UNIVERSITY JOF
e ras University of Nebraska at Omaha

Omaha DigitalCommons@UNO

Computer Science Faculty Publications Department of Computer Science

6-1999

On the Geometries of Conic Section Representation of Noisy
Object Boundaries

Qiuming Zhu
University of Nebraska at Omaha, qzhu@unomaha.edu

Follow this and additional works at: https://digitalcommons.unomaha.edu/compscifacpub

6‘ Part of the Computer Sciences Commons
Please take our feedback survey at: https://unomaha.az1.qualtrics.com/jfe/form/
SV_8cchtFmpDyGfBLE

Recommended Citation

Zhu, Qiuming, "On the Geometries of Conic Section Representation of Noisy Object Boundaries" (1999).
Computer Science Faculty Publications. 48.

https://digitalcommons.unomaha.edu/compscifacpub/48

This Article is brought to you for free and open access by

the Department of Computer Science at

DigitalCommons@UNO. It has been accepted for

inclusion in Computer Science Faculty Publications by an

authorized administrator of DigitalCommons@UNO. For r
more information, please contact @

unodigitalcommons@unomaha.edu.


http://www.unomaha.edu/
http://www.unomaha.edu/
https://digitalcommons.unomaha.edu/
https://digitalcommons.unomaha.edu/compscifacpub
https://digitalcommons.unomaha.edu/compsci
https://digitalcommons.unomaha.edu/compscifacpub?utm_source=digitalcommons.unomaha.edu%2Fcompscifacpub%2F48&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unomaha.edu%2Fcompscifacpub%2F48&utm_medium=PDF&utm_campaign=PDFCoverPages
https://unomaha.az1.qualtrics.com/jfe/form/SV_8cchtFmpDyGfBLE
https://unomaha.az1.qualtrics.com/jfe/form/SV_8cchtFmpDyGfBLE
https://digitalcommons.unomaha.edu/compscifacpub/48?utm_source=digitalcommons.unomaha.edu%2Fcompscifacpub%2F48&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:unodigitalcommons@unomaha.edu
http://library.unomaha.edu/
http://library.unomaha.edu/

On the Geometries of Conic Section
Representation of Noisy Object Boundaries

Qiuming Zhu

Digital Imaging and Computer Vision Laboratory, Department of Computer Science, University
of Nebraska at Omaha, Omaha, Nebraska 68182
E-mail: zhug@unomaha.edu

This paperstudiessomegeometricapropertiesof conicsectionsandthe utiliza-
tion of thesepropertiesfor the generatiorof conicsectionrepresentationsf object
boundariesin digital images.Severalgeometricalfeaturesof the conic sections,
suchasthe chord, the characteristigoint, the guiding triangles,andtheir appear-
ancesunderthetessellatiorandnoisecorruptionof thedigital imagesarediscussed.
The studyleadsto a noniterativealgorithmthat takesadvantageof thesefeatures
in the processof formulatingthe conic sectionparametersnd generatinghe ap-
proximationsof objectboundariefrom the given sequencesf edgepixelsin the
images.Theresultscanbe optimizedwith respecto certaindifferentcriteriaof the
fittings.

1. INTRODUCTION

It has long been known that information about the object shapes is largely conveyed
the curving of the object’s boundary edges [27]. Human vision systems rely heavily on’
use of the boundary shapes to recognize objects. Many machine vision systems also ad
the same strategy to perform most of the object recognition tasks. Finding an appropr
set of simple and regular curve segments to describe the geometrical appearances of «
boundaries in digital images thus is often an indispensable step in a computer vision proc
The objective of the step is to use a minimum number of curve pieces to approximate
object’'s boundary edges with minimum distortion, thus enabling a precise and accul
analysis of the boundaries of the objects.

Modeling object boundaries by conic sections or other kind of curve approximatio
has been studied by computer vision researchers for many years under the general
of curve fitting [1, 2, 5, 12, 17-19, 22, 24]. Higher-order curve approximations, such
the cubic bezier and B-splines [3, 8, 13, 21] curves are commonly used. Though a sm
and precise boundary model results, these higher-order curves require complex expres
and intensive computation. They are therefore more often used in computer-aided de
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applications.On the other hand, conic section representation of object boundaries |
the advantage of simplicity, popularity, and efficiency [9, 14, 20, 23]. The conic sectic
are, therefore, the most frequently used curve forms, besides the piece-wise straight
segments, used for approximating the object boundaries in computer vision applicatiol

Conic curves fall into three classes, namely hyperbolas, parabolas, and ellipses (col
ering the circle as a special case of ellipse). A conic curve is described on a planar sur
in an algebraic expression

f(x, y) = ax? + by? + 2hxy+ 2ux + 2vy +d = 0. (1.1)

A conic section is often defined on Eq. (1.1) with two terminating pofits- (Xo, Yo) and
X1=(X1, y1) additionally specified, wheng < X < X1, Yo <Y < 1. Equation (1.1) can be
written in matrix form as

f(x,y) = XQX' =0, (1.2)

whereX =[x, y, 1] and theX' denotes the transposeXfWe have in Eg. (1.2Xg < X < X1
and

a h u
Q=|h b v|. (1.3)
u v d

Itis required that th€ be a nonsingular matrix fof (x, y) to be a valid conic section. That

is, the conditions det(Q¥ 0 and &+b) # 0 must be satisfied. This leads to an important fac
that, although an algebraic equation of the form (1.1) can always be derived from solving
simultaneous equations defined on five distinct data points in a 2D space, the result doe
necessarily represent a valid conic curve, or a section [15, 16]. The problemis especially
nificant to the approximation or recovering of conic sections on object boundaries in dig
images. Itis because the edge pixels on object boundaries are tessellated in discrete pos
of integer values in a digitalimage. In this tessellation, a large percentage of the points or
curve are displaced from their original positions defined in the mathematical expressi
A valid conic section thus is not always guaranteed from the solutions of Eq. (1.1) w
respect to five arbitrarily picked points from the edge pixels that are even on the con
boundary of an object. Though the edges seem smoother in the higher resolution image
those shown in Fig. 1.1, the increase of image resolution would not eliminate this proble
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FIG.1.1. Curve distorted because of pixel tessellation in images: (a) an ellipse ixd 2@esolution; (b) an
ellipse in a 40« 16 resolution; (c) an ellipse in a 12832 resolution.
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FIG.1.2. Pointsonaconic curve are displacedinimages because of noise: (a) an ellipsid2a 2&olution,
(b) an ellipse in a 4& 16 resolution; and (c) an ellipse in a 1R&2 resolution.

i
omm O IOP
srmmite

Another problem needs to be considered is the displacement of the edge pixels caust
the noise corruption of the image. The situation is illustrated in Fig. 1.2, where edge pix
are further deviated from their real curve positions because of the effect of noises.

