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Pattern Classification in Dynamic Environments: 
Tagged Feature-Class Representation and 

the Classifiers 

QIUMING ZHU, MEMBER, IEEE 

Abstract -The classifiers characterized by a tagged feature-class repre­

sentation, a univariate discrimination approach, a cooperative classification 

scheme, and a logic-based learning strategy are discussed. Neither of the 

classifiers bears the constraints to the fixed sets of features and classes. 

Concepts of the tagged feature-class representation and the properties of 

feature matching in the dynamic environment are studied. Experimental 

tests and results of the classifiers are illustrated. 

l. INTRODUCTION 

Traditional statistical pattern recognition system has the fol­
lowing attributes of the classifier determined during the process: 
1) a set of classes to which sample patterns are to be assigned;
and 2) a set of features by which sample patterns are evaluated
and categorized. Outcome of a classification in such system is a
unique assignment of the sample pattern to one of the known
classes [l], [3], [5], [6].

The environments of classification, however, do not possess 
such static behavior in many real world problems. Answers to 
questions of how many classes and what classes the problem has, 
how many features and what features are presented in the prob­
lem are not always predefinable. Examples can be found in visual 
perception of unexplored scenes, trouble shooting and medical 
diagnosis, speech and natural language processing, etc. In a 
broader sense, many rule-based expert systems behave the same 
way. The activation of the decision rules in "condition=> action" 
form can be viewed as the consequences of the recognition of the 
condition patterns, as the features, to the rules, as the classes. 
The decisionmaking or problem solving is then a sequence of 
such pattern matching and classification processes. It can not be 
expected that a perfect satisfaction of the condition set of the to 
be activated rule will always be granted by the fact set presented. 
There are many occasions where the knowledge built in the 
system demands continual up-dating and improvement. There­
fore both the classes and features must undergo continual changes. 
We call those attribute varying situations the dynamic environ­
ment of pattern recognition. Pattern classification systems oper­
ating in these environments must accommodate the incomplete­
ness and uncertainties of those class and feature presentations, 
and be able to adapt to the changes of the class and feature 
attributes. The manipulation must be made by gaining knowledge 
of the environment from the classification practice rather than a 
prescheduled scheme. 

In traditional statistical pattern recognition, features to distin­
guish various classes are represented as a feature vector, denoted 
as X [3], [5], [6]. The multidimension space spanned by the 
possible occurrences of the feature vectors is called the feature 
space, denoted as g(X). Clusters of feature vectors form a 
partition of this feature space. These partitions, designated as 
classes, are collections of objects with high intra-class and low 
interclass similarities of the evaluation of these feature vectors. 
The surfaces, called decision boundaries, of making these parti­
tions are represented by the discriminant function, g;(X)s. The 
g; (X) can be linear, piecewise linear, or nonlinear. The central 
problem of those systems is to find and formulate such functions 
[7], [11]. An optimal classifier that minimizes the probability of 
error can be obtained by applying the Bayes decision theory. 
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However the techniques do not allow to be applied to the 
situations where the sets of classes and features have changes. 

A bit-mapped classifier is studied by Frey [4]. The work is 
originated on Holland's introduction of bit-tagging notation of 
classifier systems [9]. In Holland's work, a bit defined over the 
alphabet {1, 0, #} signals the presence, absence, and the "don't 
care" of the features ( messages). Frey demonstrated that the idea 
is applicable to general pattern classification systems in [4]. It 

allows the variation of appearance of the number of features to a 
classifier. In this correspondence, we extend the notion to the 
domain where features possess statistical distributions. The tag 
attached to each feature represents the availability and the relia­
bility of the feature value or distribution function. We show that 
these tagged features and the associated classes form a tagged 
feature-class space for the classification (12]. A univariate- and a 
cooperative-classifier working on the tagged feature-class repre­
sentation are developed respectively. Instead of categorizing sam­
ples into classes by the discriminant functions defined on the 
fixed sets of classes and features, classifications are made from 
rejecting the inconsistent classes out of a candidate set according 
to the high intraclass and low interclass measurements. The most 
significant characteristic of these classifiers is that they bear no 
constriction to the variations of the sets of classes and features in 
the system. 

The following sections are so organized. Section II introduces 
the notations of the tagged feature-class representation. Section 
III discusses the univariate distinguishability of classes and pre­
sents an univariate-classifier. A cooperative-classifier is described 
in Section IV. The natural of the dynamic environment makes the 
system strongly learning oriented. The learning procedures for 
the classifiers are presented in Section V. Section VI illustrates 
the experiment results for the univariate and cooperative-classi­
fiers in tagged feature-class representation. Section VII is conclu­
sion remark. 

