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NOT SO MANY NON-DISJOINT TRANSLATIONS

ANDRZEJ ROS�LANOWSKI AND VYACHESLAV V. RYKOV

(Communicated by Heike Mildenberger)

Abstract. We show that, consistently, there is a Borel set which has un-
countably many pairwise very non-disjoint translations, but does not allow a
perfect set of such translations.

1. Introduction

There is some interest in the literature in Borel sets admitting many pairwise
disjoint translations. For instance, Balcerzak, Ros�lanowski, and Shelah [1] studied
the σ–ideal of subsets of ω2 generated by Borel sets with a perfect set of pairwise
disjoint translations. In this article we are interested in a somewhat dual property
of Borel sets: many overlapping translations.

If B ⊆ ω2 is an uncountable Borel set, then it includes a perfect set P , and then
for x, y ∈ P we have

0, x+ y ∈ (P + x) ∩ (P + y).

Consequently, every uncountable Borel subset of ω2 has a perfect set of pairwise
non-disjoint translations. However, if we demand that the intersections are more
substantial, then the problem of many non-disjoint translations becomes more in-
teresting. One should notice that if x+ b0 = y+ b1, then also x+ b1 = y+ b0, so if
x �= y and (B + x) ∩ (B + y) is finite, then |(B + x) ∩ (B + y)| must be even.

Here we investigate the first non-trivial case when (B+x)∩ (B+ y) has at least
four elements. We show that it is consistent with ZFC that there is a Σ0

2 subset B
of the Cantor space ω2 such that

• for some uncountable set H ⊆ ω2, |(B+h)∩ (B+h′)| ≥ 4 for all h, h′ ∈ H,
but

• for every perfect set P ⊆ ω2 there are x, x′ ∈ P such that

|(B + x) ∩ (B + x′)| ≤ 2.

Our proof follows the spirit of the proof of Shelah [5, Theorem 1.13], but since we
cut on generality, our arguments are more straightforward. We fully utilize the
algebraic properties of (ω2,+), in particular the fact that all elements of ω2 are
self-inverse.

This line of research will be continued in Ros�lanowski and Shelah [4], where we
will deal with the general case of κ many pairwise non-disjoint translations (getting
the full parallel of [5, Theorem 1.13]).
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2018, and August 13, 2018.
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Notation and terminology. Our notation is rather standard and compatible with
that of classical textbooks (like Jech [2]). However, in forcing we keep the convention
that a stronger condition is the larger one.

Ordinal numbers will be denoted by the lower case initial letters of the Greek
alphabet α, β, γ, δ, ε and ζ, ξ. Natural numbers (finite ordinals) will be called i, j, k
and �, n.

For a forcing notion P, all P–names for objects in the extension via P will be
denoted with a tilde below (e.g., h

˜
, T
˜
), and G

˜
P will stand for the canonical P–name

for the generic filter in P.
For two sequences η, ν we write ν � η whenever ν is a proper initial segment of

η, and ν � η when either ν � η or ν = η. A tree is a �–downward closed set of
sequences.

The set of all sequences of length n and with values in {0, 1} is denoted by n2
and we let ω>2 =

⋃
n<ω

n2. For σ ∈ ω>2 let [σ] = {x ∈ ω2 : σ � x}. The Cantor
space ω2 of all infinite 0–1 sequences is equipped with the topology generated by
sets of the form [σ] and the coordinate-wise addition + modulo 2. Thus (ω2,+) is
a topological group.

For a tree T ⊆ ω>2 we set [T ] = {x ∈ ω2 : (∀n < ω)(x�n ∈ T )}.
For a set A ⊆ X × Y and x ∈ X and y ∈ Y let

Ax = {z ∈ Y : (x, z) ∈ A} and Ay = {z ∈ X : (z, y) ∈ A}.

2. Some technicalities

Definition 2.1. Let 1 < � < ω. A 4–arrangement in �2 is a tuple 〈a, b, c, d〉 ⊆ �2
such that a <lex b <lex c <lex d and

min{k < � : a(k) �= c(k)} = min{k < � : b(k) �= c(k)}
= min{k < � : a(k) �= d(k)} = min{k < � : b(k) �= d(k)}.

Lemma 2.2. Let 15 < � < ω. Suppose that h : [�2]2 −→ 2 is a coloring with the
property that

(�) if a, b, c ∈ �2 are distinct, then h(a, b) = 1 or h(a, c) = 1, or h(b, c) = 1.

(That is, there is no h-homogenous triangle in color 0.) Then there is a set A ⊆ �2
such that

(1) |A| ≥ 5, and A contains a 4–arrangement, and
(2) A is h-homogeneous in color 1, i.e., h(a, b) = 1 for distinct a, b ∈ A.

Proof. First, for a ∈ �2 let Za = {x ∈ �2 : x �= a ∧ h(x, a) = 0}. It follows from
the assumption (�) that

(∗) for each a, the set Za is h-homogenous in color 1.

If for some a ∈ �2 the set Za satisfies the requirements of (1), then we are done. So
suppose that

(�) for each a ∈ �2 either |Za| ≤ 4 or Za contains no 4–arrangement.

Let a ∈ �2 be the sequence constantly equal to 0 and let d ∈ �2 be the <lex–last
element of �2 \ Za. It follows from (�) that {x ∈ �2 : x�(�− 3) ≡ 1} \ Za �= ∅, and
hence d(k) = 1 for k < �− 3.

