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Structural, magnetic, and electron transport properties of MnBi:Fe thin films

P. Kharel,1,2,a) X. Z. Li,2 V. R. Shah,2 N. Al-Aqtash,3 K. Tarawneh,4 R. F. Sabirianov,2,3

R. Skomski,1,2 and D. J. Sellmyer1,2

1Department of Physics and Astronomy, University of Nebraska, Lincoln, Nebraska 68588, USA
2Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, Nebraska 68588, USA
3Department of Physics and Astronomy, University of Nebraska, Omaha, Nebraska 68182, USA
4Department of Science and Humanities, Princes Sumaya University for Technology (PSUT) Amman, Jordan

(Presented 1 November 2011; received 23 September 2011; accepted 4 November 2011; published

online 1 March 2012)

The structural, magnetic, and electron transport properties of Mn55�xFexBi45 (x¼ 0, 2, 4, 5, 8, 11, 13,

16) films prepared by multilayer deposition and annealing using e-beam evaporation have been inves-

tigated. Fe doping has produced a significant change in the magnetic properties of the samples includ-

ing the decrease in saturation magnetization and magnetocrystalline anisotropy and increase in

coercivity. Although the magnetization shows a smooth decrease with increasing Fe concentration,

the coercivity jumps abruptly from 8.5 kOe to 22 kOe as Fe content changes from 4% to 5%, but the

change in coercivity is small as the concentration goes beyond 5%. The temperature dependence of

resistivity shows that the samples with low Fe concentration (�4%) are metallic, but the resistivity

increases unexpectedly as the concentration reaches 5%, where the resistance increases with

decreasing temperature below 300 K. First-principle calculations suggest that the observed magnetic

properties can be understood as the consequences of competing ferromagnetic and antiferromagnetic

exchange interactions between the interstitial atom and the rest of the MnBi lattice. VC 2012 American
Institute of Physics. [doi:10.1063/1.3675615]

MnBi is one of the few ferromagnetic manganese com-

pounds that has a Curie temperature well above room tem-

perature1 and has appreciable coercivity that increases with

increasing temperature.2,3 In thin films, MnBi shows a large

room temperature magnetocrystalline anisotropy perpendicu-

lar to the film plane.4 Because these properties are promising

for permanent-magnet applications, MnBi has attracted

much attention as a potential non-rare-earth material for per-

manent magnets.3,5–7 Other interesting properties of this ma-

terial in thin films include an extraordinarily large Kerr

rotation,8 high value of transport spin polarization,9 and an

unusual spin correlations leading to Kondo effect when

doped with heavy and noble metals such as Pt and Au.10,11

Recently, there have been efforts to improve the structural

and magnetic properties of this material with the substitution

of a third element, which has stimulated the current work.

Here, we present our experimental investigations on the

effect of Fe impurity on the structural, magnetic and electron

transport properties of MnBi films.

Fe-doped MnBi films with a range of Fe concentrations

were prepared on glass substrates using an e-beam evapora-

tion system. The multilayer films were deposited at a base

pressure of 6� 10�9 Torr, and the substrate temperature of

125 �C. A thin layer of Bi was first deposited onto the hot

glass substrate, and alternate layers of Mn and Fe were

deposited on the Bi base-layer. The multilayer samples were

annealed in situ after deposition in two steps: first at 290 �C
for 2 h and then at 410 �C for 1 h before slowly cooled to

room temperature. The elemental compositions of the sam-

ples were estimated from the deposition layer thicknesses.

The data presented here were collected on the samples of

thickness about 47 nm and atomic compositions of

Mn55�xFexBi45 (x¼ 0, 2, 4, 5, 8, 11, 13, 16) as determined

by the energy dispersive x-ray spectroscopy (EDX). We used

x-ray powder diffraction (XRD) and transmission electron

microscopy (TEM) to investigate the crystal structure and

the Quantum Design magnetic property measurement system

(MPMS) was used to study the magnetic properties.

Figure 1 shows x-ray diffraction patterns of four represen-

tative samples with Fe concentrations 0%, 4%, 8%, and 13%.

All Mn55�xFexBi45 films are single phase MnBi with the hex-

agonal NiAs structure and are highly c-axis textured, but

traces of unreacted Bi have been found in samples with higher

Fe concentration. Although all the samples maintain c-axis

texture, Fe substitution has produced significant change in the

c-axis lattice parameter (c). The values of c were calculated

from the positions of (002) reflections in the XRD patterns

[see inset (a) of Fig. 1]. As shown in inset (b) of Fig. 1, the c-

parameter increases systematically as Fe concentration

increases up to 8% and then decreases with further increase in

the amount of Fe. This suggests that Fe atoms occupy the

MnBi lattice for low concentrations of Fe, but probably Fe

separates out into clusters as the concentration exceeds 11%.

