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METHODOLOGY ARTICLE Open Access

Multiplatform biomarker identification
using a data-driven approach enables
single-sample classification
Ling Zhang , Ishwor Thapa, Christian Haas and Dhundy Bastola*

Abstract

Background: High-throughput gene expression profiles have allowed discovery of potential biomarkers enabling
early diagnosis, prognosis and developing individualized treatment. However, it remains a challenge to identify a set
of reliable and reproducible biomarkers across various gene expression platforms and laboratories for single sample
diagnosis and prognosis. We address this need with our Data-Driven Reference (DDR) approach, which employs stably
expressed housekeeping genes as references to eliminate platform-specific biases and non-biological variabilities.

Results: Our method identifies biomarkers with “built-in” features, and these features can be interpreted consistently
regardless of profiling technology, which enable classification of single-sample independent of platforms. Validation
with RNA-seq data of blood platelets shows that DDR achieves the superior performance in classification of six
different tumor types as well as molecular target statuses (such asMET or HER2-positive, and mutant KRAS, EGFR or
PIK3CA) with smaller sets of biomarkers. We demonstrate on the three microarray datasets that our method is capable
of identifying robust biomarkers for subgrouping medulloblastoma samples with data perturbation due to different
microarray platforms. In addition to identifying the majority of subgroup-specific biomarkers in CodeSet of
nanoString, some potential new biomarkers for subgrouping medulloblastoma were detected by our method.

Conclusions: In this study, we present a simple, yet powerful data-driven method which contributes significantly to
identification of robust cross-platform gene signature for disease classification of single-patient to facilitate precision
medicine. In addition, our method provides a new strategy for transcriptome analysis.

Keywords: Biomarkers, Single-sample, Classification, Cancer, RNA-Seq, Microarray

Background
Identification of reliable and reproducible biomarkers can
contribute to reveal patterns of disease heterogeneity.
Recent advances in High-throughput sequencing (HTS)
technology, such as microarray [1, 2] and RNA-Seq [3–5]
have enabled us to profile entire gene expression at low
costs. The massive amounts of gene expression profile
data generated by HTS have provided a great oppor-
tunity to identify reliable biomarkers which facilitate
diagnosis, prognosis or treatment of patients. The tech-
nological biases across gene expression platforms and

*Correspondence: dkbastola@unomaha.edu
School of Interdisciplinary Informatics, University of Nebraska at Omaha, 110 S
67th St, Omaha, NE 68182, USA

non-biological variabilities make it challenging to iden-
tify robust gene signature for cross-platform and cross-
laboratory classification. Several techniques have been
developed to eliminate platform-specific biases [6–8].
However, these methods require multiple samples when
processing transcriptome data, which is infeasible for
analysis of biomarkers in samples obtained from single
patient.
Since gene expression data are high-dimensional data,

an important research aim in analysis of transcription
profiles is the discovery of small subset of biomarkers con-
taining the most discriminant information, also known as
feature selection [9], for accurate assignment of molecu-
lar subtype of disease. During the past years, numerous
gene selection methods have been developed based on
gene expression data and applied in disease classification.
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In general, the gene selection methods fall into four cate-
gories: filter methods [10–12], wrapper methods [13–15],
hybrid methods [16, 17] and embedded methods [18, 19].
However, there is a lack of feature selection methods
designed to select robust features (or genes) which enable
cross-platform classification of single disease sample.
To address these challenges, we present a Data-Driven

Reference (DDR) approach to identify robust cross-
platform gene signature for classification of single-sample
from various platforms. Our DDR algorithm consists of
three main steps: 1) the stably expressed housekeeping
genes are employed as references to create a contingency
table for each gene using given gene expression dataset;
2) Fisher’s exact tests are applied in contingency tables to
identify differentially expressed genes (DEGs) as poten-
tial biomarkers between two conditions; 3) the categories
which the expression levels of biomarkers fall into based
on selected reference genes serve as input to the clas-
sifier. The reference genes are the housekeeping genes
whose expression values remain relatively constant across
all samples from different conditions. The categories gen-
erated by stably expressed reference genes represent the
relative positions of biomarkers, which have a consistent
interpretation across gene expression platforms and elim-
inate sample-specific biases. We illustrate DDR’s utility
through various evaluations and comparisons with gene

signatures identified by existing methods. We demon-
strate that DDR method contributes significantly to iden-
tification of robust cross-platform gene signature for
disease classification of single-patient to facilitate preci-
sion medicine.