The factthatimage pixels on an object boundary are tessellated in integer values and r
displacement makes it difficult and sometimes impossible to identify the conic sections
directly solving the algebraic equations of (1.1), it is therefore necessary to have sc
algorithms that capture the essential features of the conic sections under tessellatior
noise, so their expressions can be derived by applying a certain approximation techni
Several techniques on these aspects were reported. Techniques based on the least-s
error fitting were the most commonly studied ones [6, 14, 17, 25]. Iterative procedu
were usually applied in these techniques to derive the parameters of the curve sections
the processes of gradually reducing the fitting errors between the given set of pixels
the resulting curves. Several authors have pointed out the problem of statistical bic
inherent in the least-square types of conic fitting [11, 12]. To remedy the problem, Kanat
[11] suggested applying a renormalization technique based on a statistical model of noi
However, problems with respect to the computational complexity and the discontinuity
the resulting object boundaries remain the same. Techniques based on Hough transform
[4, 10] provide an alternative. The techniques tried to fit the boundaries by first convert
the edge pixels to a parametric space and then derive the curve parameters from a stati
accountof the edge pixel distributions in the space. The major problem with these technic
is the precision of the fitted curve sections thatis constrained by the dimension and resolt
of the parametric spaces. The scale-up generality of these approaches is therefore
limited.

In this paper, we start with a study of some geometrical properties of the conic sectic
Based on the study, an approach for approximating the object boundaries that util
some of the specific geometrical properties of the conic sections is described. The p:
is organized as follows. Section 2 examines the specific geometrical properties of cc
sections. Section 3 discusses how these properties can be used in deriving the fe
parameters of conic sections from given sets of image pixels. A generalized guiding triar
(GGT) approach is described. Algorithms for generate the conic approximation of obj
boundaries are presented in Section 4. Section 5 presents some experimental exan
Section 6 contains conclusion remarks. Proofs of some of the geometrical properties o
conic sections and their applicability in the approximation of object boundaries are incluc
in the appendices.



FIG. 2.1. Chordspp—pz andpi—p3 0On a conic sectio.

2. THE CHORD, GUIDING TRIANGLE, AND SHOULDER POINTS
OF CONIC SECTIONS

1. The Chord

Given any two points on a conic section, gayandp,, achordis the line segment that
connects these two points. Denote the chorpeaps, it has the property that points on the
conic between thgy andp; all lay at one side of thpo—p;. Figure 2.1 shows the chords
po—p2 andp;—ps of a conic sectiorC.

Arbitrarily choosing one poirfip on a conic section and constructing chords that conne
po to its consequent pointsy, P2, P3, - - ., Pn ON the conic section, we have a sequence
of chords, named g%—p1, Po—P2, Po—P3, - - - , Po—Pn- Let the symbol «” stands for the
geometrical relation “left-of” and:$>" stands for “right-of” between any two chords viewed
in a clockwise direction. We see that these chords form either one of two patterns:

(i) in clockwise directionpg—p1 < Po—p2 < Po—P3 <K - - - < Po—Pn, OF (2.1)
(i) in counterclockwise directiorpo—p1 3> Po—P2 > Po—Ps > - > Po—Pn. (2.2)

They are illustrated in Fig. 2.2

2. The Guiding Triangle

Itis known that any conic section can be defined lgwaling triangle(GT) [14] such as
the one shown in Fig. 2.3, wheflg is the guiding triangle defined by the vertiqes pi,
andp». A conic sectiorC is defined within the guiding triangl€. with po andp, being
its two end points. The two sidggs—p; andp,—p; of T, are the tangent vectors Gfat the
po andp; points, respectively. We denote the vectpgsp: andpi—p, aspg andp, and
we call the vectopo—p, the baseline of the guiding triangle as well as the baseline of tt
conic section.

P2
P1

Po " Pn

(a) (b)

FIG.2.2. Chordson aconic sectidx (a) in the clockwise direction and (b) in the counterclockwise direction.



Po-P2

Baseline P2

FIG. 2.3. A guiding triangleT . defined by verticepo, p1, andpa for conic sectiorC.

The geometrical expression of the conic sec@aran be expressed in a rational quadratic
form [6] as

Bo(t)po + Bi(t)wpi + Ba(t)p2 “t<1 (2.3)

CO= "0+ Bow B = O

whereBy(t) = (1 — t)?, By(t) =2(1— t)t, andB,(t) =t?, are the Bernstein basis functions
[6, 8]. The parametew of the expression determines the conic classes and controls 1
“sharpness” of the conic. The conic section is an ellipse wienl, a parabola when
w =1, and a hyperbola when > 1, as shown in Fig. 2.4.