Interestingly, the full width at half maximum (FWHM) of

(002) Bragg peak has been found to decrease with increasing

Fe substitution as seen from the rocking curves [see inset (c)

of Fig. 1]. The decrease in FWHM with increase in Fe content

may indicate that the mosaic blocks are getting oriented

parallel to the film plane. This argument is partially supported

by our TEM observation that Mn55�xFexBi45 grows in rod-

like crystallites for higher Fe concentration. The decrease in

intensity can be attributed to the decrease in vertical coher-

ence where interstitial occupation of the atoms may cause
a)Author to whom correspondence should be addressed. Electronic mail:

pkharel2@unl.edu.
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some disorder in the lattice resulting in the loss of scattered

intensity.

To better understand the effect of Fe doping on the crys-

tal structure of MnBi, we have performed TEM studies on

two sets of MnBi samples: one without Fe and the other with

5% Fe. The TEM specimens were prepared by mechanical

polishing and ion-beam milling. We have found a significant

change in the particle size and crystal structure of MnBi

films due to Fe doping [Figures 2(a) and 2(c)]. The film with-

out Fe is composed of small particles of size between 20 nm

and 150 nm, whereas the sample with 5% Fe consists of

1 lm to 2 lm long rod-like structures. This is consistent with

the XRD result that the width of the rocking curves in Fe

doped samples decrease as Fe concentration increases. The

selected area electron diffraction (SAED) pattern of

Mn55Bi45 film agrees well with its XRD pattern confirming

the hexagonal NiAs structure [Fig. 2(b)]. While the XRD

patterns of Fe substituted samples are also consistent with

the NiAs structure, the SAED pattern of the 5% Fe substi-

tuted sample is slightly different and shows an orthorhombic

distortion in the crystal lattice [Fig. 2(d)]. MnBi in the high-

temperature phase, where a fraction of Mn atoms occupy the

interstitial sites, crystallizes in the distorted NiAs or

orthorhombic structure.4 This suggests that there is a partial

occupation of interstitial sites by Mn or Fe atoms.

We have found a significant change in the magnetic

properties of MnBi films due to Fe substitution. The out-of-

plane M(H) hysteresis loops are almost rectangular for all

the films, but the samples with higher Fe concentrations

(�11%) show a signature of mixed phase. Figure 3 illustrates

the room-temperature M(H) loops of some selected samples,

and the inset shows the loop of the sample with highest Fe

concentration of 16%, which suggests that the sample con-

tains exchange-coupled hard and soft phases. We believe

that the Fe atoms that are not incorporated into MnBi lattice

have soft magnetic properties in these films. Figure 4

illustrates the effect of Fe substitution in magnetization,

anisotropy energy, and coercivity of MnBi films. At room

temperature, the saturation magnetization (Ms) of MnBi film

is 580 emu=cm3; this decreases monotonically with increasing

Fe concentration and reaches 154 emu=cm3 as Fe con-

centration reaches 11%. Beyond 11%, Ms shows a sluggish

increase perhaps due to the presence of small amount of

unreacted Fe in the films. The room-temperature anisotropy

energy (Ku¼K1þK2) also shows similar dependence on

Fe concentration where Ku decreases from 1.6� 107 to

3.6� 106 ergs=cm3 as Fe concentration increases from 0

to 11% (see the inset of Fig. 4). The anisotropy constants

K1 and K2 were calculated using E¼K1 sin2 hþK2 sin4

h - H Ms sin h and the Sucksmith–Thompson method12 where

E is the energy density, Ms is the saturation magnetization,

and h is the angle between easy axis and magnetization.

To understand the observed structural and magnetic

properties of Fe substituted MnBi films, we performed first-

principle calculations of 3.125% Fe doped MnBi in a

Mn15Fe1Bi16 supercell of 32 atoms using the projector aug-

mented wave method,13,14 within a Perdew-Burke-Ernzerhof

generalized gradient approximation15 of the density func-

tional theory. The simulations were performed using periodic

boundary conditions. We used 6� 6� 6 k-point sampling,

and the atomic positions of all atoms in the unit cells were

relaxed using the Hellmann–Feynman scheme till forces

were less than 0.005 eV=Å. We have evaluated the change in

total energy and magnetization of the system as Fe occupies

various possible lattice sites. We considered three structural

arrangements: (i) ordered structure where Fe replaces one of

the Mn in the regular lattice site, (ii) disordered structure

FIG. 1. (Color online) X-ray diffraction patterns of Mn55�xFexBi45 (x¼ 0,

4, 8, 13) films. Inset (a) shows the close-up view of the most intense (002)

peak. The Fe concentration dependence of the c-axis lattice parameters and

the full width at half maximum (FWHM) of the rocking curves are shown in

insets (b) and (c), respectively.

FIG. 2. TEM bright field images of the specimens prepared from Mn55Bi45

and Mn50Fe5Bi45 films are shown in (a) and (c) and the corresponding

SAED patterns are shown in (b) and (d), respectively.