Results
Identification of potential biomarkers in various
expression platforms
Differential expression analysis has been widely used to
identify potential biomarkers for diagnosis and prognosis
[20]. Using DDR to identify discriminant genes between
two conditions involves first two steps: constructing the
contingency table for each gene from expression data
based on selected reference genes, and then, using the
Fisher’s exact test to determine if there is a significantly
different expression for that gene between two groups (see
“Methods” section for details). For example, five refer-
ence genes (STARD7-AS1, ZCCHC9, RBM14,HNRNPH1,
and EIF4G2) from TCGA-BRCA RNA-Seq dataset were
selected, so that log2-fold-changes between expressions
of two consecutive reference genes were around 2 (Fig. 1
and Additional file 2). Gene expression heatmap was
constructed to show the relative expression patterns of
the top 20 (ranked based on FDR values) most signifi-
cant DEGs in comparison between triple-negative breast

Fig. 1 Expression levels of five data-driven reference genes from TCGA-BRCA RNA-Seq samples and tiers classified based on reference genes (top).
The contingency table of ESR1 expression based on expression levels of reference genes (bottom)
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cancer (TNBC) and the other subtypes (Additional file 1:
Figure S2A). Most of top 20 DEGs were down-regulated
in TNBC samples compared with the other subtypes of
breast cancer. TNBC has a poor prognosis compared with
other types of breast cancer due to lack of therapeutic tar-
gets. In this study, we examined top 10 up-regulated genes
(long non-coding RNA, LINC02188, was not included)
(Additional file 1: Figure S2B), and at least six genes have
been very recently (BCL11A, FOXC1, CDCA7, PSAT1,
UGT8, and GABRP) experimentally validated for clinical
or functional relevance in growth andmetastasis of TNBC
[21–26]. Four other genes (B3GNT5, PPP1R14C, RGMA,
and HAPLN3) were also computationally selected as sig-
nature genes in TNBC[27–29]. The DDR was also per-
formed in LUAD RNA-Seq dataset from TCGA and DEGs
between LUAD samples and healthy samples were iden-
tified based on selected reference genes (Additional file 3
and Additional file 1: Figure S3). The method presented
here can be applied as well to microarray expression
data. Four reference genes (Additional file 1: Figure S4)
were selected from expression microarray data (Acces-
sion: GSE62872), so that the differences between expres-
sions of two consecutive reference genes were around
2. Then, the DEGs between prostate cancer and health
were identified by DDR and ranked by adjusted p-value
(Additional file 4).
To assess DDR’s ability to detect DEGs, we compared

it with the tools widely used in differential expression
analysis in various platforms. The Fisher’s exact test is a
non-parametric test in the sense that it does not assume
that the RNA-Seq read counts or microarray expression

data across samples are based on the theoretical proba-
bility distribution. On the contrary, current popular tools,
such as DESeq [30], DESeq2 [31] and edgeR [32], use a
negative binomial distribution to model RNA-Seq read
counts for assessing differential expression. Linear mod-
els for microarray (limma) [33] uses linear models based
on empirical Bayes method to identify DEGs. To com-
pare DDR with existing tools for analysis of RNA-Seq
data, a gene was declared as significantly differentially
expressed if FDR (or adjusted p-value) was less than 0.01
in EdgeR and DESeq2methods, or FDR (adjusted p-value)
was less than 0.1 in DESeq and DDR methods. We mea-
sured the precision and recall of the identified DEGs
using the DEGs from the datasets of 230 TCGA-BRCA
samples (115 TNBC samples and randomly selected 115
other subtypes) and 118 TCGA-LUAD samples (59 nor-
mal tissue samples and randomly selected 59 LUAD sam-
ples) as the gold standard. The precision and recall val-
ues in both datasets for different methods and different
numbers of samples per group are illustrated in Fig. 2.
Two EdgeR methods reported high values for precision
in both datasets across different sample sizes (Fig. 2a
and d). DESeq2 achieved high performance in precision
similar to EdgeR methods in BRCA dataset, but showed
a slight decrease in LUAD dataset (Fig. 2a and d).
For DDR, the precision values remained relatively high
in LUAD datasets when sample size was reduced and
was slightly reduced in BRCA dataset (Fig. 2a and d).
On the contrary, DESeq showed lower values for pre-
cision with respect to all other tools. The recall values
rapidly decreased for all the tools when the number of