Let Y = {σ ∈ �−32 : σ(0) = 0 ∧ σ(1) = 1} and for σ ∈ Y let Xσ = {x ∈ �2 :
σ � x}. By (�), Xσ \ Za �= ∅ (for each σ ∈ Y ), so we may pick xσ ∈ Xσ such
that h(a, xσ) = 1. Again by (�), the set {xσ : σ ∈ Y } cannot be contained in
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Zd, so we may pick σ∗ ∈ Y such that h(d, xσ∗) = 1. Set b = xσ∗ and note that
h(a, b) = h(b, d) = 1.

Now we repeat the above procedure “on d’s side” for both a and b and d. We let
Y ′ = {σ ∈ �−32 : σ(0) = 1 ∧ σ(1) = 0} and Y ′′ = {ρ ∈ �−62 : σ(0) = 1 ∧ σ(1) = 0}.
For σ ∈ Y ′ consider Xσ = {x ∈ �2 : σ � x} and note that by our assumptions we
may pick x′

σ ∈ Xσ such that h(a, x′
σ) = 1. Now, for each ρ ∈ Y ′′ we may choose

σρ ∈ Y ′ such that ρ � σρ and h(b, x′
σρ
) = 1. By our assumptions, for some

ρ∗ ∈ Y ′′ we also have h(d, x′
σρ∗

) = 1. Set c = x′
σρ∗

and note that 〈a, b, c, d〉 is a

4–arrangement which is homogenous in color 1.
Repeating the above procedure again, but starting with Y + = {σ ∈ �−32 : σ(0) =

σ(1) = 0 ∧ σ(2) = 1}, going through levels � − 3, � − 6, and � − 9 and dealing
with a, b, c, d one may find e ∈ �2 such that A = {a, b, c, d, e} satisfies the demands
(1)+(2). �

Lemma 2.3. Let 0 < � < ω and let B ⊆ �2 be a linearly independent set of vectors
(in (�2,+, ·) over (2,+2, ·2)).

(a) If a, b, c ∈ �2 are pairwise distinct and {a, b, c}+ {a, b, c} ⊆ B+B, then for
some pairwise distinct η, ν, ρ ∈ B we have

a+ b = η + ν and a+ c = η + ρ.

(b) If A ⊆ �2, |A| ≥ 5, and A+A ⊆ B + B, then for a unique x ∈ �2 we have
A+ x ⊆ B.

Proof. (a) Let νa, νb, ηa, ηc, ρb, ρc ∈ B be such that

a+ b = νa + νb, a+ c = ηa + ηc, and b+ c = ρb + ρc.

Then νa �= νb, ηa �= ηc, ρb �= ρc, and

ρb + ρc = b+ c = a+ b+ a+ c = νa + νb + ηa + ηc.

By the linear independence of B we conclude {νa, νb} ∩ {ηa, ηc} �= ∅.
(b) Let A = {a0, a1, . . . , an−1}, n = |A| ≥ 5. Using clause (a) we may choose

η, ν, ρ ∈ B such that

a0 + a1 = η + ν and a0 + a2 = η + ρ.

Note that

(⊕) if 2 < k < n and a0 + ak = η∗ + η+ with η∗, η+ ∈ B, then
[{η∗, η+} ∩ {η, ν}| = |{η∗, η+} ∩ {η, ρ}| = 1.

(Just apply clause (a) to a0, a1, ak and to a0, a2, ak, remembering that B is linearly
independent.)

Let x = a0+η. We will argue that ai+x ∈ B for all i < n. Clearly by our choices
this holds for i ≤ 2. Suppose 2 < i < n is such that ai + x /∈ B. Let η∗, η+ ∈ B
be such that a0 + ai = η∗ + η+. If we had η ∈ {η∗, η+}, then ai + (a0 + η) ∈ B,
contradicting ai + x /∈ B. Therefore η /∈ {η∗, η+} and it follows from (⊕) that
ν, ρ ∈ {η∗, η+}, so a0 + ai = ν + ρ. Let j < n be such that j /∈ {0, 1, 2, i}, and let
a0 + aj = ν∗ + ν+, ν∗, ν+ ∈ B. Then (using (⊕)) we get

|{ν∗, ν+} ∩ {η, ν}| = |{ν∗, ν+} ∩ {η, ρ}| = |{ν∗, ν+} ∩ {ν, ρ}| = 1,

a contradiction. The uniqueness of x follows from the linear independence of B. �
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Lemma 2.4. Suppose that P ⊆ ω2 is a perfect set and An ⊆ P × P are Σ1
1 sets

(for n < ω) such that P ×P =
⋃

n<ω An ∪ {(x, x) : x ∈ P}. Then there is a perfect
set P ∗ ⊆ P with the following property :

(♥) For some increasing sequence of integers 0 = n0 < n1 < n2 < n3 < . . ., for
each k < ω and any distinct x, y ∈ P ∗ we have
(a) if x�nk+1 �= y�nk+1, then for all x′, y′ ∈ P ∗

(
x�nk+1 = x′�nk+1 ∧ y�nk+1 = y′�nk+1

)
⇒

(
(x, y) ∈ Ak ⇔ (x′, y′) ∈ Ak

)
,

(b) the set {z�nk+1 : z ∈ P ∗ ∧ z�nk = x�nk} has exactly two elements.

Proof. We will use the general result of Mycielski on the existence of independent
sets in topological algebras. To be able to quote his theorem we have to introduce
some definitions.

