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Cultivating the culture of responsible data science with Model-Cart:
A Human-in-the-Loop approach to model training, evaluation, and deployment with Explainability

Vidit Singh, Dr. Yonas Kassa, Dr. Brian Ricks, Dr. Robin Gandhi
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Our work introduces Model-Cart, an explainable
machine learning framework with human-in-the-
loop that enables more reproducible and

trustworthy data science. With a user-friendly Y [eJo[SMEET1ITa]

interface and quantitative and qualitative model |

explainability techniques, our framework can Built on Miflow to leverage state-of-the-art Flow Diagram fo he Model-Car
improve the justifiability of ML model selection in ML pipeline — streamlines training. SRR ~EHEE | |
high-stakes settings. / e
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Model Deployment

Ready to deploy prioritized models with detailed model
reports including a dataset report (w pandas Profiling).
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Add Selected to Cart

Trained ML models with
quantitative evaluation results. i~
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Model Evaluation: multiple dimensions considered

ML Models in
critical domains

Performance Metrics

Human Expert Observation

~ ANALYST1 Notes

The XGBClassifier model seems to have been trained efficiently for a diagnostic task,
achieving commendable accuracy. Its feature importance, as indicated by the SHAP values,
points to certain parameters that are crucial for predictions. Depending on the context and
application, some fine-tuning might further enhance its performance. Overall, the model

appears well-optimized and robust. ! ANALYST1 = Cart

Experiment ID: 512892785488297218

ANALYSTI Experiment Comparison Notes:

Upon com paring the models, the y all demonstrate com parable performance scores, indicatin g their similar
proficienc y on the dataset. While their SHAP values reveal variances in feature influence, the time taken for
training remains in a close ran ge. This assessment su ggests that, de pendin g on specific use cases or constraints
(lik me app ) might a model w g tim P y p Y
models with hi gher SHAP values for s pecific features might be preferred

ML models are integral components of data science in
multiple domains
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