The equation for a conic section defined within a guiding triangle can also be expres
in the algebraic form

(axX + ayy + ag)(bxx + byy + bo) = K (UxX + uyy + Ug)?, (2.4)

where the lineayx +ayy 4+ ap =0 corresponds to the vectpe—p;, byx +byy + bg=0

to the vectormp,—p;, anduyX + uyy + ug=0 to the vectompe—p,, as they are shown in
Fig. 2.5a. The expression (2.4) can actually be directly derived from the geometrical
pression (2.3) by some mathematical manipulations. Notice that when thexagihtg on
vectorpo—p2, K becomes infinite and the curve degenerates to a straight line coinciden
po—p2. The parameteK in the algebraic expression (2.4) has the similar role astbé
the geometrical expression except its value ranges are different. For example, when ¢
conditions are satisfied, fé¢ = ayby/uf, the conic is a parabol& > ayby/uf, is an ellipse,
andK < ayby/u§ is a hyperbola, as shown in Fig. 2.5b.

3. The Shoulder Point

In the geometrical expression (2.3) of the conic section, the parainet@represents
the end pointpg andt =1 is the pointp,. Let p, be a point on the conic, where the

P1

W > 1, hyperbola
o1, parabola

W«l, ellipse
P2

Po

FIG. 2.4. Different types of conic section with respect to parameter



P1

a_b
K< % , hyperbola
b x+byy+be=0 ",2
K= Qzl , parabola

u
¥y
b
o A K>3 ellipse
2 “y
Po UX+Uyy+Uuo=0 P2 ’

Po 2

aX+ayy+ao=0

(a) ®

FIG. 2.5. Guiding triangle of conic section in algebraic expression: (a) the annotation of the sides of |
triangle and (b) the determination of the conic shapes with respect to the valles of

parametet=1/2. This pointp, is called theshoulder point, or the characteristic point [6].
The shoulder poinp, has the geometrical properties that:

(1) Itisthe point on a conic section, where the parameireits geometrical expression
equals 1/2.

(2) The tangent vectgy of this point is parallel to the baselimg—p;,

(3) It has the largest distance from it to the basepgep, among all the points on the
conic section,

(4) A triangle formed bypo, p2, andp, has the largest area among all triangles that ar
formed bypy, p2, and a point on the conic section,

(5) Itis also on the lingd; — (po + p2)/2, the line that connects the vertpx and the
middle point of the baselingo—p,.

The proof of these properties is included in Appendix A.

3. FROM CONIC GEOMETRIES TO OBJECT BOUNDARIES

1. Pixel Rectification

In discussions of the following, we assume that an edge detection and thinning opera
has been applied to the digital images so that the object boundaries are represented in
segments of one pixel width [28]. The edge segments are distinguished by those cz
break points such as intersections, corners, and inflection points [7, 26]. Conic section:s
then constructed on the edge segments between these break points.

It is possible to apply the conic sectiorthord property to identify the break points as
well as the extremely displaced pixels on a given set of edge pixel sequence in a di
image. As we have seen in last section, pixels on a given conic section should always re
at the same side of a chord. L, p1, p2, andpsz be four pixels in a sequence on an edge
segment, wherps is the head angy is the tail. Denote the chordsas= po—p1, |2 = po—p2.
andl3 = po—ps. According to the chord property of Section 2, we should have only tw
situations: (1)1 « I, « I3 and (2)I1 > 1, >> 13, for a sequence of chords to be valid on a
conic section, as shown in Fig. 3.1. Note that these situations are under the assumptior
the edge pixels are not displaced by the image tessellation and noise corruption.

By limiting the pixel displacement to one pixel width only, the above situations can |
extended to include the cases where two chords could be coincident (overlapping) to ¢
other. Denote the relation of “coincident” by the symbol “//” such thét | ; stands for the
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FIG.3.1. Three chords in a sequence on a conic section: (a) in the clockwise direction and (b) in the cour
clockwise direction.

coincidence of two chordl andl;. We allow for the replacement of any of thec” and
“>" relations in the above two situations by the “//” relation. That is, to include the “//'
relation between two chords as a valid situation for the conic sections in the digital imac
This leads to the valid chord depositions shown by the examples in Fig. 3.2.

The chord sequences that do not comply with the above situations present a violatio
the conditions of being a conic section, or say that the edge pixels involved are not situ:
properly on a conic section. Some of the violation examples are shown in Fig. 3.3. Nof
that a violating case may be caused by several reasons, such as the pixel tessellatiol
noise corruption, or the existence of a break point among the pixels.

To rectify the pixel sequences with respect to the chord property of conic sections
quantity called theaccordance value (aviy computed for each pixel. The result of this
computation will be the validation of the pixel being on a conic section. Notice that in
digital image, we allow for the relation between two sequential chigrdsandl; being any
one of the following three possible cases: (1) > |i, (2) li;1 < i, and (31 // 1. Let

a0 p
JEE 1
2 e il
e
(a)
g )7l
/ﬁ \\ |
oD &
(b)

FIG. 3.2. Examples of valid chord relations in a digital image: (a) in the clockwise direction and (b) in th
counterclockwise direction.



(a)

% Y
(®)

FIG. 3.3. Pixel sequences that violate the chord property of conic sections: (a) in the clockwise directi
(b) in the counterclockwise direction.

vp2 be theavassignment for pixgb, andvps be theavassignment for pixgbs; we define

+1, 2> g +1, 13> I3
vp2=1 -1, <l vp3=1-1 Ialy;
0, PY/AER 0, 131/ 15.

Figure 3.4 shows some examples of thevalue assignment, according to the relations
presented in the chords |, andl;. Where (a) shows a caselef« I, andl, // 14, (b) a
case ofl3 « I, andl, > 14, (c) a case of;3 > I, andl, « |1, and (d) a case di // |,
andly > 1.

Let t, denote the total value accumulated on a pjxeThe following procedure traces
the pixel sequences, detects inflection points, and eliminates pixels with extremely jag
displacement, according to the evaluatioriof

Procepure A (Pixel tracing and rectification). Let a sép;;i =0,1,2,...,n} be a
sequence of edge pixels on an object boundary and let it be traced (checked) in a clock

ra # g
/ '0 /l -1 ] f d
) S ad PP
(a) (b) (© (d)

FIG. 3.4. Assignment of accordance value (av) to pixel sequences; (@) 12 andl» // 11; (b) I3 <« 12 and
l2 > 11;(€) 13> lpandly « Ig; (d) I3 // 1 andl > 4.
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FIG. 3.5. Pixel rectification for conic sections: (a) at inflection pginib) at a jagged pixgb.

direction. For every pixeb € {p; }:

Stepl. Calculate the valug, and add it to the valug while the pixels are examined.