Fig. 2 Precision and recall of methods in two TCGA RNA-Seq datasets: precision (a) and recall (b) in BRCA data and precision (d) and recall (e) in
LUAD data. The false discovery rate (FDR) on the basis of mock comparisons generated using two datasets: 116 TNBC samples from TCGA-BRCA
dataset (c) and 59 normal samples from LUAD (f)
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samples per group was decreased (Fig. 2b and e). DESeq2,
EdgeR_GLM and EdgeR_EXACT outperformed the other
methods and DESeq was the worst-performing method
in analysis for both datasets. DDR resulted in inter-
mediate values of recall with respect to all other tools
(Fig. 2b and e).
To evaluate the false discovery rate (FDR) of the tools

in analysis of RNA-Seq data, we generated mock compar-
isons from two datasets: the first consisted of 115 triple-
negative breast cancer samples by randomly dividing the
samples into two non-overlapping groups (57 samples for
one group and 58 samples for the other group) and sec-
ond consisted of 59 normal samples from TCGA-LUAD
dataset by randomly dividing the samples into two non-
overlapping groups (29 samples for one group and 30 sam-
ples for the other group). The median FDRs of both EdgeR
methods were higher compared with the other methods
in both datasets (Fig. 2c and f). DESeq2 performed bet-
ter than EdgeR methods and controlled the FDRs well
(around 0.01 in BRCA dataset (Fig. 2c) and < 0.01 in
LUAD dataset (Fig. 2f )). DDR and DESeq demonstrated
extremely better control on false discovery rate compared
with the other tools. It is essential to control false posi-
tives so that reliable and reproducible biomarkers can be
identified.
Finally, we compared the overlaps of DEGs iden-

tified by the different methods through computing
overlap coefficient (Szymkiewicz-Simpson coefficient)
[34]. The overlaps between the methods are listed in
Additional file 1: Table S4. In LUAD dataset, 80% of
DEGs, identified using DDR (FDR < 0.1), coincided
with DEGs identified using EdgeR (FDR < 0.01) or
DESeq2 (adjusted p-value < 0.01). The use of DDR and
DESeq2 (or EdgeR) algorithms achieved higher overlap
rate in DEG results from BRCA dataset. DESeq gener-
ated DEG list overlapped poorly with that from DDR
(< 52%) in both datasets. It is no surprise that the high-
est overlap percentages were observed between DESeq
and DESeq2 DEG lists or between EdgeR_EXACT and
EdgeR_GLM DEG lists.
We benchmarked DDR approach against limma by

using prostate cancer microarray data. Similarly as
in analysis of RNA-Seq data, we used 240 samples
(randomly selected 120 samples from each group)
as the gold standard and measured the precision
(Additional file 1: Figure S5A) and recall (Additional file
1: Figure S5B) for both methods in different sample size
per group. limma performed better in term of preci-
sion. The recall values were systematically lower than
precision values for DDR and limma. Additional file 1:
Figure S5C shows that both DDR and limma appeared
extremely conservative in controlling FDR in this analysis.
DDR and limma DEG lists achieved 83% overlap with
each other.

Feature selection and cross-platform single-sample
classification
In this section, we provided an example of using DDR
to select signature genes between TNBC and other types
of BRCA using TCGA RNA-Seq dataset, and use fea-
tures of selected genes to classify BRCA samples from a
different expression profiling platform (Microarray. GEO
accession: GSE27447). DDR was applied to TCGA-BRCA
RNA-Seq dataset to identify a list of ranked DEGs (ranked
by adjusted p-value) (Additional file 2). The small sub-
set of 4 genes (ESR1, AGR2, AGR3, FOXA1) was selected
as biomarkers for classification based on adjusted p-value
(< 1 × 10−60) and Expression Distance (ED >2.5). Com-
bination of FDR and ED for selection of signature genes
enables not only identifying genes containing most dis-
criminant information but also leading to more repro-
ducible biomarkers. Fisher’s exact tests were employed to
identify top DEGs as potential biomarkers, which come
with the most differentially relative positions in com-
parison to reference genes, named as “built-in” features.
Since the positions are relative, they can be robust fea-
tures and be used for single sample classification. These
“built-in” features (Additional file 5) served as input to
train classifiers. Here, we compared the performance of
different classifiers from Scikit-learn [35] for TNBC clas-
sification using categorized expression of four signature
genes as feature. From Additional file 1: Figure S6, it can
be seen that SVM achieved slightly better performance
(Accuracy: 94%) though the other classifiers performed
as well on classification task. Most of non-TNBC breast
cancer samples were correctly predicted (Accuracy: 97%),
whereas the proportion of mis-assigned TNBC samples
was higher (Additional file 1: Table 1A). To evaluate the
capacity of four selected signature genes and SVM clas-
sifier trained on TCGA-BRCA dataset in cross-platform
classification of single-samples, the microarray dataset
containing 5 TNBC samples and 14 non-TNBC sam-
ples was collected from GEO (Accession: GSE27447) [36].
GSE27447 data (.CEL files) were normalized by affy pack-
age in R. When using tiered classifications of four genes
selected above (Additional file 5) based on reference genes
from GSE27447 dataset as input to SVM classifier trained
on TCGA-BRCA dataset, 5/5 (100%) and 11/14 (79%)
were classified correctly to TNBC and non-TNBC, respec-
tively (Table 1b). These examples demonstrate DDR’s
ability to identify robust biomarkers for cross-platform
classification of single patient.

