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On the Geometries of Conic Section
Representation of Noisy Object Boundaries

Qiuming Zhu

Digital Imaging and Computer Vision Laboratory, Department of Computer Science, University 
of Nebraska at Omaha, Omaha, Nebraska 68182

E-mail: zhuq@unomaha.edu

This paper studies some geometrical properties of conic sections and the utiliza-
tion of these properties for the generation of conic section representations of object 
boundaries in digital images. Several geometrical features of the conic sections, 
such as the chord, the characteristic point, the guiding triangles, and their appear-
ances under the tessellation and noise corruption of the digital images are discussed. 
The study leads to a noniterative algorithm that takes advantage of these features 
in the process of formulating the conic section parameters and generating the ap-
proximations of object boundaries from the given sequences of edge pixels in the 
images. The results can be optimized with respect to certain different criteria of the 
fittings. 

1. INTRODUCTION

It has long been known that information about the object shapes is largely conveyed via
the curving of the object’s boundary edges [27]. Human vision systems rely heavily on the
use of the boundary shapes to recognize objects. Many machine vision systems also adopted
the same strategy to perform most of the object recognition tasks. Finding an appropriate
set of simple and regular curve segments to describe the geometrical appearances of object
boundaries in digital images thus is often an indispensable step in a computer vision process.
The objective of the step is to use a minimum number of curve pieces to approximate the
object’s boundary edges with minimum distortion, thus enabling a precise and accurate
analysis of the boundaries of the objects.

Modeling object boundaries by conic sections or other kind of curve approximations
has been studied by computer vision researchers for many years under the general topic
of curve fitting [1, 2, 5, 12, 17–19, 22, 24]. Higher-order curve approximations, such as
the cubic bezier and B-splines [3, 8, 13, 21] curves are commonly used. Though a smooth
and precise boundary model results, these higher-order curves require complex expressions
and intensive computation. They are therefore more often used in computer-aided design
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applications.On the other hand, conic section representation of object boundaries has
the advantage of simplicity, popularity, and efficiency [9, 14, 20, 23]. The conic sections
are, therefore, the most frequently used curve forms, besides the piece-wise straight line
segments, used for approximating the object boundaries in computer vision applications.

Conic curves fall into three classes, namely hyperbolas, parabolas, and ellipses (consid-
ering the circle as a special case of ellipse). A conic curve is described on a planar surface
in an algebraic expression

f (x, y) = ax2+ by2+ 2hxy+ 2ux+ 2vy+ d = 0. (1.1)

A conic section is often defined on Eq. (1.1) with two terminating pointsX0= (x0, y0) and
X1= (x1, y1) additionally specified, wherex0≤ x≤ x1, y0≤ y≤ y1. Equation (1.1) can be
written in matrix form as

f (x, y) = XQX t = 0, (1.2)

whereX= [x, y, 1] and theXt denotes the transpose ofX. We have in Eq. (1.2)X0≤X≤X1

and

Q =
a h u

h b v

u v d

 . (1.3)

It is required that theQ be a nonsingular matrix forf (x, y) to be a valid conic section. That
is, the conditions det(Q)6= 0 and (a+b) 6= 0 must be satisfied. This leads to an important fact
that, although an algebraic equation of the form (1.1) can always be derived from solving the
simultaneous equations defined on five distinct data points in a 2D space, the result does not
necessarily represent a valid conic curve, or a section [15, 16]. The problem is especially sig-
nificant to the approximation or recovering of conic sections on object boundaries in digital
images. It is because the edge pixels on object boundaries are tessellated in discrete positions
of integer values in a digital image. In this tessellation, a large percentage of the points on the
curve are displaced from their original positions defined in the mathematical expressions.
A valid conic section thus is not always guaranteed from the solutions of Eq. (1.1) with
respect to five arbitrarily picked points from the edge pixels that are even on the conical
boundary of an object. Though the edges seem smoother in the higher resolution images, as
those shown in Fig. 1.1, the increase of image resolution would not eliminate this problem.

FIG. 1.1. Curve distorted because of pixel tessellation in images: (a) an ellipse in a 20× 12 resolution; (b) an
ellipse in a 40× 16 resolution; (c) an ellipse in a 128× 32 resolution.



FIG. 1.2. Points on a conic curve are displaced in images because of noise: (a) an ellipse in a 20× 12 resolution,
(b) an ellipse in a 40× 16 resolution; and (c) an ellipse in a 128× 32 resolution.

Another problem needs to be considered is the displacement of the edge pixels caused by
the noise corruption of the image. The situation is illustrated in Fig. 1.2, where edge pixels
are further deviated from their real curve positions because of the effect of noises.

The fact that image pixels on an object boundary are tessellated in integer values and noise
displacement makes it difficult and sometimes impossible to identify the conic sections by
directly solving the algebraic equations of (1.1), it is therefore necessary to have some
algorithms that capture the essential features of the conic sections under tessellation and
noise, so their expressions can be derived by applying a certain approximation technique.
Several techniques on these aspects were reported. Techniques based on the least-square-
error fitting were the most commonly studied ones [6, 14, 17, 25]. Iterative procedures
were usually applied in these techniques to derive the parameters of the curve sections from
the processes of gradually reducing the fitting errors between the given set of pixels and
the resulting curves. Several authors have pointed out the problem of statistical biases
inherent in the least-square types of conic fitting [11, 12]. To remedy the problem, Kanatani
[11] suggested applying a renormalization technique based on a statistical model of noises.
However, problems with respect to the computational complexity and the discontinuity of
the resulting object boundaries remain the same. Techniques based on Hough transformation
[4, 10] provide an alternative. The techniques tried to fit the boundaries by first converting
the edge pixels to a parametric space and then derive the curve parameters from a statistical
account of the edge pixel distributions in the space. The major problem with these techniques
is the precision of the fitted curve sections that is constrained by the dimension and resolution
of the parametric spaces. The scale-up generality of these approaches is therefore very
limited.