II. TAGGED FEATURE-CLASS REPRESENTATION 

A. Feature Characteristics

In a dynamic environment, features in the feature vector fs of
a sample s may have the situations of: 

1) a feature f' is presented in samples. It is tagged as 1. We
use fs' to denote the feature and its value. 1/s'I denotes the
tag, therefore, Ifs' I = 1.

2) a feature f' is not presented in sample s. We do not have
value of this feature. When it is referred to, however, it is
tagged as 0, i.e., lfil = 0.

A class c is called an established class such that it has been 
entered to and defined in the system from the previous classifica­
tion process. We also call it old class to distinguish from the new 
class that was just introduced by a sample pattern but has not 
been verified by the system yet. 

The appearance of features in feature vector /,_. of an estab­
lished class c has the cases of: 

1) a feature f' is presented for classification in class c. It is
tagged as 1. We use J;' to denote the feature and p(J;') its
probability density function. ltl denotes the tag. There­
fore, I J;' I = 1.

2) a feature f' is not presented in class c. We have no
probability density function for this feature. When it is 
referred, however, it is tagged as 0, i.e., If I= 0.

3) a feature f' is presented in class c but is declared as an 
uncertain feature. It is tagged as #. We use J;' to denote
this feature and p(J;'.) its probability density function. 1/c'I
denotes the tag. Therefore I J;'. I = # .

A feature tagged # represents the uncertainty of its role in the 
classification. It may be a new feature just introduced without 

verification yet, or an old feature but its strength is too weak to 
be used for confirmative classifications. 

The p(f,') is established sequentially in the system running 
process by a learning algorithm. Use 1( and o; to denote its 
parameters. A Gaussian density function is assumed when no 
a priori knowledge about the form of the distribution is available. 
That is 

We assume that the J;' 's are mutally independent. The multidi­
mensional probability density function of fc is then the multipli­
cation of the densities: 

p( fc) = IIp( J;'.). 
A strength measure is associated with each J;\ denoted as str(.f'). 
It records and indicates the validity and usefulness of the feature 
in the classification process. 

B. Univariate Discrimination

We call it a correspondence from fs', feature f' of sample s, to
J;', feature f' of class c, when fs' is tagged 1 and J;' is tagged 1 or 

#. Denote the correspondence by =, then 

ViVc[((l!si l=l) and ((lic'l=l)v(1/c'I = #))) =(f:=t')] 
When fs;=f), a matching degree of them, denoted as d,,,(fs',J;'), 
is defined as the value offs' on p(J;'.). That is 

Normalize the d m ( fs', J;'.) to range O to 1, we get 
d,,,(fsi ,J:) =l 

o � d,,, U.1ci) <1,
if Is'= 1(.; 
otherwise. 

The matching degree d
"' 

( fs', J;') measures the certainty of the 
sample feature t falling in the distribution region of class 
feature J;'. It can also be viewed as a membership measurement 
of fs' with respect to the category of J;', as that developed in 
fuzzy set theory [8], (10]. To the Gaussian density of p(J;'), the 
dm(fsi , m then is 

We call it an inclusion, denoted by ex, such that fs' and J;' are 
correspondent and the dm(!s', J;'.) is greater than a specified 
threshold. That is 

where t is called the inclusion threshold. 
On the other hand we have an exclusion, denoted as a: , such 

that 

The value of d m ( f' ,!,.') can be attached to the inclusion measure­
ment when it is necessary. Such as 

f
i

OJ J;' 
denotes the inclusion offs' to J;'. with dm(!s',J;') = 0.6. 

The value range of J;'. on which fs' ex f) is called the discrimi­
nant scope of feature J;', denoted as dis(J;'). The dis(f))'s of a 
class c regulate the decision region of that class. The probability 
of error of a classification on class c is then also regulated and 
monitored by the combination of the t's set to each features of 
the class c. (An illustration is shown in Fig. 1.) 
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Fig. 1. Illustration of discriminant scopes. 

When the probability density functions p(f:) and p(f:) for 
feature r Of class C

J. 
and Ck are available, the �clusion threshold 

t
i 

and t, can be determined by the way such that: 
for feature value f', 

Ill. UNIVARIATE DISTINGUISHABILITY AND THE 
UNIVARIATE CLASSIFIER 

Conventional pattern classification process can be viewed as a 
series of transformations that convert the feature vector f. from 
n-dimensional feature space Q(J') to a one-dimensional decision
surface. Such as 

where c; denotes a class i. The symbol --> stands for "is assigned
to." The classification relies on the evaluation of the prespecified 
set of features presented in the sample. Such transformations can 
not be established in dynamic environment because the variables 
of the transformation are not able to be specified due to the 
unpredictable appearance of the X; 's in the input pattern.