Identification and analysis of different cancer subtypes
using RNA-Seq of tumor-educated platelets
Molecular information in non-invasive liquid biopsy
offers the promise of detection and classification of can-
cer subtypes [37, 38]. In this study, we employed RNA-Seq
data of blood platelets to evaluate DDR in its ability
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Table 1 Classification Performance on (A) TCGA-BRCA RNA-Seq Dataset and (B) GSE27447 BRCA Microarray Test Dataset using 4
Signature Genes

to identify biomarkers for the classification of cancer
subtypes and status of therapy-targeting genes. The
platelets as liquid biopsy are capable of carrying RNA
molecules from tumor tissues (educating), and serve as
potential non-invasive biomarker source for detecting and
monitoring cancers [38, 39]. These platelets are known
as Tumor-Educated Platelets (TEP), of which the RNA
profiles could be used to subgroup the cancers [38].
Here, we applied DDR to identify the subsets of dis-

criminant genes from RNA-Seq data of TEP from GEO
(Accession: GSE68086) [38] and employed SVM classi-
fier on classification tasks. Furthermore, we compared
the classification performance of our method with that of
Best et al. (see “Discussion” section for details) [38]. To
classify pan-cancer samples representing six tumor types
(breast cancer (BRCA, n = 39), colorectal cancer (CRC,
n = 42), glioblastoma (GBM, n = 40), non-small cell lung

cancer (NSCLC, n = 60), hepatobiliary cancer (HBC, n =
14), and pancreatic cancer (PAAD, n = 35)) and healthy
donors (HD, n = 55), the DDR was applied to each pair-
wise comparison among groups to identify DEGs, and
then a small subsets of biomarkers were selected from
DEG lists of pairwise comparisons based on adjusted p-
values and ED (see Additional file 6 for details). These
subsets of biomarkers were merged and duplicate genes
were removed to generate a list comprising 596 genes
(Additional file 7) for pan-cancer classification. The tiered
categorizations of 596 genes were used as input to multi-
class One-versus-One (OvO) SVM classifier to yield over-
all accuracy of 72% (Table 2a). Similarly, for discriminating
three different types of adenocarcinomas (CRC, PAAD
and HBC) from gastro-intestinal tract, we selected 144
genes (Additional file 7) and performed OvO SVM classi-
fier, yielding an overall accuracy of 80% (Table 2b).

Table 2 Classification Performance on (A) Multi-class Cancers and (B) Gastro-intestinal Tract Cancers
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Best et al.[38] also reported that RNA profiles from TEP
could be used to discriminate tumor patients with differ-
ent status of therapy-targeting oncogenes, such as KRAS-
mut vs KRAS-wt in CRC, HBC, NSCLC, and PAAD
patients, EGFR-mut vs EGFR-wt in NSCLC patients,
MET+ vs MET- in NSCLC patients, PIK3CA-mut vs
PIK3CA-wt in BRCA, HER2+ vs HER2- in BRCA, as well
as triple-negative breast cancer. The number of biomark-
ers (Additional files 6 and 7) and classification accuracies
were presented in Tables 3a–i.

Identification and analysis of biomarkers for subgrouping
medulloblastomamicroarray data
Medulloblastoma (MB) is the most common malignant
brain tumor in children and represents approximately 20%
of childhood brain tumors [40]. Transcriptional profil-
ing of MB identified four distinct molecular subgroups:
WNT (Wnt signaling pathway), SHH (sonic hedgehog sig-
naling pathway), Group 3 (G3) and Group 4 (G4) [41].
The nearest shrunken centroid and t test were combined
to select 22 medulloblastoma subgroup-specific signa-
ture genes (CodeSet), and then medulloblastoma samples
were subgrouped by measuring the expression level of 22
subgroup-specific genes [42, 43]. Here, the DDR method
was applied for identifying signature genes for each MB