In this paper, we start with a study of some geometrical properties of the conic sections.
Based on the study, an approach for approximating the object boundaries that utilizes
some of the specific geometrical properties of the conic sections is described. The paper
is organized as follows. Section 2 examines the specific geometrical properties of conic
sections. Section 3 discusses how these properties can be used in deriving the feature
parameters of conic sections from given sets of image pixels. A generalized guiding triangle
(GGT) approach is described. Algorithms for generate the conic approximation of object
boundaries are presented in Section 4. Section 5 presents some experimental examples.
Section 6 contains conclusion remarks. Proofs of some of the geometrical properties of the
conic sections and their applicability in the approximation of object boundaries are included
in the appendices.



FIG. 2.1. Chordsp0–p2 andp1–p3 on a conic sectionC.

2. THE CHORD, GUIDING TRIANGLE, AND SHOULDER POINTS
OF CONIC SECTIONS

1. The Chord

Given any two points on a conic section, sayp0 andp1, achord is the line segment that
connects these two points. Denote the chord asp0–p1, it has the property that points on the
conic between thep0 andp1 all lay at one side of thep0–p1. Figure 2.1 shows the chords
p0–p2 andp1–p3 of a conic sectionC.

Arbitrarily choosing one pointp0 on a conic section and constructing chords that connect
p0 to its consequent pointsp1, p2, p3, . . . ,pn on the conic section, we have a sequence
of chords, named asp0–p1, p0–p2, p0–p3, . . . ,p0–pn. Let the symbol “¿” stands for the
geometrical relation “left-of” and “À” stands for “right-of” between any two chords viewed
in a clockwise direction. We see that these chords form either one of two patterns:

(i) in clockwise direction:p0–p1¿ p0–p2¿ p0–p3¿ · · · ¿ p0–pn, or (2.1)

(ii) in counterclockwise direction:p0–p1À p0–p2À p0–p3À · · · À p0–pn. (2.2)

They are illustrated in Fig. 2.2

2. The Guiding Triangle

It is known that any conic section can be defined by aguiding triangle(GT) [14] such as
the one shown in Fig. 2.3, whereTc is the guiding triangle defined by the verticesp0, p1,

andp2. A conic sectionC is defined within the guiding triangleTc with p0 andp2 being
its two end points. The two sidesp0–p1 andp2–p1 of Tc are the tangent vectors ofC at the
p0 andp2 points, respectively. We denote the vectorsp0–p1 andp1–p2 aspu

0 andpu
2, and

we call the vectorp0–p2 the baseline of the guiding triangle as well as the baseline of the
conic section.

FIG. 2.2. Chords on a conic sectionC: (a) in the clockwise direction and (b) in the counterclockwise direction.



FIG. 2.3. A guiding triangleTc defined by verticesp0, p1, andp2 for conic sectionC.

The geometrical expression of the conic sectionCcan be expressed in a rational quadratic
form [6] as

C(t) = B0(t)p0+ B1(t)wp1+ B2(t)p2

B0(t)+ B1(t)w + B2(t)
, 0≤ t ≤ 1, (2.3)

whereB0(t)= (1− t)2, B1(t)= 2(1− t)t , andB2(t)= t2, are the Bernstein basis functions
[6, 8]. The parameterw of the expression determines the conic classes and controls the
“sharpness” of the conic. The conic section is an ellipse whenw<1, a parabola when
w= 1, and a hyperbola whenw>1, as shown in Fig. 2.4.

The equation for a conic section defined within a guiding triangle can also be expressed
in the algebraic form

(axx + ayy+ a0)(bxx + byy+ b0) = K (uxx + uyy+ u0)2, (2.4)

where the lineaxx+ayy+a0= 0 corresponds to the vectorp0–p1, bxx+ byy + b0= 0
to the vectorp2–p1, anduxx+ uyy + u0= 0 to the vectorp0–p2, as they are shown in
Fig. 2.5a. The expression (2.4) can actually be directly derived from the geometrical ex-
pression (2.3) by some mathematical manipulations. Notice that when the point (x, y) is on
vectorp0–p2, K becomes infinite and the curve degenerates to a straight line coincident to
p0–p2. The parameterK in the algebraic expression (2.4) has the similar role as thew of
the geometrical expression except its value ranges are different. For example, when other
conditions are satisfied, forK =ayby/u2

y the conic is a parabola,K >ayby/u2
y is an ellipse,

andK <ayby/u2
y is a hyperbola, as shown in Fig. 2.5b.

3. The Shoulder Point

In the geometrical expression (2.3) of the conic section, the parametert = 0 represents
the end pointp0 and t = 1 is the pointp2. Let pv be a point on the conic, where the

FIG. 2.4. Different types of conic section with respect to parameterw.



FIG. 2.5. Guiding triangle of conic section in algebraic expression: (a) the annotation of the sides of the
triangle and (b) the determination of the conic shapes with respect to the values ofK .

parametert= 1/2. This pointpv is called theshoulder point, or the characteristic point [6].
The shoulder pointpv has the geometrical properties that:

(1) It is the point on a conic section, where the parametert in its geometrical expression
equals 1/2.

(2) The tangent vectorpu
v of this point is parallel to the baselinep0–p2,

(3) It has the largest distance from it to the baselinep0–p2 among all the points on the
conic section,

(4) A triangle formed byp0, p2, andpv has the largest area among all triangles that are
formed byp0, p2, and a point on the conic section,

(5) It is also on the linep1− (p0+ p2)/2, the line that connects the vertexp1 and the
middle point of the baselinep0–p2.

The proof of these properties is included in Appendix A.

3. FROM CONIC GEOMETRIES TO OBJECT BOUNDARIES

1. Pixel Rectification

In discussions of the following, we assume that an edge detection and thinning operation
has been applied to the digital images so that the object boundaries are represented in edge
segments of one pixel width [28]. The edge segments are distinguished by those called
break points such as intersections, corners, and inflection points [7, 26]. Conic sections are
then constructed on the edge segments between these break points.