We say that a set S ⊆ Pm is obtained by identification of variables from R ⊆
Pm+1 if for some i, j ≤ m we have

(x1, . . . , xm) ∈ S ⇔ (x1, . . . , xi, xj , xi+1, . . . , xm) ∈ R.

For n < ω let Jn consist of all pairs (σ, ρ) ∈ ω>2 × ω>2 such that the set
([σ] × [ρ]) ∩ An is meager (in P 2) and [σ] ∩ [ρ] = ∅, and let Kn consist of pairs
(σ, ρ) ∈ ω>2 × ω>2 for which ([σ] × [ρ]) \ An is meager and [σ] ∩ [ρ] = ∅. For
(σ, ρ) ∈ Jn we may fix a Borel meager (in P ) set Xσ,ρ ⊆ P such that

(∀x ∈ [σ] \Xσ,ρ)((An)x ∩ [ρ] is meager) and
(∀y ∈ [ρ] \Xσ,ρ)((An)

y ∩ [σ] is meager).

Similarly, if (σ, ρ) ∈ Kn, then a Borel meager set Xσ,ρ ⊆ P is such that

(∀x ∈ [σ] \Xσ,ρ)([ρ] \ (An)x is meager) and
(∀y ∈ [ρ] \Xσ,ρ)([σ] \ (An)

y is meager).

For (σ, ρ) ∈ Jn ∪Kn let

Rn
σ,ρ =

{
(x1, x2, y1, y2) ∈ P 4 : x1, x2 ∈ [σ] \Xσ,ρ ∧ y1, y2 ∈ [ρ] \Xσ,ρ

∧ (x1, y1) ∈ An ∧ (x2, y2) /∈ An

}
.

Clearly for every (σ, ρ) ∈ Jn∪Kn the set Rn
σ,ρ is meager (in P 4), moreover if S ⊆ P k

is obtained from Rn
σ,ρ by repeated identification and/or permutation of variables,

then S is meager in P k as well.
The sets An have the Baire property and hence the sets Jn ∪ Kn are dense in

ω>2× ω>2. Let

X =
⋃{

Xσ,ρ : (σ, ρ) ∈ Jn ∪Kn ∧ n < ω
}

and

Rn =
{
(x, y) ∈ P 2 : x �= y and for all (σ, ρ) ∈ Jn∪Kn we have x /∈ [σ] ∨ y /∈ [ρ]

}
.

Easily, X is a meager subset of P , each Rn is meager in P 2 and identification of
variables in Rn leads to an empty set (so meager).

By [3, Theorem 1, p. 141] there is a perfect set P ′ ⊆ P such that

• (P ′ × P ′ × P ′ × P ′) ∩Rn
σ,ρ = ∅ for all n < ω and (σ, ρ) ∈ Jn ∪Kn, and

• P ′ ∩X = ∅ and (P ′ × P ′) ∩Rn = ∅ for all n < ω.
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Clearly, if x �= y are from P ′ and n < ω, then for some N < ω we have
(
∀x′, y′ ∈ P ′)((x�N = x′�N ∧ y�N = y′�N) ⇒ ((x, y) ∈ An ⇔ (x′, y′) ∈ An)

)
.

By shrinking the perfect P ′ one can construct a perfect set P ∗ ⊆ P ′ and an in-
creasing sequence 0 = n0 < n1 < n2 < . . . such that the demands in (♥) are
satisfied. �

3. The main result

Theorem 3.1. There exists a ccc forcing notion P of size ω1 such that in VP, there
is a Σ0

2 set B ⊆ ω2 with the properties that

(♠) (a) for some sequence 〈hα : α < ω1〉 of pairwise distinct elements of ω2
we have |(hα + B) ∩ (hβ +B)| ≥ 4, but

(b) in each perfect set P ⊆ ω2 there are f, g ∈ P with |(f+B)∩(g+B)| ≤ 2.

Proof. A condition p ∈ P is a tuple

p = 〈u, n, η̄,m∗, t̄, μ,K〉 = 〈up, np, η̄p,mp
∗, t̄

p, μp,Kp〉

satisfying the following demands:

(1) ∅ �= u ∈ [ω1]
<ω, 0 < m∗, n < ω, and η̄ = 〈ηα : α ∈ u〉 ⊆ n2.

(2) t̄ = 〈tm : m < m∗〉, each tm ⊆ n≥2 is a tree with all maximal nodes of
length n.

(3) μ : [u]2 −→ n2×m∗, and if α �= β are from u, then we will write μ(α, β) =
μ(β, α) = (ρα,β , �α,β).

(4) If α �= β are from u, then both ηα + ρα,β ∈ t�α,β
and ηβ + ρα,β ∈ t�α,β

.
(5) K : u −→ m∗ : α �→ Kα and ηα ∈ tKα

.
(6) If α < β < γ are from u, then {Kα,Kγ , �α,γ} �= {Kβ ,Kγ , �β,γ}.
(7) If m < m′ < m∗, then tm ∩ tm′ ∩ n2 = ∅.
(8) If m < m∗, then tm ∩ n2 ⊆ {ηα + ρα,β : α �= β ∧ α, β ∈ u} ∪ {ηα : α ∈ u}.
(9) 〈ηα : α ∈ u〉	〈ρα,β : α < β ∧ α, β ∈ u〉 is a list of linearly independent

vectors (in (n2,+, ·) over (2,+2, ·2)); in particular they are pairwise distinct.