subgroup using microarray dataset (Accession: GSE37418
[44]), and these genes were used to subgroup medul-
loblastoma samples from different microarray platforms.
Four reference genes (C1orf127, ZNF347, WDR70 and
HNRNPK ) (Additional file 1: Figure S7) were selected
and DEGs (adjusted p-value < 1 × 10−5) for each sub-
group were identified by performing DDR for each sub-
group against the other subgroups (Additional file 8).
Then, top 5 genes (non-coding RNAs were not included)
for each subgroup were selected based on ED values. A
total of 20 genes included: WNT (WIF1, GAD1, DKK2,
TRDV3, SHOX2), SHH (PDLIM3, EYA1, HHIP, CRB1,
SFRP1), G3 (TRIM58, GABRA5, PALMD, NPR3, HLX),
G4 (EOMES,NWD2, PTPN5, RBM24,UNC5D), and their
expression heatmap is presented in Fig. 3a. Among these
20 genes, 12 overlap with medulloblastoma subgroup-
specific signature genes (CodeSet) fromNanoString Tech-
nologies, Inc. [42]. The tiered categorizations of 20
signature genes (Additional file 9) were used as input
to OneVsRestClassifier from Scikit-learn [35] using SVM
over 1000 Monte Carlo cross-validation (MCCV) itera-
tions to yield overall accuracy of 99% and recall of 99%
(Table 4a).
The classification capacity of identified signature

genes and OneVsRest classifier was evaluated on two

Table 3 Classification Performance for Molecular Pathway Diagnostics
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Fig. 3 The expression heatmaps for signature genes in GSE37418[44] (a), GSE21140[41] (b), and GSE37382[45] (c)

independent datasets ((Accession: GSE21140 [41] and
GSE37382 [45]) from different microarray platforms.
Since signature gene NWD2 from training dataset
(GSE37418) was not available in GSE21140 datasets,
the other 19 signature genes (Additional file 9) were
used for classification (Fig. 3b). Using OneVsRest SVM

classifier trained on GSE37418 dataset, 94/103 (∼ 91%)
samples from GSE21140 were assigned to appropriate
subgroups (Table 4b). In GSE21140 dataset, all WNT
and SHH samples were correctly classified, seven G3
samples were misclassified to G4 subgroup (7/27), and
two G4 cases were misclassified to G3 group (Table 4b).

Table 4 Classification Performances on medulloblastoma samples (A) cross-validation analysis for GSE37418 dataset, (B) GSE21140
dataset, and (C) GSE37382 dataset
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There were only three subgroups of samples (SHH, G3
and G4) in GSE37382 dataset and 14 signature genes
(Additional file 9 and NWD2 was not included) were
used for subgrouping. Using OneVsRest SVM classifier
trained on GSE37418 dataset, 51/51 (100%) SHH samples,
33/46 (72%) G3 samples and 185/188 (98%) G4 sam-
ples were correctly classified to appropriate subgroups,
respectively, which resulted in accurate classification of
94% in GSE37382 dataset (Table 4c). To better charac-
terize non-SHH/non-WNT (G3 and G4) MB, we applied
DDR using the same reference genes as above to iden-
tify DEGs between G3 (adjusted p value < 1 × 10−4)
and G4 (adjusted p value < 1 × 10−5) (Additional file
8), then three up-regulated genes (non-coding RNAs were
not included) with maximum ED values from DEGs were
selected for G3 and G4, respectively (Additional file 1:
Figure S8A). Using SVM classifier, we correctly classified
G3 and G4 subgroups with average 96% accuracy using
MCCV (Table 5a). Subsequent validation using six sig-
nature genes and SVM classifier trained on GSE37418
dataset, yielded accuracies of 90% and 94% in GSE21140
and GSE37382 datasets, respectively, when subgrouping
G3 and G4 (Additional file 1: Figures S8B and S8C).
More G3 cases were correctly assigned in both validation
datasets compared with predictions above (Table 5b and
c). It is worthwhile to note that the expression level of
EN2, which improved G3/G4 classification performance,
has been reported to alter glioma cell morphology [46].

Discussion
In the past decades, a wide variety of methods have been
developed to identify biomarkers (feature selections) for
classification of diseases using gene expression profiling.
However, these approaches posed serious reproducibility
challenge when classifying cross-platform samples indi-
vidually due to technological and platform biases. To over-
come this limitation, we present a simple, yet powerful
data-driven method that does not require distribution-
based modeling for gene expression analysis and it iden-
tifies potential biomarker genes with “built-in” features

