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Palindrome-Polynomials with Roots on the
Unit Circle

John Konvalina and Valentin Matache

Abstract

Given a polynomial f(x) of degree n, let f r(x) denote its reciprocal, i.e.,
f r(x) = xnf(1/x). If a polynomial is equal to its reciprocal, we call it a
palindrome since the coefficients are the same when read backwards or for-
wards. In this mathematical note we show that palindromes whose coeffi-
cients satisfy a certain magnitude-condition must have a root on the unit
circle. More exactly our main result is the following. If a palindrome f(x)
of even degree n with real coefficients ε0, ε1, . . . , εn satisfies the condition
|εk| ≥ |εn/2| cos(π/([ n/2

n/2−k
] + 2)), for some k ∈ {0, 1, . . . n/2 − 1}, then f(x)

has unimodular roots. In particular, palindromes with coefficients 0 and 1
always have a root on the unit circle.

Résumé

Soit f(x) un polynôme de degré n. Soit f r(x) = xnf(1/x). Le polynôme
f(x) s’appelle polynôme réciproque si f r(x) = f(x). Dans cet article nous
prouvons que les polynômes réciproques dont les coefficients possèdent une
certaine propriété, ont des zéros sur le cercle unité, c’est à dire ont des zeros
de valeur absolue 1. Notre principal résultat est le théorème suivant. Soit
f(x) un polynôme réciproque dont le degré n est pair et dont les coefficients

ε0, ε1, . . . , εn sont des nombres réels tels que |εk| ≥ |εn/2| cos(π/([ n/2
n/2−k

] + 2)),

pour au moins une valeur de k ∈ {0, 1, . . . n/2−1}. Tel pôlynome f(x) posède
des zéros de valeur absolue 1. Pour cosequence, chaque polynôme réciproque
avec des coefficients 0 et 1 a des zéros sur le cercle unité.

2000 Mathematics Subject Classification. Primary 12D10; Secondary 30C15.
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1 INTRODUCTION

We arrived at an interesting geometric property of palindrome-polynomials,
i.e. of polynomials whose coefficients are the same when read backwards
or forwards, by investigating polynomials with coefficients 0 and 1 or (0, 1)-
polynomials. They are interesting because of their applications in various
areas of pure and applied mathematics including algebra, number theory,
combinatorics, and coding theory. Computer-assisted experiments lead us to
conjecture that (0, 1)-palindromes necessarily have at least one unimodular
root, that is, have a root of absolute value 1 . In the sequel we will prove not
only that this conjecture is true but that palindromes with real coefficients
often have roots on the unit circle. This introductory section is dedicated
to setting up notations and terminology. The second section contains the
main results of the article. We begin by defining the notion of palindrome.
Given a polynomial f(x) of degree n, let f r(x) denote its reciprocal, i.e.,
f r(x) = xnf(1/x). If a polynomial is equal to its reciprocal, we call it
a palindrome-polynomial or simply a palindrome. In the next section we
establish rather easily the following. Let f(x) ∈ R[X] be a palindrome having
even degree n and null middle coefficient. Then the polynomial f(x) has
unimodular roots, (Lemma 2). Note that the existence of unimodular roots
is interesting only for palindromes of even degree, because if the degree is
odd, obviously −1 is a root. By R[X] we denote the ring of polynomials of
one variable with coefficients in R, the field of real numbers. If the middle
coefficient is not null, a palindrome with real coefficients may lack unimodular
roots, (consider e.g. f(x) = x2 − 3x + 1). It turns out that the relative size
of the middle coefficient with respect to the other coefficients is important
for the existence of unimodular roots, only the proof of this fact relies on
deeper results on cosine polynomials going back to Féjer, Riesz, and Szegö.
For each real x let [x] denote the largest integer which is less than or equal
to x. The main result proved in Section 2 is the following.