The order ≤P=≤ of P is defined by:
p ≤ q if and only if the following conditions are satisfied:

(i) up ⊆ uq, np ≤ nq, and mp
∗ ≤ mq

∗.
(ii) If α ∈ up, then ηqα�np = ηpα.
(iii) If m < mp

∗, then tqm ∩ np

2 = tpm ∩ np

2.
(iv) If α ∈ up, then Kp

α = Kq
α and if α �= β are from up, then �pα,β = �qα,β and

ρpα,β � ρqα,β .

Claim 3.1.1. (P,≤) is a partial order of size ω1.

Claim 3.1.2.

(1) If p ∈ P and b0, c0, b1, c1 ∈
⋃

m<mp
∗
(tpm ∩ np

2) are pairwise distinct and
satisfy b0 + c0 = b1 + c1, then for some α �= β from up we have

{b0, c0, b1, c1} = {ηpα, η
p
β , η

p
α + ρpα,β , η

p
β + ρpα,β}.

(2) Also, for some i < 2, {bi, ci} = {ηpα, η
p
β} or {bi, ci} = {ηpα + ρpα,β , η

p
β} or

{bi, ci} = {ηpα + ρpα,β , η
p
α}.
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Proof of the claim. It follows from the definition of P (clause (8)) that b0, c0, b1, c1
∈ {ηα, ηα + ρα,β : α �= β are from up}. Since, by clause (9), 〈ηpα : α ∈ u〉	〈ρα,β :
α < β ∧ α, β ∈ u〉 are linearly independent we easily get our conclusion. �

Claim 3.1.3. For every N,M < ω and δ < ω1 the set

ZN,M
δ = {p ∈ P : np ≥ N ∧ mp

∗ ≥ M ∧ δ ∈ up}

is open dense in P.

Proof of the claim. Suppose that p ∈ P and let α ∈ ω1 \ up.
Let 〈α0, . . . , αk〉 be the increasing enumeration of up. Set u = up ∪ {α}, n =

np + k + 2, and m∗ = mp
∗ + k + 2. For i ≤ k let

ηαi
= ηpαi

	〈0, . . . , 0︸ ︷︷ ︸
k+2

〉 and ραi,α = ρα,αi
= 〈0, . . . , 0︸ ︷︷ ︸

np+i+1

〉	〈1〉	〈0, . . . , 0︸ ︷︷ ︸
k−i

〉.

We also let ηα = 〈0, . . . , 0︸ ︷︷ ︸
np

〉	〈1〉	〈0, . . . , 0︸ ︷︷ ︸
k+1

〉 and we put �αi,α = �α,αi
= mp

∗ + i and

Kα = mp
∗ + k + 1. Next, for i ≤ k we define Kαi

= Kp
αi

and for i < j ≤ k we
let ραj ,αi

= ραi,αj
= ρpαi,αj

	〈0, . . . , 0︸ ︷︷ ︸
k+2

〉, and �αj ,αi
= �αi,αj

= �pαi,αj
. (So a function

μ : [u]2 −→ n2×m∗ is defined now too.) For m < mp
∗ let

tm = tpm ∪ {σ	〈0, . . . , 0︸ ︷︷ ︸
j

〉 : σ ∈ tpm ∩ np

2 ∧ j < k + 3}

and for m = mp
∗ + i < m∗ − 1 let tm = {(ηαi

+ ραi,α)�j, (ηα + ραi,α)�j : j ≤ n} and
tm∗−1 = {ηα�j : j ≤ n}. Finally, let t̄ = 〈tm : m < m∗〉.

It is straightforward to verify that q = 〈u, n, η̄,m∗, t̄, μ,K〉 satisfies the demands
of the definition of a condition in P. Moreover, q is a condition stronger than p,
and α ∈ uq, mq

∗ ≥ mp
∗ + 2 and nq ≥ np + 2.

Now the claim readily follows. �

Claim 3.1.4. The forcing notion P has the Knaster property.

Proof of the claim. Suppose that 〈pξ : ξ < ω1〉 is a sequence of conditions from
P. Applying the standard Δ–lemma based cleaning procedure we may find an
uncountable set A ⊆ ω1 such that {upξ : ξ ∈ A} forms a Δ–system of finite sets
and for ξ < ζ from A we have:

(∗)1 npξ = npζ , m
pξ
∗ = m

pζ
∗ , t̄pξ = t̄pζ ,

(∗)2 |upξ | = |upζ |, upξ ∩ upζ is an initial segment of both upξ and upζ and
max(upξ \ upζ ) < min(upζ \ upξ),

(∗)3 if π : upξ −→ upζ is the order preserving bijection, then for every α ∈ upξ

we have

K
pξ
α = K

pζ

π(α) and η
pξ
α = η

pζ

π(α)

and μpξ(α, β) = μpζ (π(α), π(β)) for all α < β from upξ .

We may assume that upξ ∩ upζ �= ∅ �= upξ \ upζ for distinct ξ, ζ ∈ A.
We will argue that if ξ < ζ are from A, then the conditions pξ, pζ are compatible.
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Let

(∗)4 〈γ0, . . . , γk0
〉 be the increasing enumeration of upξ ∩ upζ , let 〈α0, . . . , αk1

〉
be the increasing enumeration of upξ \ upζ , and let 〈β0, . . . , βk1

〉 be the
increasing enumeration of upζ \ upξ (so 2 + k0 + k1 = |upξ |) and let

(∗)5 k∗ = (k1 + 1)(k0 + k1 + 3) + (k1−1)(k1+2)
2 + 1, n = npξ + k∗, and m∗ =

m
pξ
∗ + (k1 + 1)2, and

(∗)6 νi = 〈0, . . . , 0︸ ︷︷ ︸
i

〉	〈1〉	〈0, . . . , 0︸ ︷︷ ︸
k∗−i−1

〉 ∈ k∗
2 for i < k∗.