Step2. If three or more edge pixels aheadudfiave thet, value in a sign different from
that oft, and the pixels behing, markp an inflection point.

Step3. If the pixelp has at, value greater than or equal 42 or —2, and the signs of
its neighbors are all different frotg, thenp is extremely jagged or noise-corrupted. Purge
p from the sequence.

Figure 3.5 shows the examples of an inflection point and an extremely jagged pi
detectable by the above procedure in a pixel sequence.

The reason that three or more pixels aheguare examined in Step 2 of above procedure
for determining an inflection point is because that is the minimum number of pixels requir
in the algorithms to be discussed later for constructing a valid conic section.

2. Generalized Guiding Triangle Formation

Let the two end pixels of a boundary segment be denoted asdp,, and their tangent
vectors be denoted @§ andp}, respectively. We then considered the anglesdp that
are formed by thgy and pj with respect to the baseling—p,. They come with three
situations:

(a) a < B, atriangle is formed by, p3, andpe—p- (a “real triangle”).

(b) o =B, the tangenpy is parallel top}, no real triangle is formed (considering the two
vectors converging at the point of infinite, forming a “virtual triangle™).

(c) «> B, atriangle is formed on the opposite sidepgf-p, with respect tqpg andpy
(a “mirror triangle”).

The situations are illustrated in Fig. 3.6.

It is noted that in any one of these situations, a series of conic sections can be def
by using thepg, p5, andpe—p., as well as one additional point within the geometric regior
formed by these vectors. We thus call the geometry formed by the pmjréedp, and
their tangent vectorpy andp} the generalized guiding triangléGGT) of conic sections
and have the following theorem.

THeoremA. Giving a GGT and a point within the GQT.e., bound by the linepo—p2,
pg. andp}), a valid conic section is uniquely defined.

The proof of this theorem is placed in the Appendix B of this paper.



(a) (b) ©)

FIG. 3.6. Cases of generalized guiding triangles: ¢a} g, a real triangle is formed byg, p4, andpo—p2;
(b) @ = g, a virtual triangle is formed by assuming thg andp} converge at the point of infinity; (&} > 8, a
mirror triangle is formed on the opposite sidepaf-p;.

3. Tangent Vector Approximation

To form a GGT, it is necessary to have the tangent vegidendp, be calculated. Note
thatpy andp} cannot be precisely measured in a digital image because of pixel tessella
and noise corruption. An approximation of the vectors thus is resorted.

In principle, the tangent at poinkd, yo) is defined by

Yy — Yo = f'(Xo)(X — Xo),

where

f(x + AX) — f(X)
AX )

Foa) = im,

This suggests thaty andp can be approximated by taking the direction of the two close:
pixels at thepy andp,, respectively. However, this approximation often leads to a larg
error because of pixel tessellation and noise effect, as shown in Fig. 3.7a.

Let us consider a solution region for the two tangent vegqigpemdp}. Itis conceived that
the smaller the solution region, the more accurate a solution will be. Therefore rather t
trying to directly explore the tangent vector, we could resort to finding a solution regi
and then attempt to narrow the region to a sufficiently small or acceptable magnitu
The general concept is that once the solution region is small enough, we can use it (c
component) as an approximation to the solution. This leads to the recursive procedure
applies the maximum inner triangle property of the shoulder point discussed in Sectic
to the construction of the solution regions.

Alpl | %’; Ap; B kg
o0 | OIS o1 oS\
Q" : 1= // ‘\ v
(@ , oy N0
fis) q
& >
(a) )

FIG. 3.7. Different ways of approximating tangent vectors: (a) ¥ia approach; (b) via maximum inner
triangle approach.



Procebure B (Approximation ofpg andpy). Given a pixel sefp;; i =1,2, ...,n}
which is a sequence of edge pixels on an object boundarypyi#imdp, been identified as
the end points.

Stepl. Findpy € {p;} such that its distance to lire—p; is the largest among pixels in
{pi}.
Step2. Divide the conic section into two subdivisions at the ppipt
Denote these two subdivisions g-p, andp,—ps.
Step3. For the subdivisiopg—py
Repeat
Find a newp, its distance to lingpg—py is the largest among the pixels on
conic sectiorpg—py,
Divide the conic section into two subdivisions at the new ppint
Until the distance of the neyw, to po—py of the conic subdivision is less than
one threshold.
Denote the vectopo—py, as an approximation qfg.
Step4. For the subdivisiop,—p,
Repeat
Find a newp, its distance to ling,—p, is the largest among the pixels on
conic sectiorp,—pa,
Divide the conic section into two subdivisions at the new ppint
Until the distance of the new, to p,—p; of the conic subdivision is less than
one threshold-.
Denote the vectap,—py, as an approximate qf.

An example of applying the maximum inner triangle approach to the approximation
the tangent vectors is shown in Fig. 3.7b, where three consecutive maximum inner trian
are constructed for the solution regions of fifeandp}. Justification of the algorithm is
contained in Appendix C of this paper.

In the digital image processing, the popitis identified by compare the distances from
the pixels on the edge sequence of the conic to the basgfine. Thep, has the largest
distance measure. The process is terminated when no more inner triangles can be fo
for the conic subdivisions or the height of the maximum inner triangle is small enough.

The computational complexity of Procedure B can be described in this way.hesthe
number of edge pixels computed. Step 1 of the procedure tak€@ncomplexity. The
complexity of Step 2 is a constant. Steps 3 and 4 have the same computational comple
which, in terms of the subdivision nature, is in the orde®df log n). Therefore, the overall
computational complexity for the proceduredgn logn).