Let f(x) =
∑n

k=0 εkx
k, with εj = εn−j, ∀j = 0, 1, . . . , n/2 be a palindrome

having even degree n. If there exists k ∈ {0, 1, . . . , n/2− 1} such that

|εk| ≥ |εn/2| cos

(
π

[ n/2
n/2−k

] + 2

)
,

then f(x) has unimodular roots (Theorem 1).
In particular, (0, 1)-palindromes of any degree have roots on the unit

circle, (Corollary 1).
Another consequence of Theorem 1 is the following.
Let f(x) be a palindrome with real coefficients, having even degree n. If

2|εn| ≥ |εn/2| then f(x) has unimodular roots, (Corollary 2).

2



2 PALINDROMES AND THEIR ZEROS

Our approach is based on the following classical construction. Denoting
u = x + 1/x we associate to each palindrome f(x) ∈ R[X] having even
degree n the polynomial g(u) uniquely determined by the following identity.

f(x) = xn/2g(u) (1)

Several comments are in order here. For each k = 1, 2, . . . we denote σk(x) =
xk + 1/xk. For k = 0 we set σ0(x) = 1. Observe that σ1(x) = u and that the
following identity holds.

uk = σk(x) +
∑

1≤j≤k/2

σk−2j(x)

(
k

j

)
k = 2, 3, . . . (2)

Let f(x) =
∑n

k=0 εkx
k, with εj = εn−j, ∀j = 0, 1, . . . , n/2. Note that

f(x) = xn/2h(x) where h(x) =

n/2∑

k=0

εkσn/2−k(x). (3)

Equations (2) and (3) prove that g(u) exists and is uniquely determined.
After these preparations we can prove the following lemma, which appears
also in [3], in essentially the same form. We include it with proof, to make
the paper self-contained.

Lemma 1 Let f(x) ∈ R[X] and g(u) ∈ R[U ] be as above. The polynomial
f(x) has a unimodular root if and only if the polynomial g(u) has a real
root in the interval [−2, 2], respectively if and only if the following cosine
polynomial has real zeros.

ϕ(x) = εn/2 +

n/2−1∑

k=0

2εk cos((n/2− k)x) (4)

Proof. If z = eiθ is a unimodular root of f(x) then u = 2 cos θ is a root of g(u)
and clearly −2 ≤ u ≤ 2. Conversely if g(u) has a root, u ∈ [−2, 2], then there
exists θ ∈ R such that 2 cos θ = u. Let z = eiθ, then z is a unimodular root
of f(x). The fact that the existence of unimodular roots for the palindrome
under consideration is equivalent to the existence of zeros for the cosine
polynomial in (4) is an immediate consequence of the considerations above,
equality (3), and the fact that if x = eiθ then σk(x) = 2 cos kθ if k ≥ 1.

Based on the previous remarks we can prove the existence of unimodular
roots for arbitrary palindromes with real coefficients, having even degree, and
null middle-term. More exactly the following is true.
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Lemma 2 Let f(x) ∈ R[X] be a palindrome having even degree n and such
that εn/2 = 0. Then the polynomial f(x) has unimodular roots.

Proof. By Lemma 1 it will suffice to show that a cosine polynomial of the
form

ϕ(x) =

n/2−1∑

k=0

εk cos((n/2− k)x)

with real coefficients εk, necessarily has a zero in the interval [0, 2π]. The
later is an immediate consequence of the fact that the integral of ϕ(x) on
[0, 2π] equals 0 and ϕ(x) is a continuous function.

As we observed in the introduction, if the middle coefficient is not null, a
palindrome with real coefficients may fail to have unimodular roots. However,
the relative size of the middle coefficient with respect to the other coefficients
matters here. The crucial inequality needed in the proof of our next and main
result is sometimes known as the Egerváry-Szász Inequality. It states that a
non-negative cosine polynomial of the form

1

2
+

n∑

k=1

ak cos kx an 6= 0

has the property

|ak| ≤ cos

(
π

[n/k] + 2

)
k ∈ {1, 2, . . . , n}

(see [1], [4]).

Theorem 1 Let f(x) be a palindrome with real coefficients, having even de-
gree n, such that for some k ∈ {0, 1, . . . , n/2− 1} the following condition is
satisfied

|εk| ≥ cos

(
π

[ n/2
n/2−k

] + 2

)
|εn/2|. (5)

Such a palindrome has unimodular roots.