To define a common upper bound to pξ and pζ we put

(∗)7 u = upξ ∪ upζ = {αi : i ≤ k1} ∪ {βi : i ≤ k1} ∪ {γi : i ≤ k0}, and
(∗)8 for i ≤ k1 we set ηαi

= η
pξ
αi

	〈0, . . . , 0︸ ︷︷ ︸
n−npξ

〉, ηβi
= η

pζ

βi

	νi and for i ≤ k0 we let

ηγi
= η

pξ
γi

	〈0, . . . , 0︸ ︷︷ ︸
n−npξ

〉, and

(∗)9 Kαi
= K

pξ
αi , Kβi

= K
pζ

βi
(for i ≤ k1) and Kγi

= K
pξ
γi (for i ≤ k0).

We define also a function μ : [u]2 −→ n2×m∗ : {δ, ε} �→ (ρδ,ε, �δ,ε) as follows:

(∗)10 if δ < ε are from upξ , then ρδ,ε = ρ
pξ

δ,ε
	〈0, . . . , 0︸ ︷︷ ︸

n−npξ

〉 and �δ,ε = �
pξ

δ,ε;

(∗)11 if i ≤ k0 and j ≤ k1, then ργi,βj
= ρ

pζ

γi,βj

	νk, where k = (k1 + 1) + i(k1 +

1) + j, and �γi,βj
= �

pζ

γi,βj
;

(∗)12 if i, j ≤ k1, then ραi,βj
= 〈0, . . . , 0︸ ︷︷ ︸

npζ

〉	νk, where k = (k0 + 2)(k1 + 1) +

i(k1 + 1) + j, and �αi,βj
= m

pζ
∗ + i(k1 + 1) + j;

(∗)13 if i < j ≤ k1, then ρβi,βj
= ρ

pζ

βi,βj

	νk, where k = (k1 + 1)(k0 + k1 + 3) +
i(2k1−i+1)

2 + (j − i− 1), and �βi,βj
= �

pζ

βi,βj
.

Finally, let t̄ = 〈tm : m < m∗〉, where
(∗)14 if m < m

pζ
∗ , then

tm = t
pζ
m ∪ {σ	〈0, . . . , 0︸ ︷︷ ︸

k

〉 : σ ∈ t
pζ
m ∩ npζ

2 ∧ k ≤ k∗}

∪ {ηβi
�k : i ≤ k1 ∧ Kβi

= m ∧ k ≤ n}
∪ {(ηγi

+ ργi,βj
)�k : i ≤ k0 ∧ j ≤ k1 ∧ �γi,βj

= m ∧ k ≤ n}
∪ {(ηβj

+ ργi,βj
)�k : i ≤ k0 ∧ j ≤ k1 ∧ �γi,βj

= m ∧ k ≤ n}
∪ {(ηβi

+ ρβi,βj
)�k : i < j ≤ k1 ∧ �βi,βj

= m ∧ k ≤ n}
∪ {(ηβj

+ ρβi,βj
)�k : i < j ≤ k1 ∧ �βi,βj

= m ∧ k ≤ n}

and
(∗)15 for m = m

pζ
∗ + i(k1 + 1) + j < m∗, i, j ≤ k1, we let

tm = {(ηαi
+ραi,βj

)�k, (ηβj
+ραi,βj

)�k : k ≤ n}.

One easily verifies that q = 〈u, n, η̄,m∗, t̄, μ,K〉 satisfies the demands of the
definition of a condition in P and that this condition is a common upper bound of
pζ and pξ. �
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We define P–names h
˜
α (for α < ω1), T

˜
m (for m < ω) and r

˜
α,β (for α < β < ω1)

by

• �P“ h
˜
α =

⋃
{ηpα : p ∈ G

˜
P ∧ α ∈ up} ”,

• �P“ T
˜
m =

⋃
{tpm : p ∈ G

˜
P ∧ m < mp

∗} ”,
• �P“ r

˜
α,β =

⋃
{ρpα,β : p ∈ G

˜
P ∧ α, β ∈ up} ”.

Claim 3.1.5. For α < β < ω1 and m < ω we have

(1) �P“ h
˜
α, r
˜
α,β ∈ ω2 ”,

(2) �P“ T
˜
m ⊆ ω>2 is a tree with no maximal nodes ”,

(3) �P“ if m < m′ < ω, then [T
˜
m] ∩ [T

˜
m′ ] = ∅ ”.

Proof of the claim. By Claim 3.1.3 and the definition of the order of P. �
Let B

˜
be the P–name for the Σ0

2 subset of ω2 given by �P“ B
˜

=
⋃

m<ω[T˜
m] ”.

Claim 3.1.6. For each α < β < ω1 we have

�P “ |(h
˜
α +B

˜
) ∩ (h

˜
β +B

˜
)| ≥ 4 ”.