(categorized tiers based on reference genes) for the classi-
fication of single-sample from distinct platforms.
The huge amount of gene expression profiling data has

been accumulated over the past decades and deposited in
public databases such as GEO [47] and TCGA [48]. These
data can be great resources to detect significantly dif-
ferentially expressed genes (DEGs). These DEGs may be
considered as potential biomarkers for disease classifica-
tion or therapeutic targets [20]. The expression values are
grouped in discrete intervals based on the expression lev-
els of reference genes before applying Fisher’s exact test.
In this study, we evaluated the ability of DDR to identify
DEGs in multiple platforms through comparing with sev-
eral well-established methods, edgeR [32], DESeq [30] and
DESeq2 [31] on two RNA-Seq datasets: TCGA-BRCA and
TCGA-LUAD, and limma [33] on a microarray prostate
dataset. Although not a best performer, DDR still had
relatively high precision and recall values for detecting
differentially expressed genes across gene expression pro-
filing platforms. The overlaps between DDR and DESeq2
(and edgeR) were higher (>80%). These results demon-
strated that DDR retains information of expression values
well on analysis of DEGs. More importantly, DDR con-
trolled the number of false positives better, which guaran-
teed identifying reliable biomarkers. Unlike edgeR,DESeq,
DESeq2 and limma, DDR is a data-driven non-parametric
method which requires fewer assumption about data and
is robust to outliers. As a result, it deals with cross-
platform profiling gene expression and technical bias well.
The utilization of reference genes at different expression
levels effectively combines p-value and fold-change to
identify reliable DEGs (biomarkers). In addition, employ-
ing logarithmic expression levels when selecting reference
genes provides wiggle room to deal with overdispersion
in RNA-Seq data. Our method provides a better method-
ological advantage to identify reliable and reproducible
potential biomarkers from various expression profiling
platforms. DDR can also be employed to detect DEGs
among multiple conditions by designing appropriate
contingency tables.

Table 5 Classification Performances between Group 3 and Group 4 on (A) cross-validation analysis for GSE37418 dataset, (B) GSE21140
dataset, and (C) GSE37382 dataset
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TCGA is a comprehensive molecular profiling project
that compiles clinical and genomic data from samples
of different human tumor types [48], and provide a
great opportunity to identify genome-wide biomarkers for
the classification of cancer conditions. In this study, we
employed TCGA-BRCA datasets as training datasets and
used DDR to identify small subsets of biomarkers for dis-
criminating TNBC from the other subtypes of BRCA.
The “built-in” features used as input to the classifiers
effectively eliminated platform-based biases and avoided
perpetuating biases from one sample into another. DDR’s
ability to identify cross-platform features and classify sin-
gle sample can leverage information from gene expression
data that have been accumulated over the past decade and
integrate them with samples now being profiled with next
generation technologies. Additionally, the simplicity of
these featuresmakes them robust across various classifiers
in spite of our using of SVM classifier for the classification
in this study. The ability of DDR in classifying individuals
into appropriate disease groups makes it an ideal choice
in personalizing tool and a therapeutic strategy based on
specific subgroups of cancer.
Tumor-educated platelets (TEP) is able to serve as

potential noninvasive source of tumor-related RNA
biomarkers [38, 39, 49]. Best et al. employed edgeR using
RNA-Seq profiling of TEP to yield DEGs for pinpointing
the location of primary tumor with 71% accuracy across
six types of tumors and distinguish cancer patients with
different molecular subtypes as well. In this study, we
applied the DDR method to identify potential biomarkers
using RNA-Seq data of TEP and identify multiclass cancer
and molecular subclass. We were successful in achiev-
ing comparable classification performance with fewer
biomarkers compared with results reported by Best et
al. [38]. Much smaller sets of biomarkers associated with
cancer molecular subtypes (e.g. MET and HER2-positive,
or EGFR, PIK3CA and KRAS mutations) were identified
by DDR as compared to biomarker sets from Best et al.,
whichmakes it more practical in blood-based cancer diag-
nostics and therapeutic target identification. Selection
of smaller subset of biomarkers can reduce over-fitting
and computational complexity by removing redundant
features.
DDR employs Fisher’s exact test, a non-parametric

method, to analyze gene expression profiling, so it could
be equally applied in the analysis of microarray data.
To evaluate the performance of DDR in identification
of signature genes and classification of microarray data,
we applied DDR to a published microarray dataset of
medulloblastoma (GSE37418) and derived 20 signature
genes for medulloblastoma subgroups. Among 20 sig-
nature genes, 12 genes overlay NanoString codeset [42]
from a commercial instrument system, which suggests
our method is reliable in discovering biomarkers. The

application of the classifier trained on GSE37418 dataset
yielded high accuracy rate for subgrouping WNT, SHH
and G4 in two independently validated dataset, confirm-
ing classification reproducibility of biomarkers identified
by DDR. G3 and G4 subgroups display more similar-
ity to each other in transcriptional profiling compared
with WNT and SHH subgroups [41], so it is a chal-
lenge to discriminate G3 from G4. In this study, we
applied DDR to identify signature genes which were dif-
ferently expressed between G3 and G4, and achieved
improvement in G3 assignment. A recent study suggests
that non-SHH/non-WNT medulloblastoma may com-
prise of three subgroups rather than just G3 and G4 [50],
which may explain the observed low accuracy for G3 and
G4 subtyping.