4. FORMULATING CONIC SECTIONS ON PIXEL SEQUENCES

In this section we describe the modeling of the boundaries of objects in the digital ima
in piece-wise approximations that consist of a number of conic pieces connected end-to
at the break points of the boundary edges.

Let{pi; i =1,2,...,n} be a set of edge pixels organized in a sequence pyidndp,
identified as the end points apgl andp} their tangent vectors. That s, the pixel§jn} are
located within the region of the GGT formed by the vectafsp}, andpe—p,. Convert the
pg andpj to the parametric formsag, ay, ag) and (i, by, bp), andpg—p> to (ux, uy, Uo),



respectiely. For each pixeb; = (x;, i) € {pi }, we then have
(@xXi + ay¥i + @0)(bxXi + byyi + bo) = Ki(UxXi + UyY; + Uo)?. (4.1)

That s, a unique valuk; can be obtained for any point within the general guiding triangle
such that

_ (axxi + ayy + ao)(byxx; + byy; + bo)

K.
I (UxXi + UyY; + Up)?

4.2)
Let the K; values being computed on all the edge pixekpn}, we then havgK;,i =
1,2, ...,n}. Question now is that how K value can be derived from tHé;} so that a
unique conic section expressed in the formaik(+ay y + ag)(byx 4 byy + bp) — K (uxx +
UyY + Uo)? = 0 can be obtained. To answer this question, we first define a number of crite
for the evaluation of the fithess of the resulting conic sections to the given set of edge pi
on an object boundary.

Letp; denote a pixel point within the set of points that are to be fitted by a conic sectic
Let do(pi) be the distance from the poipt to the base lingo—p, of the guiding triangle
for the fitting conic. According to the distance definition for a point to a line, we have

[UxXi + UyYi + Uol
/ug + ug

Let d;(pi) be the distance from the poipt to the corresponding fitting point on the fitted
conic. Assuming the point set is fitted by the conic section

do(pi) = (4.3)

(axX + ayy + a) (DX + byy + bo) — K (uxX + Uyy + Ug)® = 0. (4.4)
We then define
di(pi) = (axXi + ayYyi + ao)(bxXi + byyi + bo) — K (UxXi + uyyi + Uo)*. (4.5)

The examples ofly(p;) andd;(p;) are shown in Fig. 4.1.

Note that ifp; is on the fitted curved,(pi) = 0. In other words, we can consider that the
valued; (p;) # 0 represents an error of the fitting. The task of fitting the edge pix€ls In
then is modeled as a process of minimizing the fitting errors associated wit{(ghe This
leads to the following theorem.

Pe
FIG. 4.1. Quantitiesdp(p;i) andd; (p;) for establishing the criteria in conic fitting.



THeorREMB. Given a set of edge pixelp;,i = 1,2, ...,n} that fall into the region of
a GGT formed by the vectogsy, p5, andpo—p2, wherep; = (x;, ;) € {pi}. Let

_ (axxi + ayyi + ap)(bxxi + byyi + by)

K.
' (UxX; + UyYi + Up)?

A conic section can be constructed by taking the v#ue the equation

(axX + ayy + a)(byXx + byy + bo) = K (UxX + uyy + Ug)?
in one of the following three ways:
(1) Let

1

K =
S (UxXi + UyYi + Ug)?

n
D (UXi + Uyyi + Uo)*Ki;
i=1

an error ofe(K) = Y1, [d1(pi)]? is minimized.
(2) Let

1

K =
S (UxXi + UyYi + Ug)?

n
D (UnXi + Uyyi + Uo)?Ki;
i=1

an error ofe(K) = Y1, [d1(pi)/do(pi)]? is minimized.
(3) LetK = (1/n) Y., Ki; anerror ofe(K) = >, [d1(pi)/[do(pi)]?]? is minimized.

The proof of the theorem is in Appendix D. Applying the above theorem, we have t
following procedure for the construction of a conic section for a given set of edge pix
between two break points on an object boundary.

ProcebureC (Constructing a conic approximation for an edge segment). Given a s
quence of edge pixeld;;i =1,2,...,n} with pg andp, identified as the end points and
pg andpj the approximations obtained by Procedure B.

Stepl. Convertthey andp} tothe parametersy, ay, ap) and (k, by, bg), and the vector
Po—P2 to (Uy, Uy, Ug) of equation X + ayy + ao) (bxX + byy + bo) = K (UxX + Uy Y + Ug)?.
Step2. For each pixep; = (X, ¥i) € {pi}, calculate

_ (axxi + ayyi + ap)(bxx + k:'in + bo)

K
I (uxx; + uyyi + Ug)?
Step3. Let
- Zinzl(UxXi + uyY; + Ug)* — XA yYi o) Ki,
or
1
K

n
_ ) , 2K.
= Zin:l(ux)(i FTRY U0)2 ;(Uxm + Uy Vi + UO) Ki,

orK =(1/n) Zi“:l Kj, in terms of the preference of the error function to be minimized.



Step4. Replace th& in equation X +ayy+ao) (bxX +byy-+bo) = K (UxX +Uy Y+ Ug)?
by the value of step 3.

The computational complexity of Procedure C is clearly in the ordeDf), where
n is the number of edge points processed in the process. The GGT-based procedur
the construction of conic section approximations of object boundaries is presented as
following.

ProcebureD (Constructing conic approximation for object boundaries).
Input: An edge-detected image with object boundaries represented in pixel sequences
Output: A set of conic section denotations along the boundaries of an object.

Stepl. Apply a 3x 3 window operator [28] to find the break points along the objec
boundaries.
Step2. Apply Procedure A to rectify the edge segments and identify the inflection poin
Step3. For each edge segment in the sequence along the object boundary
3.1. apply Procedure B to firm} andp} approximation for an edge segment betweer
two end pointgo andpy;
3.2. apply Procedure C to obtain the conic section parameters for the edge segm
Step4. Redraw the object boundaries between painpg, andp, by the conic sections
identified.