Proof of the claim. It should be clear that h
˜
α, h
˜
β, h
˜
α+r

˜
α,β , and h

˜
β+r

˜
α,β are forced

to belong to B
˜

and they all are pairwise distinct. Therefore, 0, r
˜
α,β , h

˜
α + h

˜
β and

h
˜
α + h

˜
β + r

˜
α,β are distinct elements of the intersection (h

˜
α +B

˜
) ∩ (h

˜
β +B

˜
). �

Claim 3.1.7.

�P “ for every perfect set P ⊆ ω2 there are f, g ∈ P with |(f+B
˜
)∩ (g+B

˜
)| < 4 ”.

Proof of the claim. Suppose G ⊆ P is generic over V and let us work in V[G] for
awhile. Assume towards contradiction that P ⊆ ω2 is a perfect set such that

(∀f, g ∈ P )(|(f +B
˜

G) ∩ (g +B
˜

G)| ≥ 4.

Then for distinct f, g ∈ P there are pairwise distinct b0, c0, b1, c1 ∈ B such that
f + g = b0 + c0 = b1 + c1. Now, for (�0,m0, �1,m1, N) ∈ 5ω let

AN
�0,m0,�1,m1

= {(f, g) ∈ P 2 : for some bi ∈ [T
˜
G
�i
], ci ∈ [T

˜
G
mi

] (for i < 2) we have

b0�N �= c0�N and {b0�N, c0�N} ∩ {b1�N, c1�N} = ∅
and f + g = b0 + c0 = b1 + c1}.

By our assumption on P we know that

(�)1 for each distinct x, y ∈ P there are �0,m0, �1,m1, N < ω such that (x, y) ∈
AN

�0,m0,�1,m1
.

Since the sets AN
�0,m0,�1,m1

are Σ1
1, we may use Lemma 2.4 to choose a perfect set

P ∗ ⊆ P and an increasing sequence 0 = n0 < n1 < n2 < n3 < . . . such that

(�)2 for each k < ω and any distinct x, y ∈ P ∗ we have:
(a) if x�nk+1 �= y�nk+1, �0,m0, �1,m1, N ≤ k, then for all x′, y′ ∈ P ∗

satisfying x�nk+1 = x′�nk+1 and y�nk+1 = y′�nk+1 we have

(x, y) ∈ AN
�0,m0,�1,m1

⇔ (x′, y′) ∈ AN
�0,m0,�1,m1

,

(b) the set {z�nk+1 : z ∈ P ∗ ∧ z�nk = x�nk} has exactly two elements.

Now, by induction on j ≤ 21 we may choose 0 = k0 < k1 < k2 < . . . < kj < . . . <
k20 < k21 and A ⊆ P ∗ such that

(�)3 |A| = 220, say A = {x0, . . . , x220−1},
(�)4 if j ≤ 20, x, y ∈ A and x�nkj

�= y�nkj
, then (x, y) ∈ AN

�0,m0,�1,m1
for some

�0,m0, �1,m1, N < kj ,
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(�)5 if j < 20 and x ∈ A, then there is y ∈ A such that x�nkj
= y�nkj

but
x�nkj+1

�= y�nkj+1
.

Let P
˜

∗, n̄
˜
, A
˜

= {x
˜
0, . . . , x

˜
220−1}, and k̄

˜
be P–names for the objects appearing in

(�)1–(�)5 and let a condition p ∈ G force that they have the properties listed
there.

Passing to a stronger condition we may also demand that

(�)6 p decides the values of k
˜
0, k
˜
1, . . . , k

˜
21, say p � k

˜
j = kj for j ≤ 21,

(�)7 p decides the values of n
˜
0, n
˜
1, . . . , n

˜
k21

, say p � n
˜
i = ni for i ≤ k21,

(�)8 p decides the values of x
˜
0�nk21

, . . . , x
˜
220−1�nk21

, say p � x
˜
i�nk21

= σ∗
i for

i < 220,
(�)9 np > nk21

and mp
∗ > k21.

Note that it follows from (�)3 + (�)5 that

(�)10 if i < j < 220, then σ∗
i �= σ∗

j .

Since p forces that x
˜
i’s have the properties listed in (�)1 and (�)3–(�)5, there are

σi ∈ np

2 (for i < 220) such that

(�)11 σ∗
i � σi for each i < 220, and

(�)12 if i, j < 220 are distinct, then for some �0(i, j),m0(i, j), �1(i, j),m1(i, j) <
mp

∗ and b0(i, j) ∈ tp�0(i,j)∩
np

2, c0(i, j) ∈ tpm0(i,j)
∩np

2, b1(i, j) ∈ tp�1(i,j)∩
np

2,

c1(i, j) ∈ tpm1(i,j)
∩ np

2 we have

(a) σi + σj = b0(i, j) + c0(i, j) = b1(i, j) + c1(i, j), and
(b) {b0(i, j), c0(i, j)} ∩ {b1(i, j), c1(i, j)} = ∅,

(�)13 if i, i′, j, j′ < 220 and k < np are such that σi�k = σi′�k �= σj�k = σj′�k,
then

〈�0(i, j),m0(i, j), �1(i, j),m1(i, j)〉 = 〈�0(i′, j′),m0(i
′, j′), �1(i

′, j′),m1(i
′, j′)〉.

It follows from (�)10–(�)12 that there are no repetitions in the list b0(i, j), c0(i, j),
b1(i, j), c1(i, j).