It is possible to apply the conic section’schordproperty to identify the break points as
well as the extremely displaced pixels on a given set of edge pixel sequence in a digital
image. As we have seen in last section, pixels on a given conic section should always reside
at the same side of a chord. Letp0, p1, p2, andp3 be four pixels in a sequence on an edge
segment, wherep3 is the head andp0 is the tail. Denote the chords asl1= p0–p1, l2= p0–p2,

and l3= p0–p3. According to the chord property of Section 2, we should have only two
situations: (1)l1¿ I 2¿ I 3 and (2)l1À l2À l3, for a sequence of chords to be valid on a
conic section, as shown in Fig. 3.1. Note that these situations are under the assumption that
the edge pixels are not displaced by the image tessellation and noise corruption.

By limiting the pixel displacement to one pixel width only, the above situations can be
extended to include the cases where two chords could be coincident (overlapping) to each
other. Denote the relation of “coincident” by the symbol “//” such thatI i // I j stands for the



FIG. 3.1. Three chords in a sequence on a conic section: (a) in the clockwise direction and (b) in the counter-
clockwise direction.

coincidence of two chordsI i andI j . We allow for the replacement of any of the “¿” and
“À” relations in the above two situations by the “//” relation. That is, to include the “//”
relation between two chords as a valid situation for the conic sections in the digital images.
This leads to the valid chord depositions shown by the examples in Fig. 3.2.

The chord sequences that do not comply with the above situations present a violation to
the conditions of being a conic section, or say that the edge pixels involved are not situated
properly on a conic section. Some of the violation examples are shown in Fig. 3.3. Notice
that a violating case may be caused by several reasons, such as the pixel tessellation, the
noise corruption, or the existence of a break point among the pixels.

To rectify the pixel sequences with respect to the chord property of conic sections, a
quantity called theaccordance value (av)is computed for each pixel. The result of this
computation will be the validation of the pixel being on a conic section. Notice that in a
digital image, we allow for the relation between two sequential chordsI i+1 andI i being any
one of the following three possible cases: (1)I i+1À I i , (2) I i+1¿ I i , and (3)I i+1 // I i . Let

FIG. 3.2. Examples of valid chord relations in a digital image: (a) in the clockwise direction and (b) in the
counterclockwise direction.



FIG. 3.3. Pixel sequences that violate the chord property of conic sections: (a) in the clockwise direction;
(b) in the counterclockwise direction.

vp2 be theavassignment for pixelp2 andvp3 be theavassignment for pixelp3; we define

vp2 =

+1, l2À l1;
−1, l2¿ l1;
0, l2 // l1.

vp3 =

+1, l3À l2;
−1, l3¿ l2;
0, l3 // l2.

Figure 3.4 shows some examples of theav value assignment, according to the relations
presented in the chordsl1, l2, andl3. Where (a) shows a case ofI 3 ¿ I 2 andI 2 // I 1, (b) a
case ofI 3 ¿ I 2 andI 2 À I 1, (c) a case ofI 3 À I 2 andI 2 ¿ I 1, and (d) a case ofI 3 // I 2

andI 2À I 1.
Let tp denote the total value accumulated on a pixelp. The following procedure traces

the pixel sequences, detects inflection points, and eliminates pixels with extremely jagged
displacement, according to the evaluation oftp.

PROCEDURE A (Pixel tracing and rectification). Let a set{pi ; i = 0,1,2, . . . ,n} be a
sequence of edge pixels on an object boundary and let it be traced (checked) in a clockwise

FIG. 3.4. Assignment of accordance value (av) to pixel sequences: (a)I 3 ¿ I 2 andI 2 // I 1; (b) I 3 ¿ I 2 and
I 2 À I 1; (c) I 3 À I 2 andI 2 ¿ I 1; (d) I 3 // I 2 andI 2 À I 1.



FIG. 3.5. Pixel rectification for conic sections: (a) at inflection pointp; (b) at a jagged pixelp.

direction. For every pixelp∈ {pi }:
Step1. Calculate the valuevp and add it to the valuetp while the pixels are examined.
Step2. If three or more edge pixels ahead ofp have thetp value in a sign different from

that oftp and the pixels behindp, markp an inflection point.
Step3. If the pixelp has atp value greater than or equal to+2 or−2, and the signs of

its neighbors are all different fromtp, thenp is extremely jagged or noise-corrupted. Purge
p from the sequence.

Figure 3.5 shows the examples of an inflection point and an extremely jagged pixel
detectable by the above procedure in a pixel sequence.

The reason that three or more pixels ahead ofp are examined in Step 2 of above procedure
for determining an inflection point is because that is the minimum number of pixels required
in the algorithms to be discussed later for constructing a valid conic section.

2. Generalized Guiding Triangle Formation

Let the two end pixels of a boundary segment be denoted asp0 andp2, and their tangent
vectors be denoted aspu

0 andpu
2, respectively. We then considered the anglesα andβ that

are formed by thepu
0 andpu

2 with respect to the baselinep0–p2. They come with three
situations:

(a) α <β, a triangle is formed bypu
0, pu

2, andp0–p2 (a “real triangle”).
(b) α=β, the tangentpu

0 is parallel topu
2, no real triangle is formed (considering the two

vectors converging at the point of infinite, forming a “virtual triangle”).
(c) α >β, a triangle is formed on the opposite side ofp0–p2 with respect topu

0 andpu
2

(a “mirror triangle”).

The situations are illustrated in Fig. 3.6.
It is noted that in any one of these situations, a series of conic sections can be defined

by using thepu
0, pu

2, andp0–p2, as well as one additional point within the geometric region
formed by these vectors. We thus call the geometry formed by the pointsp0 andp2 and
their tangent vectorspu

0 andpu
2 thegeneralized guiding triangle(GGT) of conic sections

and have the following theorem.

THEOREMA. Giving a GGT and a point within the GGT(i.e.,bound by the linesp0–p2,

pu
0, andpu

2), a valid conic section is uniquely defined.

The proof of this theorem is placed in the Appendix B of this paper.



