analytic in a neighborhood of the closed unit

disk, has an interior fized point, and Cy is not essentially quasinilpotent.

(iv) @ is inner, not a disk automorphism.

Proof. Under the assumptions in (%), the spectrum of Cy contains the values (¢'(a))",
n > 0, the closure of the numerical range will contain the convex hull of this set of
values, and since ¢'(a) ¢ R, this convex set will be a polygon with 0 in its interior.
(See [1], Theorem 7.32). Under the assumptions in each of the following statements,

0(Cy) contains an open disk centered at 0. (See [1], Chapter 7). O

One can use the examples in the previous section to see that the conditions above
are not necessary in order to have 0 € Int(WW(Cy)). For instance, in Theorem 2.5 we
have symbols ¢ with the properties ¢(0) = 0 and ¢'(0) = 0, hence ¢'(0) € R, but
still 0 is in the interior of W (Cy). Also observe that the operators in Theorem 2.5

are compact.

Theorem 3.1 If C, is a compact composition operator, $(0) = 0, ¢'(0) = 0, and
¢ is not the null function, then 0 is an interior point of W(Cy), and 1 is the only
possible corner of W(Cy).

Proof. Observe that o(Cy) = {0,1} [8], and that, as in the proof of Theorem 2.5,
C is a reducing subspace for Cy4, and Cy can be represented as Cy = 1 & A with

respect to the direct sum decomposition H? = C @ zH?. A denotes of course the
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restriction to zH2. Following M. Embry’s notation [3] we denote for each complex
A\ My = {f € H2:< Cyf, f >= )|f|[*}. 0 € W(Cy) because ¢(z) = zFp(z), k > 2,
9(0) # 0, and < Cyz™, 2" >=< 2F"p"(2), 2" >=< 2™*Vp"(z),1 >= 0. Among
other things, the previous computation shows that 2" € My, ¥n > 1. According to
[3], 0 is an extreme boundary point of W (Cy) if and only if Mj is a linear subspace.
Since M is always closed this last thing would imply zH? C Mj and hence A =0, a
contradiction, since ¢ is not the null function. If we suppose that 0 is a non extreme
boundary point of W (Cy), then one can consider a support line L of W(Cy) at 0,
such that a segment of this line is contained in the boundary of W (Cy), 0 belongs
to this segment, and is not one of the endpoints. The linear space spanned by M,
SpMj is closed and can be represented in the form SpMy = Uxcrp M), [3]. We will
show this generates a contradiction. Indeed zH? C SpMj, so W(A) C L. If W(A)
is a segment, (necessarily containing 0), of a different line than the real line, then
W (Cy) will be a triangle, since it is the convex hull of this segment and the singleton
{1}, because Cy = 1 & A. The corners of this triangle would be in the spectrum of
Cy, [4], 1.5-6., a contradiction. If W(A) is a sub segment of the real line, the convex
hull of this segment and {1} has to be a segment of the real line containing 0 in
its interior, so one of the endpoints of this segment would be neither 0 nor 1. By
the same result in [4], we used above this endpoint would be in 0(Cy), which is a
contradiction. We admit therefore that 0 is an interior point of W(Cy). Any corner

of W(Cjy) has to belong to the spectrum, so only 1, could be a corner. O

Examples in section 2 show that, under the assumptions above 1 can be a corner
of W(Cy) or W(C4) can be without corners. Denoting as in the proof above by A

the restriction of Cy to zH?, we wish to remark the following.

Remark If ¢ satisfies the hypothesis above and ||A|| < 1, then W(Cy) is a closed
cone-like figure i.e. a closed, convex set with nonempty interior and only one corner.

The corner is necessarily at 1. This is always the case when, ¢(0) = ¢'(0) =0, and

|9lloo < 1.
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Proof. Indeed, the inequality ||A|| < 1 implies that W(A) is the subset of a disk
centered at zero of radius less than 1, and by the theorem above W(A) will be
a convex set containing a disk centered at 0. Since W (Cy) is the convex hull of
W(A) and {1}, it will be a closed, convex set with boundary consisting of two line
segments forming an angle with vertex at 1, one contained in the closed upper half-
plane the other in the closed lower half-plane, (each segment not a sub segment of
the real line), and a smooth curve joining the endpoints different from 1 of the two
segments. Clearly this happens if ||¢||cc < 1, because in that case Cj is compact
[8], and ||A|| < 1, since for each f € H2, ||f|| < 1, we can write ||A(zf(2))|| =
Jr 121 0 ¢2 < |9]12]1Csf11? < ||4]% < 1. We took into consideration that C, is
a contraction, because ¢(0) = 0, ([1], or [8]). Above we made the statement that
the numerical range was closed. Recall that compact operators with numerical range

containing zero have closed numerical ranges [2]. O

Another general fact related to the shape of the particular numerical ranges de-

scribed in Theorem 2.5 is the following.

Theorem 3.2 The point 1 is an extreme boundary point of W(Cy) if and only if
$(0) = 0.