Proof. The case εn/2 = 0 is covered by Lemma 2. Let us consider the case
εn/2 6= 0. Since f(x) and −f(x) have the same roots we can assume without
loss of generality that εn/2 > 0. Denote by ϕ(x) the cosine polynomial in
equality (4). Since the integral of ϕ(x) on [0, 2π] is positive, it follows that
ϕ(x) attains positive values on that interval. Thus, the only way it can
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have no zeros would be if it is a positive cosine polynomial. Assume by
contradiction that this is the case, and observe that the following cosine
polynomial, φ(x), is also positive.

φ(x) = 1/2 +

n/2−1∑

k=0

εk

εn/2

cos((n/2− k)x)

Let δ = min{φ(x) : x ∈ [0, 2π]}. Observe that 0 < δ < 1/2. Indeed,
φ(x) − 1/2 is not the null function on [0, 2π] and has null integral on that
interval, thus φ(x) − 1/2, being a continuous function, must assume both
positive and negative values. Therefore the following cosine polynomial is
non-negative on R

1/2 +

n/2−1∑

k=0

εk

2εn/2(1/2− δ)
cos((n/2− k)x).

By the Egerváry-Szász Inequality, in such a case one should have the following
inequality satisfied for each k ∈ {0, 1, . . . , n/2− 1}

∣∣∣∣
εk

εn/2(1− 2δ)

∣∣∣∣ ≤ cos

(
π

[ n/2
n/2−k

] + 2

)
.

This leads to the fact that for each k ∈ {0, 1, . . . , n/2− 1} one can write

∣∣∣∣
εk

εn/2

∣∣∣∣ ≤ cos

(
π

[ n/2
n/2−k

] + 2

)
(1− 2δ) < cos

(
π

[ n/2
n/2−k

] + 2

)
,

which is contradictory under our assumptions.

Corollary 1 Let f(x) be a palindrome with real coefficients, having even
degree n, such that

max{|εk| : k ∈ {0, 1, . . . , n/2− 1}} ≥ |εn/2|.
Such a palindrome has unimodular roots. In particular, (0, 1)-palindromes of
any degree have roots on the unit circle.

Proof. The statement above is a direct consequence of Theorem 1 and the
well-known fact that

cos

(
π

[ n/2
n/2−k

] + 2

)
≤ 1, k ∈ {0, 1, . . . , n/2− 1}.
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Corollary 2 Let f(x) be a palindrome with real coefficients, having even
degree n. If

2|εn| ≥ |εn/2| (6)

then f(x) has unimodular roots.

Proof. Enter k = 0 in inequality (5) and recall that εn = ε0.

The author of [2] proves that palindromes of the form

l(zn + zn−1 + · · ·+ z + 1) +

[n
2 ]∑

k=1

ak(z
n−k + zk) (7)

have all their roots on the unit circle if their coefficients satisfy the following
condition

|l| ≥ 2

[n
2 ]∑

k=1

|ak|. (8)

Palindromes of the form (7) are important because of their role in the in-
vestigation of spectral properties of the Coxeter transformation of certain
oriented graphs. If one needs that palindromes of form (7) have some, (not
necessarily all), roots on the unit circle, then the following less restrictive
version of condition (8) can be proved.

Corollary 3 Even degree palindromes of the form (7) have unimodular roots
if

|l| ≥ 2|an/2|. (9)

Proof. Note that the middle coefficient of such a palindrome is 2an/2 + l and
that if (9) holds then

|2an/2 + l| ≤ 2|an/2|+ |l| ≤ 2|l|,

that is (6) holds and hence the palidrome under consideration must have
unimodular roots.

The statement in Theorem 1 does not extend to palindromes with complex
coefficients. Indeed, consider f(z) = z2 + iz +1. The condition in Theorem 1
is sufficient, but not necessary, for the existence of unimodular roots. Indeed,
consider h(x) = −2x4−2x3+5x2−2x−2 and use Lemma 1 to show that it has
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unimodular roots. Obviously this palindrome does not satisfy the condition
in Theorem 1.
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