FIG. 3.6. Cases of generalized guiding triangles: (a)α <β, a real triangle is formed bypu
0, pu

2, andp0–p2;
(b) α=β, a virtual triangle is formed by assuming thepu

0 andpu
2 converge at the point of infinity; (c)α >β, a

mirror triangle is formed on the opposite side ofp0–p2.

3. Tangent Vector Approximation

To form a GGT, it is necessary to have the tangent vectorspu
0 andpu

2 be calculated. Note
thatpu

0 andpu
2 cannot be precisely measured in a digital image because of pixel tessellation

and noise corruption. An approximation of the vectors thus is resorted.
In principle, the tangent at point (x0, y0) is defined by

y− y0 = f ′(x0)(x − x0),

where

f ′(x0) = lim
1x→0

f (x +1x)− f (x)

1x
.

This suggests thatpu
0 andpu

2 can be approximated by taking the direction of the two closest
pixels at thep0 andp2, respectively. However, this approximation often leads to a large
error because of pixel tessellation and noise effect, as shown in Fig. 3.7a.

Let us consider a solution region for the two tangent vectorspu
0 andpu

2. It is conceived that
the smaller the solution region, the more accurate a solution will be. Therefore rather than
trying to directly explore the tangent vector, we could resort to finding a solution region
and then attempt to narrow the region to a sufficiently small or acceptable magnitude.
The general concept is that once the solution region is small enough, we can use it (or its
component) as an approximation to the solution. This leads to the recursive procedure that
applies the maximum inner triangle property of the shoulder point discussed in Section 2
to the construction of the solution regions.

FIG. 3.7. Different ways of approximating tangent vectors: (a) via1x approach; (b) via maximum inner
triangle approach.



PROCEDURE B (Approximation ofpu
0 andpu

2). Given a pixel set{pi ; i = 1,2, . . . ,n}
which is a sequence of edge pixels on an object boundary withp0 andp2 been identified as
the end points.

Step1. Findpv ∈ {pi } such that its distance to linep0–p2 is the largest among pixels in
{pi }.

Step2. Divide the conic section into two subdivisions at the pointpv,
Denote these two subdivisions asp0–pv andpv–p2.

Step3. For the subdivisionp0–pv

Repeat
Find a newpv its distance to linep0–pv is the largest among the pixels on
conic sectionp0–pv,
Divide the conic section into two subdivisions at the new pointpv,

Until the distance of the newpv to p0–pv of the conic subdivision is less than
one thresholdε.

Denote the vectorp0–pv as an approximation ofpu
0.

Step4. For the subdivisionpv–p2

Repeat
Find a newpv its distance to linepv–p2 is the largest among the pixels on
conic sectionpv–p2,
Divide the conic section into two subdivisions at the new pointpv,

Until the distance of the newpv to pv–p2 of the conic subdivision is less than
one thresholdε.

Denote the vectorp2–pv as an approximate ofpu
2.

An example of applying the maximum inner triangle approach to the approximation of
the tangent vectors is shown in Fig. 3.7b, where three consecutive maximum inner triangles
are constructed for the solution regions of thepu

0 andpu
2. Justification of the algorithm is

contained in Appendix C of this paper.
In the digital image processing, the pointpv is identified by compare the distances from

the pixels on the edge sequence of the conic to the baselinep0–p2. Thepv has the largest
distance measure. The process is terminated when no more inner triangles can be formed
for the conic subdivisions or the height of the maximum inner triangle is small enough.

The computational complexity of Procedure B can be described in this way. Letn be the
number of edge pixels computed. Step 1 of the procedure takes anO(n) complexity. The
complexity of Step 2 is a constant. Steps 3 and 4 have the same computational complexity
which, in terms of the subdivision nature, is in the order ofO(n logn). Therefore, the overall
computational complexity for the procedure isO(n logn).

4. FORMULATING CONIC SECTIONS ON PIXEL SEQUENCES

In this section we describe the modeling of the boundaries of objects in the digital images
in piece-wise approximations that consist of a number of conic pieces connected end-to-end
at the break points of the boundary edges.

Let {pi ; i = 1,2, . . . ,n} be a set of edge pixels organized in a sequence withp0 andp2

identified as the end points andpu
0 andpu

2 their tangent vectors. That is, the pixels in{pi } are
located within the region of the GGT formed by the vectorspu

0, pu
2, andp0–p2. Convert the

pu
0 andpu

2 to the parametric forms (ax,ay,a0) and (bx, by, b0), andp0–p2 to (ux, uy, u0),



respectively. For each pixelpi = (xi , yi )∈ {pi }, we then have

(axxi + ayyi + a0)(bxxi + byyi + b0) = Ki (uxxi + uyyi + u0)2. (4.1)

That is, a unique valueKi can be obtained for any point within the general guiding triangle,
such that

Ki = (axxi + ayyi + a0)(bxxi + byyi + b0)

(uxxi + uyyi + u0)2
. (4.2)

Let the Ki values being computed on all the edge pixel in{pi }, we then have{Ki , i =
1,2, . . . ,n}. Question now is that how aK value can be derived from the{Ki } so that a
unique conic section expressed in the form of (axx+ayy+a0)(bxx+byy+b0)− K (uxx+
uyy+u0)2= 0 can be obtained. To answer this question, we first define a number of criteria
for the evaluation of the fitness of the resulting conic sections to the given set of edge pixels
on an object boundary.

Let pi denote a pixel point within the set of points that are to be fitted by a conic section.
Let d0(pi ) be the distance from the pointpi to the base linep0–p2 of the guiding triangle
for the fitting conic. According to the distance definition for a point to a line, we have

d0(pi ) = |uxxi + uyyi + u0|√
u2

x + u2
y

. (4.3)

Let d1(pi ) be the distance from the pointpi to the corresponding fitting point on the fitted
conic. Assuming the point set is fitted by the conic section

(axx + ayy+ a0)(bxx + byy+ b0)− K (uxx + uyy+ u0)2 = 0. (4.4)

We then define

d1(pi ) = (axxi + ayyi + a0)(bxxi + byyi + b0)− K (uxxi + uyyi + u0)2. (4.5)

The examples ofd0(pi ) andd1(pi ) are shown in Fig. 4.1.
Note that ifpi is on the fitted curve,d1(pi )= 0. In other words, we can consider that the

valued1(pi ) 6= 0 represents an error of the fitting. The task of fitting the edge pixels in{pi }
then is modeled as a process of minimizing the fitting errors associated with thed1(pi ). This
leads to the following theorem.