FIG. 3. (Color online) The out-of-plane magnetization of Mn55�xFexBi45

(x¼ 0, 4, 8, 13) films as a function of magnetic field measured at room temper-

ature. The inset shows the room temperature M(H) loop of Mn39Fe16Bi45 film.
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where Fe occupies interstitial site with one of the lattice sites

empty, and (iii) disordered structure where Fe replaces Mn

in the lattice site and Mn occupies the interstitial site. We

have examined both ferromagnetic (FM) and antiferromag-

netic (AFM) couplings between the interstitial and regular

lattice moments. Similar investigation where MnBi is doped

with a heavy and noble element can be found elsewhere.10

Table 1 summarizes the calculated values of total energy

and magnetization for the aforementioned structural arrange-

ments along with the values for undoped MnBi. We have found

that the total energy has smallest value for structure (i) where the

substituted iron shows FM interaction with the rest of the Mn lat-

tice. But the magnetization decrease of 2.2% in this case does

not agree with our experimental result. However, the magnetiza-

tion decrease of 15.5% in structure (iii), where interstitial Mn

shows AFM coupling with the rest of the magnetic moments

(AFM2 in the table), compares well with the magnetization

decrease of 13% observed experimentally for 3% Fe doping.

This suggests that the magnetic structures in our samples are

more complex than the one considered in the calculation.

The coercivity (Hc) of a permanent magnet is expected

to scale roughly with anisotropy field given by HA¼ 2

K1=Ms. However, in binary alloys with impurity doping, the

defect structure of the material plays an important role in

determining the coercivity. In our case, the jump at 5% is

probably caused by domain wall pinning at crystalline inho-

mogeneities that start to form around this concentration. The

coercivity and magnetization plateau above 11% Fe indicate

a phase separation between hard and soft phases. In this

region, the coercivity is determined by the magnetization

and anisotropy of the hard phase, and there is little change in

the hysteretic behavior (see Fig. 4).

In addition to the structural and magnetic properties, we

have investigated the electron-transport properties of the

films. As shown in Fig. 5, the temperature dependence of re-

sistivity between 4 K and 300 K shows that the films with

low Fe concentration (up to 4%) are metallic (dq=dT> 0),

but the resistivity changes dramatically as the concentration

increases beyond 4%. Below 300 K, a monotonic increase in

the resistance of the Mn55�xFexBi45(x� 5) films has been

observed with decreasing temperature (dq=dT< 0). Because

we did not find a significant change in the electronic struc-

ture due to Fe doping as seen from the first-principle calcula-

tions (not shown), we believe that the large change in

resistivity behavior of samples having high Fe concentration

(x� 5) is due to the change in the granular structure of the

films as shown in Fig. 2(c).

In summary, we have investigated the structural, mag-

netic, and electron-transport properties of MnBi films doped

with a wide range of Fe concentrations and found an interest-

ing correlation between Fe content and the structural,

magnetic and electron transport properties. Fe doping has pro-

duced a significant change in the magnetic properties of the

samples including the decrease in saturation magnetization

and magnetocrystalline anisotropy and increase in coercivity.

We explain these effects as the consequences of the compet-

ing ferromagnetic and antiferromagnetic exchange interac-

tions of the interstitial atoms with the rest of the MnBi lattice.
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2U. Rüdiger and G. Güntherodt, J. Appl. Phys. 88, 4221 (2000).
3J. B. Yang et al., J. Phys.: Condens. Matter 14, 6509 (2002).
4T. Chen and W. E. Stutius, IEEE Trans. Magn. 10, 581 (1974).
5S. Cao et al., J. Appl. Phys. 109, 07A740 (2011).
6J. B. Yang et al., Appl. Phys. Lett. 99, 082505 (2011).
7Y. Liu et al., Phys. Rev. B 72, 214410 (2005).
8G. Q. Di et al., J. Magn. Magn. Mater. 104, 1023 (1992).
9P. Kharel et al., Phys. Rev. B 83, 024415 (2011).

10P. Kharel et al., Phys. Rev. B 84, 014431 (2011).
11P. Kharel et al., J. Appl. Phys. 109, 07B709 (2011).
12R. Skomski and J. M. D. Coey, Permanent Magnetism (IOP, Bristol, 1999).
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FIG. 4. (Color online) The room temperature saturation magnetization (scale

on the left) and coercivity (scale on the right) as a function of Fe concentration

for Mn55�xFexBi45 films. Inset shows the change in anisotropy constants K1

and K2 of MnBi films as Fe concentration increases from 0% to 16%.

TABLE I. Total energies (Etot) and magnetizations (M) per unit cell of 32

atoms. FM and AFM correspond to the parallel and antiparrell alignment of

Fe moment with the rest of the Mn moments. AFM2 corresponds to a special

situation where Fe moment aligns parallel to the lattice Mn and antiparallel

to the interstitial Mn moment.

Etot (eV) M (lB)

Mn16Bi16 �200.1808 56.30

Mn15Fe1Bi16

Structure (i)

FM �198.86476 55.06

AFM �198.49024 51.33

Mn15Fe1Bi16

Structure (ii)

FM � 198.79200 53.76

AFM �198.43747 50.66

Mn15Fe1Bi16 FM �198.22034 52.93

Structure (iii) AFM1(Fe;, Mn;) �197.8708 41.97

AFM2(Fe:, Mn;) �198.3034 47.57

FIG. 5. (Color online) Temperature dependence of electrical resistivity of

four representative Mn55�xFexBi45 samples with x¼ 0, 4, 5, and 8.
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