Letnd be the total number of edge pixels in an image. The computational complexity
the Procedure D can be derived as the following. First, both Step 1 and Step Q(take
complexity. Step 3 calls Procedure B and Procedure C which then ha@tHegn) and
O(n) complexity, respectively. Since each edge segment is processed only once in St
the overall computational complexity of Step 3¢n log n). The computational complexity
of Procedure D thus i®(nlogn).

5. EXPERIMENTS

Experiments on the procedures for conic section approximation described above v
conducted with the use of synthetic data and real images, respectively. In the case
synthetic data, we first assume the existence of an original conic curve. A set of ¢
points are then generated from adding noise and displacement to the selected data |
on the original curve. This approach allows us to make a quantitative measurement of
accuracy of the result with respect to the original curve rather than the noise-corruy
data points. In the cases involving the use of real images, the procedures are applied t
object boundaries that have been through a number of image preprocesses to have the
pixels extracted and the segments properly separated according to the detection of &
points.

Usually, a curve-fitting algorithm is evaluated by computing the mean-squared err
between the points on the fitted curve and the given set of data points. The problem
this method is that it only measures how good the fit is with respect to the given data
but not to the original curve represented by the data points. Since the information abou
original curve is available in our synthetic test cases, it is possible to measure the real el
between the fitted points and the true curve positionsOgdie the original conic section
and letC1 be the fitted curve. We define the fit of the curve as



Po

FIG. 5.1. Measurement of fitness on a conic section, wheiga point on the base ling—pz, do(p) is the
distance from the point to a corresponding point on the original conic, ai) is the distance from the fitted
curve to the corresponding point on the original curve.

F(C1,Co) = i (do(p))? + (di(p))?

2 G &

where,dy(p) denotes the distance from a pombn the base line of the guiding traingle to
the original conic section. The quantiy(p) + di(p) equals the distance fropto the fitted
curve (d(p) is the error between the fitted curve and the original one with resppttite
denotation of these measurements are shown in Fig. 5.1. Notice that a perfect fitting
haveF (C1, Cp) = 1 according to this definition. A value ¢f(C1, Cy) < 1 will represent a
fitting that is under the original curve with respect to the base line F@l, Co) > 1 will
represent afitting over the original curve with respect to the base line. In actual computat
the correspondindy(p) andd,(p) values are first calculated with respect to the commaol
parametet of the geometrical equations and then converted to the distance measure \
respect to the poir on the base linpg—p..

In the first example of the experiments, we show the approximation of the conic sect
at the first quadrant of an ellipse. The original ellig3@ is expressed as

CO: 92 + 16y° — 144=0. (5.2)

The points, as shown in Fig. 5.2a, are generated by adding Gaussian noises to a set of |
originally located on the ellipse section. The end points of the seghgar(dp,) d are at
(0, 3) and (4, 0), respectively. The tangent vecmyrandpj are [1, 0] and [0, 1]. The noise
ratio n(p) is measured by comparing the offset of the point away from the original poir
sayd; (p), to the distance of the original point to the base line of the conic sectiory(p),
(refer to Fig. 5.1) such that

_ (@(p))
(do())?

For data points shown in Fig. 5.2a, th@) has a distribution 06(0.0,0.02), whereG( )
denotes a Gaussian density with 0.0 mean and 0.02 variance.

Figure 5.2b shows the original ellipse, nan@@ and the conic approximation generated
by applying the GGT procedure, named, as well as that generated by a least-square fittin
algorithm [25], named2, and a generalized Hough transformation algorithm [4], name
C3, respectively. Table 1 shows the computation results oKthealues obtained on the
given point set.

n(p)

(5.3)
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FIG. 5.2. Conic curves generated on a give set of points: (a) the point set; (b) the fitted curvesG@hsre
the original conicC1 is the conic generated by the GGT proced@2js generated by a least-square fitting, and
C3 is generated by a generalized Hough transformation.

TABLE 1
Computation of K on a Given Point Set for Conic Approximation

Xp Yp Ki
A 0.5 3
B 1 2.9 0.03866
C 15 2.8 0.03652
D 2 2.6 0.04132
E 25 2.3 0.04753
F 3 2 0.04
G 35 1.4 0.04759
H 3.75 1 0.04734
J 3.94 0.5 0.04528
K 3.8 1 0.03460
L 3.46 15 0.04222
M 2.98 2 0.03688
N 2.2 25 0.04253
|

4 0.5




The average valuk of 0.04286 is used in obtaining the conic sect®h. Notice that
during the process of deriving the conic section (Procedure C) we used the algebraic f
of the conic expression,

(axX + ayy + ag)(bxX + byy + bo) = K (UxX + uyy + Ug)>.

After obtaining the parametétfor the conic section, we rewrite the expression in the formn

f(x,y) = ax? + by? + 2hxy+ 2ux + 2vy +d =0 (5.4)
with
a = acby, — Ku2, (5.5)
b = ayby — KuZ, (5.6)
b b
h= w — Kuyuy, (5.7)
b b
u= Lza'w( — KuyUo, (5.8)
b b
b= % — Kuylo, (5.9)
d = aghy — KU2. (5.10)

Applying these equations, we get the fitted conic sed@idrin the expression
C1: 9x2 4 16y? + 0.7xy — 2x — 2.7y — 136 = 0. (5.11)

Itis very close to the original ellipse of (5.2). We have the fitness me&q@#&, C0)= 1.06.
The expressions &2 andC3 are obtained as

C2: 9x2 4 14.4y? + 5.8xy — 22x — 24.2y + 55.6=0, (5.12)
C3:8x2+ 14y?> —8x — 7y — 109= 0, (5.13)

which have the fithess measurefefC2, C0)=1.09 andF(C3, C0)=1.14, respectively.