FIG. 4.1. Quantitiesd0(pi ) andd1(pi ) for establishing the criteria in conic fitting.



THEOREM B. Given a set of edge pixels{pi , i = 1,2, . . . ,n} that fall into the region of
a GGT formed by the vectorspu

0, pu
2, andp0–p2, wherepi = (xi , yi )∈ {pi }. Let

Ki = (axxi + ayyi + a0)(bxxi + byyi + b0)

(uxxi + uyyi + u0)2
.

A conic section can be constructed by taking the valueK in the equation

(axx + ayy+ a0)(bxx + byy+ b0) = K (uxx + uyy+ u0)2

in one of the following three ways:

(1) Let

K = 1∑n
i=1(uxxi + uyyi + u0)4

n∑
i=1

(uxxi + uyyi + u0)4Ki ;

an error ofε(K )= ∑n
i=1[d1(pi )]2 is minimized.

(2) Let

K = 1∑n
i=1(uxxi + uyyi + u0)2

n∑
i=1

(uxxi + uyyi + u0)2Ki ;

an error ofε(K )= ∑n
i=1 [d1(pi )/d0(pi )]2 is minimized.

(3) Let K = (1/n)
∑n

i=1 Ki ; an error ofε(K )= ∑n
i=1 [d1(pi )/[d0(pi )]2]2 is minimized.

The proof of the theorem is in Appendix D. Applying the above theorem, we have the
following procedure for the construction of a conic section for a given set of edge pixels
between two break points on an object boundary.

PROCEDUREC (Constructing a conic approximation for an edge segment). Given a se-
quence of edge pixels{Pi ; i = 1,2, . . . ,n} with p0 andp2 identified as the end points and
pu

0 andpu
2 the approximations obtained by Procedure B.

Step1. Convert thepu
0 andpu

2 to the parameters (ax,ay,a0) and (bx, by, b0), and the vector
p0–p2 to (ux, uy, u0) of equation (axx+ayy+a0)(bxx+byy+b0)= K (uxx+uyy+u0)2.

Step2. For each pixelpi = (xi , yi )∈ {pi }, calculate

Ki = (axxi + ayyi + a0)(bxxi + byyi + b0)

(uxxi + uyyi + u0)2
.

Step3. Let

K = 1∑n
i=1(uxxi + uyyi + u0)4

n∑
i=1

(uxxi + uyyi + u0)4Ki ,

or

K = 1∑n
i=1(uxxi + uyyi + u0)2

n∑
i=1

(uxxi + uyyi + u0)2Ki ,

or K = (1/n)
∑n

i=1 Ki , in terms of the preference of the error function to be minimized.



Step4. Replace theK in equation (axx+ayy+a0)(bxx+byy+b0)= K (uxx+uyy+u0)2

by the value of step 3.

The computational complexity of Procedure C is clearly in the order ofO(n), where
n is the number of edge points processed in the process. The GGT-based procedure for
the construction of conic section approximations of object boundaries is presented as the
following.

PROCEDURED (Constructing conic approximation for object boundaries).
Input: An edge-detected image with object boundaries represented in pixel sequences.
Output: A set of conic section denotations along the boundaries of an object.

Step1. Apply a 3× 3 window operator [28] to find the break points along the object
boundaries.

Step2. Apply Procedure A to rectify the edge segments and identify the inflection points.
Step3. For each edge segment in the sequence along the object boundary

3.1. apply Procedure B to findpu
0 andpu

2 approximation for an edge segment between
two end pointsp0 andp2;

3.2. apply Procedure C to obtain the conic section parameters for the edge segment.
Step4. Redraw the object boundaries between pointss,p0, andp2 by the conic sections

identified.

Let nd be the total number of edge pixels in an image. The computational complexity of
the Procedure D can be derived as the following. First, both Step 1 and Step 2 takeO(n)
complexity. Step 3 calls Procedure B and Procedure C which then have theO(n logn) and
O(n) complexity, respectively. Since each edge segment is processed only once in Step 3,
the overall computational complexity of Step 3 isO(n logn). The computational complexity
of Procedure D thus isO(n logn).

5. EXPERIMENTS

Experiments on the procedures for conic section approximation described above were
conducted with the use of synthetic data and real images, respectively. In the cases of
synthetic data, we first assume the existence of an original conic curve. A set of data
points are then generated from adding noise and displacement to the selected data points
on the original curve. This approach allows us to make a quantitative measurement of the
accuracy of the result with respect to the original curve rather than the noise-corrupted
data points. In the cases involving the use of real images, the procedures are applied to the
object boundaries that have been through a number of image preprocesses to have the edge
pixels extracted and the segments properly separated according to the detection of break
points.

Usually, a curve-fitting algorithm is evaluated by computing the mean-squared errors
between the points on the fitted curve and the given set of data points. The problem with
this method is that it only measures how good the fit is with respect to the given data set,
but not to the original curve represented by the data points. Since the information about the
original curve is available in our synthetic test cases, it is possible to measure the real errors
between the fitted points and the true curve positions. LetC0 be the original conic section
and letC1 be the fitted curve. We define the fit of the curve as



FIG. 5.1. Measurement of fitness on a conic section, wherep is a point on the base linep0–p2, d0(p) is the
distance from the pointp to a corresponding point on the original conic, andd1(p) is the distance from the fitted
curve to the corresponding point on the original curve.