Conclusions
The main technical novelty of this work is the combina-
tion of data-driven reference genes with non-parametric
Fisher’s exact test for discovering potential biomark-
ers. This not only allowed us to identify differentially
expressed genes but also help to extract corresponding
“built-in” features based on reference genes. One of the
exciting outcomes of these “built-in” features is their reli-
ability and reproducibility in classifying disease samples
involved with technical bias and cross-platform, which
allow us to analyze single sample of disease. This study
has shown that DDR can be a promising tool for the
identification of biomarkers for precision medicine. And
some expression assay (e.g. quantitative PCR) based on
these biomarkers and reference genes can be easily devel-
oped for diagnosis, prognosis and developing individual-
ized treatment in the future. Finally, although this study
has focused on cancer classification, it could be equally
useful in classification of other diseases such as Parkin-
son or Alzheimer’s. In conclusion, we have developed a
novel, reliable and reproducible data-driven method for
identification of potential biomarkers for single-sample
classification.

Methods
Data
RNA-Seq from The Cancer Genome Atlas (TCGA). All
RNA-Seq read count data from TCGA lung adenocarci-
noma (LUAD) project (n=594) were retrieved using the
GDC Data Transfer Tool [51]. Both LUAD and normal
data were collected, resulting in 535 cancerous and 59
normal tissue samples. All RNA-Seq read count data for
breast invasive carcinoma (BRCA) project (n=1222) were
downloaded from TCGA. Both cancer and normal sam-
ples were collected, resulting in 1109 BRCA and 113 nor-
mal samples. Clinical files were downloaded from TCGA
data portal for all BRCA samples using GDC client tool.
We identified 115 triple-negative breast cancer (TNBC)
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samples and 858 samples of the other subtypes based on
the annotation provided in the clinical files.
RNA-Seq from Gene Expression Omnibus (GEO).
RPKM normalized RNA-Seq data of LUAD were down-
loaded from the Gene Expression Omnibus (GEO, acces-
sion: GSE40419) [52]. The dataset contains 87 lung
adenocarcinomas samples and 77 corresponding normal
samples.
Microarray data from GEO. We retrieved mRNA
expression microarray data set from GEO under the
accession number GSE62872 [53] which was generated
using platform GPL19370. These 424 samples consisting
of 264 samples of prostate tumor and 160 samples of nor-
mal tissue were used. Additionally, the microarray data of
5 TNBC samples and 14 non-TNBC samples were down-
loaded from GEO profile data of GSE27447 [36].
RNA-Seq of Tumor-Educated Platelets. The gene
expression profiles of 285 blood platelet samples were
downloaded from GEO under the accession number
GSE68086 [38]. The samples consisted of breast cancer
(BRCA), colorectal cancer (CRC), glioblastoma (GBM),
hepatobiliary cancer (HBC), non-small cell lung cancer
(NSCLC), pancreatic cancer (PAAD) and healthy donors
(HD) (Additional file 1: Table S1).
Microarray data of Medulloblastoma. All microarray
data are downloaded from the GEO database under
assession number GSE37418 [44], GSE21140 [41], and
GSE37382 [45], respectively. The detailed number of sam-
ples for each subtype of medulloblastom from three
datasets is listed in Additional file 1: Table S2.

Data preprocess
When analyzing RNA-Seq data, DDR expects count data
as input. The count data can be obtained through TopHat-
HTSeq pipeline [54, 55]. For microarray data, the data
normalized by using Bioconductor package affywere used
as input to DDR. Before running DDR, the input data
were re-arranged to group the samples under the different
conditions.

Selection of reference genes
Reference genes from RNA-Seq data were identified using
a data-driven approach similar to that developed by
Hoang et al [56]. The normalization of RNA-Seq read
counts was performed using Trimmed Mean of M-values
(TMM) in edgeR [32, 57], and then the normalized val-
ues were transformed into Counts Per Million (CPM).
The CPM values for all genes in RNA-Seq datasets were
used to generate two metrics across the samples, namely,
the coefficient of variation (COV) and the maximum fold
change (MFC). COV was calculated for each gene i by
dividing the standard deviation (σi) of its CPM values by
the mean (μi): COVi = σi

μi
. MFC is the ratio of the maxi-

mum value over the minimumCPM expression value, also

for each gene. The product score (PS), our final metric for
each gene, was calculated by multiplying the COV by the
MFC:

PSi = COVi · MFCi (1)

The genes with the lowest product scores and those that
were also included in the list of human housekeeping
genes [58] were selected as candidate reference genes. The
list of human housekeeping genes was obtained by analyz-
ing data from the Human BodyMap 2.0 project across 16
human tissue types [58]. The top gene from candidate ref-
erence genes at a given range of expression was selected
as the final reference gene for corresponding expression
level. Let r(k)1 , r(k)2 , ..., r(k)n denote the expression levels of
reference genes selected above in sample k, so that r(k)1 <

r(k)2 < ... < r(k)n . The gene expression level between r(k)j

and r(k)j+1 (0≤j≤n) was assigned to Tier j in sample k, here
r(k)0 = 0 and r(k)n+1 = ∞ (Fig. 1).