The noise ratio of the given point set is increased in the successive experime
Figure 5.3a shows the data points generated by adding additional noisy displaceme
the data set of Fig. 5.2a. The data set shown in Fig. 5.3a{msof G(0.0,0.04). The
resulting conic approximations to these points are shown in Fig. 5.3b, where the elli
CO is the original,C1 is generated by the GGT-based proced@2,andC3 are from
least-square fitting and generalized Hough transformation. The conic expressions for tl
approximations are

C1: 9x2 4 16y? + 2xy — 9x — 11y — 110= 0, (5.14)
C2:5x% +6y> —10x — 9y — 24 =0, (5.15)

C3: 8x? + 9y? — 2.6xy + 6.4x + 25y — 156 = 0. (5.16)



(b)

FIG.5.3. Examples of conic curves generated from noise points: (a) the point set; (b) the fitted curves, wt
COis the original conicC1 is the conic generated by the GGT proced@2js generated by a least-square fitting,
andC3 by a generalized Hough transformation.

The fithess measures &¢C1,C0)=1.13,F(C2,C0)=1.21, and~(C3,C0)=1.32, re-
spectively. Figure 5.4 shows a plot of the fithess measurements on a number of test ¢
with respect to noise distributions fro®(0.0,0.01) toG(0.0,0.1).

The procedure is also tested on real images with objects in curved boundaries. In
tests, the object boundaries are extracted by first applying an edge detection operatiot
then an edge linking process that identifies the edge segments and further limits the
seguences to one pixel width. The set of edge segmfmiss, are identified before the
conic approximation algorithms are applied. The examples of Fig. 5.5 show (a) the origi
images of objects, (b) the edge images after an edge detection operation, (c) the ¢
sections superimposed on the original object boundaries.

6. CONCLUSION

The conciseness and accuracy of the boundary representation make it preferred fo
scribing the object shapes in many computer vision applications. The conic section |
resentation of object boundaries has several advantages: (1) simplicity, only second-c
mathematical expression (quadratic equation) is involved in the representation; (2) pc
larity, the boundaries of most popular objects (natural and manmade) in computer vis
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FIG. 5.4. Fitness measurement of the conic approximations vs noise ratio of data points.

applications can be fitted in conic sections; (3) efficiency, some unique geometrical pr
erties of the conic sections make the identification of the parameters of the curve segm
possible with the use of noniterative procedures. Even though the conic section is a sir
type of curves, itis possible to use them to model and display the more complex curves.
algorithm described here takes advantage of the geometrical properties of conic section
generating conic section approximations of object boundaries in consideration ofimage
sellation and noisy effect on the displacement of the edge pixels. The algorithm is effici
in terms of its computational complexity. No iterative computations are needed to derive

(@) (b (©)

FIG.5.5. Conic approximation of object boundaries in digital images: (a) original image; (b) boundary edg
of the objects in the images; and (c) conic sections on the boundaries of the objects.



parametersf the conic expressions for the boundary segments. While the accuracy of
method relies on the proper detection of the geometrical features represented by the o
boundary pixels, the results can be optimized with respect to different criteria in terms
the requirements of the applications.

APPENDIX A

(1) Define the poinp, =C(t =1/2), that is, the point where the parametesf the
geometrical equation for the conic sectiOns equal to 1/2.
(2) LetC(t)=[¢c.{y] and calculateC’(t) = dCY(t)/dCX(t). That s,

o= 4SO _ S —2py + 2tpY + 2wp] — 4twp] + 2tp) A1)
dex(t) &0 —2py + 2tpg + 2wpy — 4twpf + 2tp3” '
Lett =1/2 in above expression; we get
—oY + 2wpn? — 2wp’ y Yy Y
Clt=1/2)= oL =cwbit P _ PP (A2)

—p§ + 2wpy — 2wpy + p5 Py — P

That is, the tangent of the baselipg-p,. So it shows that the point, =C(t =1/2) is also
the point where the conic has the tangent vector parallel to the bapglipg

(3) Observe that if any poins on the conic section has a greater distance to the baseli
than the poinp,, then pointp, must be located at a position betwegnand pg—p, . It
means that the line parallel pg—p, and passing gi, will have to intersect the conic more
than once. This contradicts with the fact (1) above that the line parafpgHm and passing
atpy is the tangent of conic a,. Therefore, the poinp, is the point on the conic that has
the largest distance to the baselmep. .

(4) Denoted the triangle formed by the poipts py, andp,, as p—Pv—P2, it is seen that
its area equals the product of the basefigep, and the half the distance from the point on
the conic to the baseline. Since the pgigthas the largest distance from the conic to the
baseline, thus the triangle formed pyandpy—p, has the largest area.

(5) To prove that the conic poift, is also on the ling; — (po + p2)/2, we show that
the pointC(t = 1/2) is the intersecting point of the conic with the lipe— (po + p2)/2.
Using the geometrical expression of the conic wiita 1/2, we have

ct=1/2)= 1= 3)°Po+2(1— Hiwpi+ (3)P2 _ FPo+ Juwps + e
(1= 97+ 2= Div+ (B’ i
_ Po+2wp1+p2
N 242w (A-3)
The above can be expressed as
cio1jp- |[CG| L [por2unitp )
CX(3)] 2+ 2w] p§+2wpl + p3 '



pot:() Po t P, t=1

2
FIG. A.1. Properties of the shoulder poip§ on a conic sectiof: (1) parametet = 1/2; (2) tangent vector

py parallel topo—p2; (3) hy is the largest among all distances fr@ntio po—py; (4) trianglepo—p2—py has the largest
area among all triangles formed py, p2, and a point on the conic section; (&) is on the lingpy — (po + p2)/2.