Proof. In the following 1 will be regarded as both the scalar 1 and the constant
function 1 € H2. The obvious relation Cy1 =1 shows that 1 is an eigenvalue of any
composition operator, and hence belongs to the numerical range of any composition
operator. If ¢(0) = 0, Cy is a contraction, [1] or [8], and hence 1 is an extreme
boundary point of W(Cy). Conversely, if we know that 1 is an extreme boundary
point of W(Cy), then, using M. Embry’s notation, already introduced in the proof
of Theorem 3.1, we have that M, is linear and hence the intersection of all maximal
linear subspaces of M containing 1 is M; itself. It is our intention to use Theorem 2
in [3]. In that theorem the previously described intersection is denoted K;. Clearly
1 € My, and if L is a support line of W(Cy) at 1, then M; C UyerM,, = N. So
Csl =1 € N. Therefore, by Theorem 2 in [3], C31 = 1. If for each a € D, k, is the
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Szego kernel at a, i.e. the function k,(z) = 1/(1 — az), then ky = 1, and by a well-
known property of composition operators, C;ko = kg(0)- We have 1 =1/(1 - $(0)z),
which is possible only if ¢(0) = 0. O

So theoretically 1 can be a non extreme boundary point or an interior point of
W (Cy) if 0 is not a fixed point of ¢. In connection with this comment we can prove

the following.

Theorem 3.3 If ¢(0) # 0 then 1 is an interior point of W(Cy).

Proof. Consider the compression of Cy to the two-dimensional subspace £ of H 2
spanned by the functions 1 and z. Denote this operator by A. Clearly one eigenfunc-
tion of A is the constant function 1 corresponding to the eigenvalue 1. Observe that

under our assumptions ¢'(0) # 1. Indeed, we have the obvious string of inequalities

18/ (0)] < l¢ll2 < [1lloe < 1.

Therefore, if we suppose ¢'(0) = 1 we get that ¢ must be the identity function,

which is not possible since ¢(0) # 0. We can consider then the function

Z—ﬂ+z.

1—¢/(0)
It is easy to check that v is an eigenfunction of A corresponding to the eigenvalue

¢'(0). Observe that

$(0)
1 =———"_—#0
S0 7
so, by the elliptic range theorem W (A) will contain a non degenerated, closed elliptic
disk with foci 1 and ¢'(0). Since W(A) C W(Cjy), the proof is over. O

Some compact composition operators, like those having symbols of the form
$(z) = X\z*, |A\| < 1, & > 1 have numerical ranges with corners. Some others, like
those with nonzero, constant symbol have numerical ranges without corners. Under
certain assumptions the numerical ranges of compact composition operators are sets

with nonempty interior and smooth boundaries.
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Theorem 3.4 If ¢ a univalent function induces a compact composition operator and
the fized point a € D of ¢ is not 0 then W(Cy) is a set with nonempty interior and

the only corner W(Cy) can have is 0. If in addition, ¢/(a) ¢ R, then W(Cy) has no

COTNETS.

Proof. Theorem 2.4 covers the case when ¢ is constant. Consider the case when ¢ is
not constant. Let o be the Konigs map of Cy (see [1] or [8] for the definition of this
notion). Under the assumptions above we wish to show that ¢(0) # 0. Suppose the
contrary. Denote ¢(™ = godo---0¢, n times. Since Cho = (¢'(a))"o, we deduce
o(¢™(0)) = 0, Vn > 1. This implies that o = 0, because ¢(™(0) — a € D and under
our assumptions the sequence (¢ (0)), is not stationary. This is a contradiction
since o is an eigenfunction of Cy, [1] or [8]. To see (¢(™(0)), is not a stationary
sequence, observe that if $(™ (0) = a for some n > 1, one has ¢ (0) = ¢{™ (a) which
implies ¢ = 0, a contradiction. The fact that 0 is not a fixed point of ¢ implies
that o™ is not orthogonal to 1, Vn > 1. Under our assumptions, the spectrum of Cy
consists of 0, 1, and the eigenvalues (¢'(a))™, which correspond to the eigenfunctions
o™, ¥n > 1, respectively. Recall that ¢'(a) # 1, [8], page 90). For any fixed n, if 1
and ¢'(a)" are distinct, one can apply the elliptic range theorem to the restriction
of Cy4 to the subspace spanned by the eigenfunctions 1 and ¢" getting that W (Cy)
contains a closed, non degenerated elliptical disk of foci 1 and (¢/(a))™. Since the
corners of m are in the spectrum of the operator, [4], only 0 could be a corner.
Under the supplementary assumption ¢'(a) ¢ R, 0 is an interior point of W(Cy), by
(1), so the closure of the numerical range has boundary without corners in this case.

O
The results in this paper circulated in preprint form [6].

Acknowledgement. The initial proof of Theorem 2.4 was lengthy and repeated
some of the steps in the elliptic range theorem. We are indebted to Joel H. Shapiro

for showing us how to improve it.
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