F(C1,C0) =
p2∑

p=p0

(d0(p))2+ (d1(p))2

(d0(p))2
, (5.1)

where,d0(p) denotes the distance from a pointp on the base line of the guiding traingle to
the original conic section. The quantityd0(p)+ d1(p) equals the distance fromp to the fitted
curve (d1(p) is the error between the fitted curve and the original one with respect top). The
denotation of these measurements are shown in Fig. 5.1. Notice that a perfect fitting will
haveF(C1,C0)= 1 according to this definition. A value ofF(C1,C0)< 1 will represent a
fitting that is under the original curve with respect to the base line, andF(C1,C0)> 1 will
represent a fitting over the original curve with respect to the base line. In actual computation,
the correspondingd0(p) andd1(p) values are first calculated with respect to the common
parametert of the geometrical equations and then converted to the distance measure with
respect to the pointp on the base linep0–p2.

In the first example of the experiments, we show the approximation of the conic section
at the first quadrant of an ellipse. The original ellipseC0 is expressed as

C0: 9x2+ 16y2− 144= 0. (5.2)

The points, as shown in Fig. 5.2a, are generated by adding Gaussian noises to a set of pixels
originally located on the ellipse section. The end points of the section (p0 andp2) d are at
(0, 3) and (4, 0), respectively. The tangent vectorspu

0 andpu
2 are [1, 0] and [0, 1]. The noise

ratio n(p) is measured by comparing the offset of the point away from the original point,
sayd1(p), to the distance of the original point to the base line of the conic section, i.e.,d0(p)
(refer to Fig. 5.1) such that

n(p) = (d1(p))2

(d0(p))2
. (5.3)

For data points shown in Fig. 5.2a, then(p) has a distribution ofG(0.0,0.02), whereG( )
denotes a Gaussian density with 0.0 mean and 0.02 variance.

Figure 5.2b shows the original ellipse, namedC0, and the conic approximation generated
by applying the GGT procedure, namedC1, as well as that generated by a least-square fitting
algorithm [25], namedC2, and a generalized Hough transformation algorithm [4], named
C3, respectively. Table 1 shows the computation results of theKi values obtained on the
given point set.



FIG. 5.2. Conic curves generated on a give set of points: (a) the point set; (b) the fitted curves, whereC0 is
the original conic,C1 is the conic generated by the GGT procedure,C2 is generated by a least-square fitting, and
C3 is generated by a generalized Hough transformation.

TABLE 1
Computation of K on a Given Point Set for Conic Approximation

xp yp Ki

A 0.5 3
B 1 2.9 0.03866
C 1.5 2.8 0.03652
D 2 2.6 0.04132
E 2.5 2.3 0.04753
F 3 2 0.04
G 3.5 1.4 0.04759
H 3.75 1 0.04734
J 3.94 0.5 0.04528
K 3.8 1 0.03460
L 3.46 1.5 0.04222
M 2.98 2 0.03688
N 2.2 2.5 0.04253
I 4 0.5



The average valueK of 0.04286 is used in obtaining the conic sectionC1. Notice that
during the process of deriving the conic section (Procedure C) we used the algebraic form
of the conic expression,

(axx + ayy+ a0)(bxx + byy+ b0) = K (uxx + uyy+ u0)2.

After obtaining the parameterK for the conic section, we rewrite the expression in the form

f (x, y) = ax2+ by2+ 2hxy+ 2ux+ 2vy+ d = 0 (5.4)

with

a = axbx − Ku2
x, (5.5)

b = ayby − Ku2
y, (5.6)

h = axby + aybx

2
− Kuxuy, (5.7)

u = axb0+ a0bx

2
− Kuxu0, (5.8)

v = ayb0+ a0by

2
− Kuyu0, (5.9)

d = a0b0− Ku2
0. (5.10)

Applying these equations, we get the fitted conic sectionC1 in the expression

C1: 9x2+ 16y2+ 0.7xy− 2x − 2.7y− 136= 0. (5.11)

It is very close to the original ellipse of (5.2). We have the fitness measureF(C1,C0)= 1.06.
The expressions ofC2 andC3 are obtained as

C2: 9x2+ 14.4y2+ 5.8xy− 22x − 24.2y+ 55.6= 0, (5.12)

C3: 8x2+ 14y2− 8x − 7y− 109= 0, (5.13)

which have the fitness measure ofF(C2,C0)= 1.09 andF(C3,C0)= 1.14, respectively.
The noise ratio of the given point set is increased in the successive experiments.

Figure 5.3a shows the data points generated by adding additional noisy displacement to
the data set of Fig. 5.2a. The data set shown in Fig. 5.3a hasn(p) of G(0.0,0.04). The
resulting conic approximations to these points are shown in Fig. 5.3b, where the ellipse
C0 is the original,C1 is generated by the GGT-based procedure,C2 andC3 are from
least-square fitting and generalized Hough transformation. The conic expressions for these
approximations are

C1: 9x2+ 16y2+ 2xy− 9x − 11y− 110= 0, (5.14)

C2: 5x2+ 6y2− 10x − 9y− 24= 0, (5.15)

C3: 8x2+ 9y2− 2.6xy+ 6.4x + 25y− 156= 0. (5.16)



FIG. 5.3. Examples of conic curves generated from noise points: (a) the point set; (b) the fitted curves, where
C0 is the original conic,C1 is the conic generated by the GGT procedure,C2 is generated by a least-square fitting,
andC3 by a generalized Hough transformation.

The fitness measures areF(C1,C0)= 1.13,F(C2,C0)= 1.21, andF(C3,C0)= 1.32, re-
spectively. Figure 5.4 shows a plot of the fitness measurements on a number of test cases
with respect to noise distributions fromG(0.0,0.01) toG(0.0,0.1).

The procedure is also tested on real images with objects in curved boundaries. In the
tests, the object boundaries are extracted by first applying an edge detection operation and
then an edge linking process that identifies the edge segments and further limits the edge
sequences to one pixel width. The set of edge segments,{pi }’s, are identified before the
conic approximation algorithms are applied. The examples of Fig. 5.5 show (a) the original
images of objects, (b) the edge images after an edge detection operation, (c) the conic
sections superimposed on the original object boundaries.