Let the middle lingp; — (po + P2)/2 be expressed as

PP
X — pf pf_pé;pé' '
By some arrangement, we have
y-pl _2p-p-P (A.6)
X—p  2p;—p5—P;
Replacingx andy in the left hand side of the above equation®ft =1/2)=| Sygi] we
get ’
y P +2wpi+p) Y y y y y
Y—p _ 242w P1 _ po + 2wpi + p; — (24 2w)p;
X—pf  RARRER _ px o pg+2wpf + P — (24 2w)pi
2pf — pg — P
So the poinC(t =1/2) is on the lingpy — (po + p2)/2.
Figure A.1 puts the above properties of the shoulder gmjih a single drawing.
APPENDIX B
To prove Theoren we consider the algebraic equation of the conic section,
(axX + ayy + a)(byXx + byy + bo) = K (UxX + Uy + Ug)?, (B.1)

whereayx + ayy + ag = 0 is defined by vectopg, (bxx + byy + bg) = 0 by vectorp}, and
UxX 4+ UyY +Up=0 by vectorpe—p,. A point (Xp, yp) within the GGT means that the
following equations must be satisfied by the poiy,(yp) (only one situation is illustrated



without losing generality):

axXp +ayyp +ag > 0, (B.2)
(bxXp + byyp + bg) < O, (B.3)
UxXp + UyYp + Ug # 0. (B.4)

In any of these cases, a nonzero solutionkor

_ (axXp + ayyp + ao)(bxXp + byyp + bo)

K
(UxXp + UyYp + Ug)?

£0, (B.5)

exists. Replacing thK in (B.1), we see that a valid conic section is obtained.

APPENDIX C

The algorithm for the approximation pf andp} can be justified in the following way.
First, it is known that the least error solution in an asymptotic approximation of a cor
section by two straight lines (i.e., closest to the conic) is the two sides of the maximum in
triangle. The error is measured as the area between the conic section and the line pi
Let the two sides of the inner triangle be denoteg@andp), respectively. Let the angle
betweerp; andpy be denoted asp,—pg and the angle betwegs, andp} be as/p,—ps.
Taking the summation aofpg—py andZp,—p4 as the solution region for the approximation
of pg andp}, it is obvious thapg andp,, of the maximum inner triangle give the least error.

Second, we show that the solution region is reduced in repetitive application of the ab
approach. Naotice that th®, chosen in the algorithm is the shoulder point of the conic. It i
then possible to construct a maximum inner triangle for each of the conic subdivisions be
onpo—py andp,—p,. Repeating the process will reach a point where the inner trianglesin t
successive subdivisions of the conic section are acceptably small so that no more subdiv
is needed. Let us keep using the sympgpto denote the middle points of the successive
subdivisions of the conic section; at the end of the repeating process the left-most ve
po—pPv and the right-most vectgr,—p, can then be used to approximate fijeandp}.

APPENDIX D

We prove Theorem B in accordance with three cases:

(1) Lete(K) = 354[di(p)]? thatis,

e(K) = 3~ [(@% +ay¥i + a0)(bxx +byyi + bo) — K(Ux; + uyy + )]’ (D.1)

i=1
To minimizee(K), we take a differentiation of(K) with respect taK, which yields

n

¢'(K) = Z —2[(axxi + ayyi + a0)(xXi + by + bo) — K(UxXi + UyYi + Uo)?]

i=1

x (UxXi + UyY; + Ug). (D.2)



Lete/(K) = 0; we get

n

Z [(axXi +ayyi +a0)(bxX +byYi +bo)(UxXi + UyYi +Uo)? — K (UxX; +UyYi +Ug)*] = 0.

i=1

(D.3)
Note that
(axXi +ayyi + aO)(bei + byy| + bo) = Ki(uxXi +uyyi + Uo)2 (D4)
which yields
K= . i(ux-+uy+u)4K- (D.5)
B Zinzl(uxxi + uyY; + Uog)* —~ XA 124 o) Ki. .
(2) Let
f(K) =3 [dl‘pi)r.
—~ [ do(pi) ]’
that is,
2
, 2
(axxi + ayyi + ap)(bxx + byyi + bo) — K(UuxX + uyyi + o)
=2 1Ux + Uy¥i + ol (D.6)

Taking a differentiation of(K) with respect toK, it yields

n
¢(K) = Z —2[(axXi + ayYi + a0)(bxXi + by i + bo) — K(UxXi + UyYi + Uo)?] (UZ + u?).
i=1
| (D.7)
Lete’(K) = 0; we get

n

Z [(axxi + ayyi +ao)(bxxi + byyi + bo) — K(uxX + Uy¥i +Ug)’] =0. (D.8)

i=1
Note that
(aXi + ayyi + ao)(bxXi + byyi + bo) = K (UxXi + UyYi + Uo)?; (D.9)
that is,
n
D [Ki(uxXi + Uy¥i + Uo)® — K (UxX; + Uyyi + Uo)°] =0 (D.10)
i1
which yields
1

n
K UxXi + UyYi + Ug)?K;. D.11
+UO)2;(X.+ yYi + Uo)?K (D.11)

- o (UxXi + uyY;



(3) Let

T odp) 12
(9=2 [[do(pi)]z} ’

that is,

(k) =3 [(axxi + ay¥i + 80) (B + byyi + bo) — K (UxXi + UyY + Uo)?
i=1

2
[Ium + UyYi +U0|:|

N

Taking a differentiation o (K) with respect tK, it yields

2
} . (D.12)

n

¢'(K) = Z —2[(axXi +ayYi + ao)(bxXi + byyi -+ bo) — K (UxXi + UyYi + Uo)?]

i=1

(U2 + u'f,)2

X . D.13
(UxX + uyY; + Ug)? ( )
Lete/(K) = 0; we get
n
(axXi + ayyi + ao)(bxXi + byyi + bo)
2 y y
i=1
K (uxX + UyY; + Uo)?] (u§+u‘2’)2 = (D.14)
- v ° (UxXi + uyY; 4 Uo)? B '
Again, since
(axXi + ayyi + ao)(bxXi + byyi + o) = Ki(UxXi + Uyyi + Up)?, (D.15)
we have
n u2 + u2)2
K . . 2 _ K - A 2 ( X y = 0, D.16
i;[ 1 (UxXi + UyYi + Uo)” — K (UxXi 4 UyYi + Uo) ](Uxxi oy 0 (D.16)
which yields
. 2
> [Ki = K](uZ +u3)” =0. (D.17)
i=1
Thatis,
1 n
K=- Kj. D.18
- .; i (D.18)
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