Identification of discriminant genes
When n reference genes were selected from previous step,
n+1 tiers were generated based on the expression levels
of these reference genes. The relative expression position
(tier) of each gene in comparison to the reference genes
from the same sample was obtained, and then frequency
counts of the tiers were obtained across the samples from
the same condition. These frequency counts were filled in
the cells of a contingency table (each column represents
the relative position (tier) of each gene in comparison to
the reference genes and each row represents the differ-
ent conditions. So, a C × T contingency table was created
for each gene, here C is the number of conditions and
T is the number of tiers, to display the numbers of sam-
ples from a particular condition in which that gene was
assigned to a particular tier (Fig. 1). Then, Fisher’s exact
tests (FETs) were performed for the contingency tables to
assess whether the expression level of the gene is inde-
pendent or correlated with conditions or phenotypes. The
resulting p-values were adjusted to account for multiple
tests using the p.adjust function in R (method = ‘fdr’). In
addition to adjusted p-values, we defined expression dis-
tance (ED) for each gene to describe a quantity change of
the gene expression between conditions. The ED can be
used to select up- and down-regulated genes.

ED(i) =
∑T

j=1 n
(i)
Aj

· j
nA

−
∑T

j=1 n
(i)
Bj · j

nB
(2)

n(i)
Aj

= the number of samples from group A with gene i in tier j

nA = the number of samples from group A

n(i)
Bj = the number of samples from group B with gene i in tier j

nB = the number of samples from group B
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Benchmarks comparison in identification of discriminant
genes
To assess how well DDR performs for identification of
DEGs in comparison to the current methods (DESeq [30],
DESeq2 [31] and EdgeR [32] for RNA-Seq data and limma
[33] for microarray data), we used some real and simu-
lated data. To compute the true positives, we randomly
selected the subsets with different sizes (equal number for
each condition) from full datasets, and the random selec-
tion was repeated 10 times to avoid sample selection bias.
Larger sample size generally leads to increased precision,
so the overlapped DEGs identified from full dataset and
subset approximate the set of true positives. The tested
methods were compared under precision and recall [59]
defined as

precision(DEfull,DEsubset) = #(DEfull ∩ DEsubset)
#DEsubset

(3)

recall(DEfull,DEsubset) = #(DEfull ∩ DEsubset)
#DEfull

(4)

DEfull = the set of identified DEGs in the full data set
DEsubset = the set of identified DEGs in a subset of the data

To evaluate the false discovery rate of different methods,
we randomly assigned the equal sizes of samples from the
same condition without replacement into two groups and
the procedure was repeated 10 times. All samples were
from the same condition, which means that there should
not be any real DEGs, so DEGs identified from simulated
datasets arise by chance alone. The false discovery rate
was defined as ratio of the number of identified DEGs
from simulated dataset to the number of identified DEGs
by comparing two conditions from complete dataset. We
compared the overlaps of the identified DEGs between the
methods by Szymkiewicz-Simpson overlap coefficient.

overlap(X,Y ) = |X ∩ Y |
min(|X|, |Y |) (5)

Here, X and Y are the lists of DEGs identified by two
methods, respectively.

Feature selection and classification
Small subset of biomarkers for classification was obtained
from DEGs by filtering on the basis of low adjusted
p-values (FDRs) and high EDs. The feature tables con-
sisting of tiers to which selected biomarkers belong for
samples served as input to the classifiers. An example
of feature table for classifying TNBC and non-TNBC is
shown in Additional file 1: Table S3.
Several machine learning classifiers from Scikit-learn

[35] Python library were applied to classification. We
selected Support Vector Machine (SVM) using RBF ker-
nel with C=1 as final classification model for binary

classification and OneVsOneClassifier (or OnevsRestclas-
sifier) using SVM to deal with multi-class classification
problems. The samples were randomly separated into
training/testing sets with 90% of samples as training and
10% as testing. And then, we followed 1000 iterations in
stratified cross-validation analysis which deals with imbal-
anced classes and used accuracy, precision, recall and F1
scores from Scikit-learn to assess the performance of our
classification model.
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