One way for pattern classification in dynamic environment is 
to apply an univariate sequential classifier [12]. The principle of 
the classifier bases on the univariate distinguishability of the 
tagged feature-class representation. 

We say that two classes c
J 

and c
k 

are univariately distinguish­
able if there exists one feature f' in fc; and fc. such that 
(1.t::1=1) and (11:',1 = 1) and (dis(f�)ndis(f,'.J = 0). 
Classes in class set { C} are said to be univariately distinguish� 

able if for any pair of classes in { C} there exists one feature f' 
presented in both classes that makes them univariately distin­
guishable. On the other hand, if two classes are univariately 
distinguishable, than a sample pattern belonging to one of the 
two classes can be uniquely classified by using only that one 
feature. We call the feature that makes two classes cJ and c

k univariately distinguishable the discriminant feature of these two 
classes, denoted as f d(c

J
,cd. A geometric interpretation of uni­

variately distinguishability in the feature-class space is that the 
decision boundary between the two classes is perpendicular to 
one feature ax.is. 

Problem is how to find the discriminant features for any given 
class pair. For the task of distinguishing a sample from classes, 
fortunately, the explicit identification of these discriminant fea­
tures is not necessary. The problem is solved by the univariate­
classification procedure stated as the following. 
A. Procedure Univariate-Classification

1) Form a candidate set {C} = {c1,c2,· • ·,en }, which con­
tains all classes so far established in the system.

2) For every feature fs' of sample s and corresponding fea­
ture f: of class c in {C}, if 

(l!s;l=l) and (IJ:'.1 = 1) and (Js;fr.J;'.)
then remove c from { C } . 

3) Assign sample s to the remaining classes in { C}.
The univariate-classification is a linear operation, which means 

that it is additive. Therefore we can apply it successively to the 
candidate set with the use of different features to classify the 
sample pattern. The univariate discriminant rule is formally 
stated as 

where ---> stands for not assigned to. On the other hand we have 
the Theorem 1. 

Theorem I 

\f j3 i [ ( fs; a .t;J ( dis ( .t:J n dis (.t:J = O) 

(1.t::1=1)] Vi[(fs;af:J] =(s->c
k ).

Proof: Consider that each feature f' defines a one-dimen­
sional subspace Q(F) in the n-dimensional class-feature space 
Q( /), where n is the dimension of the feature vector. First we 
have in every Q(F) fs; a J;'. Secondly let us take any 
class c. E { C }) and ( c, *c

k
), sin�e dis(!;) n dis(t) = 0, fs; a J;; 

J J k j must be true. That is, c. is rejected from { C}. In this case, we say 
r is discovered as a discriminant feature of ck and C

J
. Continu­

ing this process, classes except c
k 

therefore will be rejected from 
{ C} after examining all the features presented. Thus a correct
assignment is made to c

k
.

The critical condition for an unique classification to be made 
by the univariate-classifier is that the discriminant features of the 
assigned class against all others must be presented in the sample 
feature vector. Classes are said that are paritally univariately 
distinguishable if there exists some discriminant features that 
make a subset of the classes univariately distinguishable. In many 
real situations, classes are only partially univariately distinguish­
able. 

The univariate-classifier is rejection-natured. Note that in gen­
eral the previous univariate-classification procedure will be termi­
nated with the outcomes of following three cases. 

1) Only one class remaining in { C }-Sample s is assigned to
this class and this class is univariately distinguishable from
all others with respect to the features in sample s.

2) No class remain in { C }-In this case the sample s may be
declared as a new class.

3) More than one classes remaining in { C }-Classes remain­
ing are not univariately distinguishable with respect to the
features in sample s.

The sequential evaluation of the features in the univariate­
classifier forms a feature chain. When a class is rejected from 
{ c} by the evaluation of feature r' we say that this class is
discriminated at level i. The remaining features of that class is no
longer necessary to be evaluated in the process. When a sample s
is uniquely assigned to one class by evaluating up to feature f J in 
the feature chain, we say that this sample is classified at level j. 
The efficiency of the procedure can be improved by a frequent
reordering of the features in the chain as in the sequential
classifiers [3]. Generally features having better discriminant ca­
pacity should be evaluated first.

The univariate-classifier is simple and effective in many situa­
tions where the classes in system possess the property of univari­
ate distinguishability. It imposes a decision boundary that is 
perpendicular to one feature ax.is for any two classes in Q( /). 
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Fig. 2. In 2-D feature space: (a) class 1, 2, and 3 are univariately distinguish­
able; (b) class 1 and 2 are univariately distinguishable; (c) class 1, 2, and 3 
are not univariately distinguishable. 