6. CONCLUSION

The conciseness and accuracy of the boundary representation make it preferred for de-
scribing the object shapes in many computer vision applications. The conic section rep-
resentation of object boundaries has several advantages: (1) simplicity, only second-order
mathematical expression (quadratic equation) is involved in the representation; (2) popu-
larity, the boundaries of most popular objects (natural and manmade) in computer vision



FIG. 5.4. Fitness measurement of the conic approximations vs noise ratio of data points.

applications can be fitted in conic sections; (3) efficiency, some unique geometrical prop-
erties of the conic sections make the identification of the parameters of the curve segments
possible with the use of noniterative procedures. Even though the conic section is a simple
type of curves, it is possible to use them to model and display the more complex curves. The
algorithm described here takes advantage of the geometrical properties of conic sections for
generating conic section approximations of object boundaries in consideration of image tes-
sellation and noisy effect on the displacement of the edge pixels. The algorithm is efficient
in terms of its computational complexity. No iterative computations are needed to derive the

FIG. 5.5. Conic approximation of object boundaries in digital images: (a) original image; (b) boundary edges
of the objects in the images; and (c) conic sections on the boundaries of the objects.



parametersof the conic expressions for the boundary segments. While the accuracy of this
method relies on the proper detection of the geometrical features represented by the object
boundary pixels, the results can be optimized with respect to different criteria in terms of
the requirements of the applications.

APPENDIX A

(1) Define the pointpv=C(t = 1/2), that is, the point where the parametert of the
geometrical equation for the conic sectionC is equal to 1/2.

(2) LetC(t)= [ Cy(t)
Cx(t) ] and calculateC′(t) = dCy(t)/dCx(t). That is,

C′(t) = dCy(t)

dCx(t)
=

dCy(t)
dt

dCx(t)
dt

= −2py
0 + 2tpy

0 + 2wpy
1 − 4twpy

1 + 2tpy
2

−2px
0 + 2tpx

0 + 2wpx
1 − 4twpx

1 + 2tpx
2

. (A.1)

Let t = 1/2 in above expression; we get

C′(t = 1/2)= −py
0 + 2wpy

1 − 2wpy
1 + py

2

−px
0 + 2wpx

1 − 2wpx
1 + px

2

= py
0 − py

2

px
0 − px

2

. (A.2)

That is, the tangent of the baselinep0–p2. So it shows that the point,pv=C(t = 1/2) is also
the point where the conic has the tangent vector parallel to the baselinep0–p2.

(3) Observe that if any pointps on the conic section has a greater distance to the baseline
than the pointpv, then pointpv must be located at a position betweenps andp0–p2 . It
means that the line parallel top0–p2 and passing atpv will have to intersect the conic more
than once. This contradicts with the fact (1) above that the line parallel top0–p2 and passing
atpv is the tangent of conic atpv. Therefore, the pointpv is the point on the conic that has
the largest distance to the baselinep0–p2 .

(4) Denoted the triangle formed by the pointsp0, pv, andp2, as p0–pv–p2, it is seen that
its area equals the product of the baselinep0–p2 and the half the distance from the point on
the conic to the baseline. Since the pointpv has the largest distance from the conic to the
baseline, thus the triangle formed bypv andp0–p2 has the largest area.

(5) To prove that the conic pointpv is also on the linep1− (p0+ p2)/2, we show that
the pointC(t = 1/2) is the intersecting point of the conic with the linep1− (p0+ p2)/2.
Using the geometrical expression of the conic witht = 1/2, we have

C(t = 1/2)=
(
1− 1

2

)2
p0+ 2

(
1− 1

2

)
1
2wp1+

(
1
2

)2
p2(

1− 1
2

)2+ 2
(
1− 1

2

)
1
2w +

(
1
2

)2 =
1
4p0+ 1

2wp1+ 1
4p2

1
4 + 1

2w + 1
4

= p0+ 2wp1+ p2

2+ 2w
. (A.3)

The above can be expressed as

C(t = 1/2)=
[

Cy
(

1
2

)
Cx
(

1
2

)] = 1

2+ 2w

[
py

0 + 2wpy
1 + py

2

px
0 + 2wpx

1 + px
2

]
(A.4)



FIG. A.1. Properties of the shoulder pointpv on a conic sectionC: (1) parametert = 1/2; (2) tangent vector
pu

v parallel top0–p2; (3)hu is the largest among all distances fromC top0–p2; (4) trianglep0–p2–pv has the largest
area among all triangles formed byp0, p2, and a point on the conic section; (5)pv is on the linep1− (p0+ p2)/2.

Let the middle linep1− (p0+ p2)/2 be expressed as

y− py
1

x − px
1

= py
1 − py

0+py
2

2

px
1 − px

0+px
2

2

. (A.5)

By some arrangement, we have

y− py
1

x − px
1

= 2py
1 − py

0 − py
2

2px
1 − px

0 − px
2

(A.6)

Replacingx andy in the left hand side of the above equation byC(t = 1/2)= [ Cy( 1
2 )

Cx( 1
2 )

], we
get

y− py
1

x − px
1

=
py

0 +2wpy
1 + py

2
2+2w − py

1
px

0 +2wpx
1 + px

2
2+2w − px

1

= py
0 + 2wpy

1 + py
2 − (2+ 2w)py

1

px
0 + 2wpx

1 + px
2 − (2+ 2w)px

1

= 2py
1 − py

0 − py
2

2px
1 − px

0 − px
2

(A.7)

So the pointC(t = 1/2) is on the linep1− (p0+ p2)/2.

Figure A.1 puts the above properties of the shoulder pointpv in a single drawing.