By Claim 3.1.2(2), for distinct i, j < 220 we can find � < 2 and distinct α, β from
up such that

• either {b�(i, j), c�(i, j)} = {ηpα, η
p
β} (in which case we set h(i, j) = 1),

• or {b�(i, j), c�(i, j)} = {ηpα + ρpα,β , η
p
β} (and then we set h(i, j) = 0),

• or {b�(i, j), c�(i, j)} = {ηpα + ρpα,β , η
p
α} (and then we also set h(i, j) = 0).

Note that

(�)14 if i, j, k < 220 are pairwise distinct, then h(i, j) = 1, or h(j, k) = 1, or
h(i, k) = 1.

Why? First suppose that for some α < β, γ < δ and ε < ζ from up we have

σi + σj = b0(i, j) + c0(i, j) = ηpα + ηpβ + ρpα,β ,

σj + σk = b0(j, k) + c0(j, k) = ηpγ + ηpδ + ρpγ,δ,

σi + σk = b0(i, k) + c0(i, k) = ηpε + ηpζ + ρpε,ζ .

Then

0 = (ηpα + ηpβ + ρpα,β) + (ηpγ + ηpδ + ρpγ,δ) + (ηpε + ηpζ + ρpε,ζ).

However, by the linear independence, this is not possible (the ρ’s cannot be can-
celled).
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Second, suppose

σi + σj = b0(i, j) + c0(i, j) = ηpα + ηpα + ρpα,β = ρpα,β ,

σj + σk = b0(j, k) + c0(j, k) = ηpγ + ηpδ + ρpγ,δ,

σi + σk = b0(i, k) + c0(i, k) = ηpε + ηpζ + ρpε,ζ .

Then ρpα,β = (ηpγ + ηpδ + ρpγ,δ) + (ηpε + ηpζ + ρpε,ζ), and this is again not possible by
the linear independence.

Thirdly, the assumption that σi + σj = ρpα,β , σj + σk = ρpγ,δ and σi + σk =

ηpε + ηpζ + ρpε,ζ leads to

ρpα,β + ρpγ,δ = ηpε + ηpζ + ρpε,ζ ,

again a clear contradiction.
Finally, the configuration σi + σj = ρpα,β , σj + σk = ρpγ,δ and σi + σk = ρpε,ζ is

also impossible.
Using Lemma 2.2 we may find A ⊆ {i : i < 220} such that

(�)15 (a) |A| ≥ 5, andA = {σi : i ∈ A} contains a 4–arrangement (see Definition
2.1), and

(b) A is h-homogeneous in color 1, i.e., h(i, j) = 1 for i < j from A

(remember (�)3 + (�)5). Now, (�)15(b) implies that

A+A ⊆ {ηpα : α ∈ up}+ {ηpα : α ∈ up}.
Hence, by Lemma 2.3(b), there is x ∈ np

2 such that A+ x ⊆ {ηpα : α ∈ up}. Since
A+x contains a 4–arrangement we may find α < β < γ such that ηpα, η

p
β , η

p
γ ∈ A+x

and
min{k < np : ηpα(k) �= ηpγ(k)} = min{k < np : ηpβ(k) �= ηpγ(k)}

< min{k < np : ηpα(k) �= ηpβ(k)}.
Now, (ηpα + x), (ηpβ + x), (ηpγ + x) ∈ A so let i, j, k < 220 be such that ηpα + x =

σi, η
p
β + x = σj and ηpγ + x = σk. Then

ηpα + ηpγ = σi + σk = b0(i, k) + c0(i, k) = b1(i, k) + c1(i, k).

By (⊗)15(b) we know that h(i, k) = 1, so for some x < 2 there are distinct ε, ζ ∈ up

such that {= bx(i, k), cx(i, k)} = {ηpε , η
p
ζ}. Then ηpα+ηpγ = ηpε +ηpζ and by the linear

independence of 〈ηpδ : δ ∈ u〉	〈ρpδ,ξ : δ < ξ ∧δ, ξ ∈ u〉 necessarily {ηpε , η
p
ζ} = {ηpα, ηpγ}.

But now Claim 3.1.2(1) gives that {b1−x(i, k), c1−x(i, k)} = {ηpα + ρpα,γ , η
p
β + ρpα,γ}.

Consequently, using (�)12 + (7) we get

{Kp
α,K

p
γ} = {�x(i, k),mx(i, k)} and {�pα,γ} = {�1−x(i, k),m1−x(i, k)}.

Therefore,

{Kp
α,K

p
γ , �

p
α,γ} = {�0(i, k),m0(i, k), �1(i, k),m1(i, k)}.

Similarly, considering (j, k, β, γ) instead of (i, k, α, γ), we show that

{Kp
β ,K

p
γ , �

p
β,γ} = {�0(j, k),m0(j, k), �1(j, k),m1(j, k)}.

By (�)13 we have

{�0(i, k),m0(i, k), �1(i, k),m1(i, k)} = {�0(j, k),m0(j, k), �1(j, k),m1(j, k)}
and this implies that

{
Kp

α,K
p
γ , �

p
α,γ

}
=

{
Kp

β ,K
p
γ , �

p
β,γ

}
, contradicting clause (6) of

the definition of P. �

�
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Theorem 3.2. (1) Assume that a Σ0
2 set B ⊆ ω2 satisfies (♠) of Theorem 3.1.