APPENDIX B

To prove TheoremA we consider the algebraic equation of the conic section,

(axx + ayy+ a0)(bxx + byy+ b0) = K (uxx + uyy+ u0)2, (B.1)

whereaxx+ayy+a0= 0 is defined by vectorpu
0, (bxx+ byy+ b0)= 0 by vectorpu

2, and
uxx+ uyy+ u0= 0 by vectorp0–p2. A point (xp, yp) within the GGT means that the
following equations must be satisfied by the point (xp, yp) (only one situation is illustrated



without losing generality):

(B.2)

(B.3)

ax xp + ay yp + a0 > 0,

(bx xp + by yp + b0) < 0, 

ux xp + uy yp + u0 6= 0. (B.4)

In any of these cases, a nonzero solution forK ,

K = (axxp + ayyp + a0)(bxxp + byyp + b0)

(uxxp + uyyp + u0)2
6= 0, (B.5)

exists. Replacing theK in (B.1), we see that a valid conic section is obtained.

APPENDIX C

The algorithm for the approximation ofpu
0 andpu

2 can be justified in the following way.
First, it is known that the least error solution in an asymptotic approximation of a conic
section by two straight lines (i.e., closest to the conic) is the two sides of the maximum inner
triangle. The error is measured as the area between the conic section and the line pieces.
Let the two sides of the inner triangle be denoted asp′0 andp′2, respectively. Let the angle
betweenp′0 andpu

0 be denoted as6 p′0–pu
0 and the angle betweenp′2 andpu

2 be as6 p′2–pu
2.

Taking the summation of6 p′0–pu
0 and 6 p′2–pu

2 as the solution region for the approximation
of pu

0 andpu
2, it is obvious thatp′0 andp′2 of the maximum inner triangle give the least error.

Second, we show that the solution region is reduced in repetitive application of the above
approach. Notice that thepv chosen in the algorithm is the shoulder point of the conic. It is
then possible to construct a maximum inner triangle for each of the conic subdivisions based
onp0–pv andpv–p2. Repeating the process will reach a point where the inner triangles in the
successive subdivisions of the conic section are acceptably small so that no more subdivision
is needed. Let us keep using the symbolpv to denote the middle points of the successive
subdivisions of the conic section; at the end of the repeating process the left-most vector
p0–pv and the right-most vectorp2–pv can then be used to approximate thepu

0 andpu
2.

APPENDIX D

We prove Theorem B in accordance with three cases:

(1) Let ε(K ) =∑n
i=1[d1(pi )]2; that is,

ε(K ) =
n∑

i=1

[
(axxi + ayyi + a0)(bxxi + byyi + b0)− K (uxxi + uyyi + u0)2

]2
. (D.1)

To minimizeε(K ), we take a differentiation ofε(K ) with respect toK , which yields

ε′(K ) =
n∑

i=1

−2
[
(axxi + ayyi + a0)(bxxi + byyi + b0)− K (uxxi + uyyi + u0)2

]
× (uxxi + uyyi + u0)2. (D.2)



Let ε′(K ) = 0; we get

n∑
i=1

[
(axxi +ayyi +a0)(bxxi +byyi +b0)(uxxi +uyyi +u0)2−K (uxxi +uyyi +u0)4

] = 0.

(D.3)
Note that

(axxi + ayyi + a0)(bxxi + byyi + b0) = Ki (uxxi + uyyi + u0)2 (D.4)

which yields

K = 1∑n
i=1(uxxi + uyyi + u0)4

n∑
i=1

(uxxi + uyyi + u0)4Ki . (D.5)

(2) Let

ε(K ) =
n∑

i=1

[
d1(pi )

d0(pi )

]2

;

that is,

ε(K ) =
n∑

i=1

 (axxi + ayyi + a0)(bxxi + byyi + b0)− K (uxxi + uyyi + u0)2

|ux xi + uy yi + u0|√
u2

xi + u2
y


2

. (D.6)

Taking a differentiation ofε(K ) with respect toK , it yields

ε′(K ) =
n∑

i=1

−2
[
(axxi + ayyi + a0)(bxxi + byyi + b0)− K (uxxi + uyyi + u0)2

](
u2

x + u2
y

)
.

(D.7)

Let ε′(K ) = 0; we get

n∑
i=1

[
(axxi + ayyi + a0)(bxxi + byyi + b0)− K (uxxi + uyyi + u0)2

] = 0. (D.8)

Note that

(axxi + ayyi + a0)(bxxi + byyi + b0) = Ki (uxxi + uyyi + u0)2; (D.9)

that is,

n∑
i=1

[
Ki (uxxi + uyyi + u0)2− K (uxxi + uyyi + u0)2

] = 0 (D.10)

which yields

K = 1∑n
i=1(uxxi + uyyi + u0)2

n∑
i=1

(uxxi + uyyi + u0)2Ki . (D.11)



(3) Let

ε(K ) =
n∑

i=1

[
d1(pi )

[d0(pi )]2

]2

;

that is,

ε(K ) =
n∑

i=1

[
(axxi + ayyi + a0)(bxxi + byyi + b0)− K (uxxi + uyyi + u0)2[ |ux xi + uy yi + u0|√

u2
xi + u2

y

]2

]2

. (D.12)

Taking a differentiation ofε(K ) with respect toK , it yields

ε′(K ) =
n∑

i=1

−2
[
(axxi + ayyi + a0)(bxxi + byyi + b0)− K (uxxi + uyyi + u0)2

]
×

(
u2

x + u2
y

)2
(uxxi + uyyi + u0)2

. (D.13)

Let ε′(K ) = 0; we get

n∑
i=1

[
(axxi + ayyi + a0)(bxxi + byyi + b0)

− K (uxxi + uyyi + u0)2
] (

u2
x + u2

y

)2
(uxxi + uyyi + u0)2

= 0. (D.14)

Again, since

(axxi + ayyi + a0)(bxxi + byyi + b0) = Ki (uxxi + uyyi + u0)2, (D.15)

we have

n∑
i=1

[
Ki (uxxi + uyyi + u0)2− K (uxxi + uyyi + u0)2

] (
u2

x + u2
y

)2
(uxxi + uyyi + u0)2

= 0, (D.16)

which yields

n∑
i=1

[Ki − K ]
(
u2

x + u2
y

)2 = 0. (D.17)

That is,

K = 1

n

n∑
i=1

Ki . (D.18)
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