Let Q be a ccc forcing notion. Then �Q“ B satisfies (♠) ”.
(2) Suppose κ is an infinite cardinal satisfying κω0 = κ. Then for some ccc

forcing notion Q0 we have

�Q0
“ c = κ and there is a Σ0

2 set B ⊆ ω2 satisfying (♠) ”.

(3) Assume CH. Let Cω2
be the forcing notion adding ω2 Cohen reals. Then

in VCω2 the following holds :
If B ⊆ ω2 is Borel , 〈ηα : α < ω2〉 ⊆ ω2 and

(
∀α < β < ω2

)(
|(B + ηα) ∩ (B + ηβ)| ≥ 4

)
,

then there is a perfect set P ⊆ ω2 such that
(
∀x, y ∈ P

)(
|(B + x) ∩ (B + y)| ≥ 4

)
.

(4) Assume CH. Then for some ccc forcing notion Q1 we have �Q “c = ω2

and there is a Σ0
2 set B ⊆ ω2 satisfying

(�)1 for some sequence 〈hα : α < ω1〉 of pairwise distinct elements of ω2
we have |(hα + B) ∩ (hβ +B)| ≥ 4 for all α, β < ω1, but

(�)2 there is no sequence 〈gα : α < ω2〉 of pairwise distinct elements of ω2
such that |(gα +B) ∩ (gβ +B)| ≥ 4 for all α, β < ω2”.

Proof. (1) For a Σ0
2 set B ⊆ ω2, the set

ZB =
{
(x, y) ∈ ω2× ω2 : |(B + x) ∩ (B + y)| > 2

}

is Σ0
2. One can easily see this by noting that (x, y) ∈ ZB if and only if

(∃t0, t1, t2 ∈ B)(x+ y+ t0 ∈ B ∧ x+ y+ t1 ∈ B ∧ x+ y+ t2 ∈ B ∧ |{t0, t1, t2}| = 3)

and remembering that continuous images of Σ0
2 subsets of 5(ω2) are Σ0

2. Conse-
quently, for a Σ0

2 set B ⊆ ω2, the formula “there is a perfect set P ⊆ ω2 such that
P × P ⊆ ZB” is Σ1

2, and thus absolute for forcing extensions.
Since A×A ⊆ ZB if and only if |(B+x)∩ (B+y)| > 2 for x, y ∈ A, the assertion

should be clear.
(2) Let P be the forcing notion given by Theorem 3.1 and let Cκ be the forcing

notion adding κ Cohen reals (with finite conditions). It follows from (1) above (and
Theorem 3.1) that the composition Q0 = P ∗ Cκ has the required property.

(3) First note that for a Borel set B ⊆ ω2, the set ZB =
{
(x, y) ∈ ω2 × ω2 :

|(B + x) ∩ (B + y)| > 2
}
is Σ1

1. Now, by Shelah [5, Fact 1.16], after adding ω2

Cohen reals over a model of CH, every analytic subset of ω2 × ω2 (so sets ZB in
particular) which contains a square of side length ω2 contains a perfect square.

See more in Ros�lanowski and Shelah [4, Section 3].
(4) Let P be the forcing notion given by Theorem 3.1, let Cω2

be the forcing
notion adding ω2 Cohen reals, and let Q1 = P ∗ Cω2

. In VQ1 consider the Σ0
2

set B added by P. As in (2) above, �Q1
“B satisfies (♠)”, so in particular �Q1

“B
satisfies (�)1”. Since V

P |= CH, we may also use (3) to argue that �Q1
“ B satisfies

(�)2”. �

Theorem 3.3. Assume MA + ¬CH. Then there is a Σ0
2 set B ⊆ ω2 satisfying

(♠) of Theorem 3.1.
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Proof. Standard consequence of the proof of Theorem 3.1. With notation as there,
let M be a transitive model of a large part of ZFC and such that ωM

1 = ω1 and
|M| = ω1. (For instance, take the transitive collapse of N ≺ H(χ), |N | = ω1,
ω1 ⊆ N .) Then P ∈ M. By MA + ¬CH we may find an M–generic G ⊆ P.
Consider M[G] which is a model of a large part of ZFC. By the proof of Theorem
3.1 there are 〈Tm : m < ω〉 and 〈ηα : α < ω1〉 belonging to M[G] such that

(♠)M[G] in M[G],
(a) Tm ⊆ ω>2 is a tree with no terminal nodes (for every m < ω) and

ηα ∈ ω2 (for each α < ω1),
(b) |(ηα +

⋃
m<ω[Tm]) ∩ (hβ +

⋃
m<ω[Tm])| ≥ 4,

(c) for every perfect set P ⊆ ω2 there are f, g ∈ P with |(f+
⋃

m<ω[Tm])∩
(g +

⋃
m<ω[Tm])| ≤ 2.

The properties stated in (♠)M[G](a),(b) are clearly absolute between M and V.
By an argument as in Theorem 3.2(1), the property stated in (♠)M[G](c) is Π1

2, so
also absolute between M and V. �

For the completeness of the picture we would like to know the answer to the
following problem (compare this with Theorem 3.2(3)).

Problem 3.4. Is it consistent that for every Borel set B ⊆ ω2,

if there is a sequence 〈ηα : α < ω1〉 of distinct elements of ω2 such
that (

∀α < β < ω1

)(
|(B + ηα) ∩ (B + ηβ)| ≥ 4

)
,

then there is a perfect set P ⊆ ω2 such that(
∀x, y ∈ P

)(
|(B + x) ∩ (B + y)| ≥ 4

)
?
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