Fig. 3. Errors of classification (marked by dark area) by use of univariate 
classifier on classes that are not univariately distinguishable. 

However such imposition is not generally consistent with the 
nature of the class-feature distributions for the majority of classi­
fication problems. Examples in Fig. 2 show some of the cases. 
When univariate classifier is applied to the classes that are not 
univariately distinguishable, larger error rate of classification will 
be resulted, as it is illustrated in Fig. 3. 

The most significant feature of the univariate-classifier is that 
the classification is made based on the individual appearance of 
the features. Thus it does not depend on the availability of a 
prespecified set of features as the g; does. 

IV. THE COOPERATIVE CLASSIFIER 

A cooperative classification method apples a set of measure­
ment of feature matching between t and f.: in the classifier. The 
assignment is not dependent upon the utilization of the discrimi­
nant feature and the univariate distinguishability, but rather on 
the combination of the measurements of the entire features in the 
feature vector. Following in this section we first describe the 
measurements and then present the cooperative classification 
procedure that makes used of these measurements. 

A. Sample-Class Consistencies

We use the consistency to measure the matching of feature
vector t with the feature vector f.:. A general-consistency of t 
to fc, denoted as GC, is defined as 

Vi[(l./il =l) =(f/o:_t;')]. 
A general-consistency requires the feature vector t to carry all 

feature f' 's tagged "l" in f.:. The inclusion conditions must be 
satisfied by those features. Sample s is very possibly to be 
classified as class c when a general-consistency is exhibited. One 
example is 

I f.:I: 
Ill: 1 

0: 

# # # 0 0 0 

e 

0 1 0 

where the first and second row represents the tags of the features 
in /, and fc, respectively. On the third row, an i indicates an 
inclusion of the corresponding features in the column, e stands 
for an exclusion. Blank means that inclusion measure is not 
applied. 

Let lllll denote the number of features tagged 1 in f. and llfcll 
the number of features tagged 1 in f.. .. II f.:11+ is the number of 
features tagged 1 or # in f.:. We define the consistency value, 
denoted as C

v
, to be the number of inclusions on features lfc'I 

tagged 1. The augmented consistency value, denoted as c;, is the 
number of inclusions on features lfc'I tagged either 1 or #. In the 
previous example C

v = II f.:11 = 6 and c; = 7. When we have a 
general consistency, it must have lllll;;;. llf.:11· 

The consistency rate of f.: with respect to f. is defined as 
C, = C

v
/llf.:11· The augmented consistency rate of f.: with respect 

to f. is defined as c,+ = c: /llf.:11+. In a general consistency, C, 
always equals to 1 and c,+ ,.;; 1. 

A complete-consistency of fs to f.:, denoted as CC, is defined 
as 

Vi [ ( ( lfc'.I = 1) v ( 1//1 = 1)) = ( l' a: Jn).
A complete-consistency exhibits strong evidence that sample s 

should be classified as class c. One example is 

lf.:I: 
lfsl: 

0: 

1 

1 1 

# 0 

0 0 

# # 0 
1 0 0 
i. 

In this example, C
v 
= 11 .f..ll = 7 and c; = 8. In a complete-con­

sistency, C, always equals to 1 and c,+ ,.;; 1. The main difference 
of a complete-consistency from the general-consistency is that no 
exclusion is allowed for any feature presented. 

A semi-consistency of t to f.:, denoted as SC, is defined as 

Vi[(lfc'i=l) =((1//1 = 1) =(//o:_t;')]. 
A semiconsistency means that feature vector f. does not carry 

all features tagged 1 in .f.., neither does the f.: present all features 
tagged 1 in t. But inclusion holds if both are tagged 1. Sample s 
is possible to be classified as class c when a semiconsistency is 
exhibited. One example is 

l.f..l: 
ltl: 

0: 

0 # # # 0 0 
0 0 0 

e. 

In this example, C
v 
= 5 and c; = 6. C, = 5/6 and c,+ = 6/8. The 

main feature of a semiconsistency is that if a feature is tagged 1 
in both .f.. and fs then the inclusion condition must be satisfied. 

Other cases involve with exclusions for features tagged 1 in 
both f.: and /,. Those cases are called missing-consistency, 
denoted as MC. One example is 

I f.:I: 
ltl: 

0: 

1 

e e 

# # # 0 0 
0 0 0 

e 

We define the missing-consistency value, denoted as MC
v
, is 

the number of exclusions for the features tagged 1 in f.:. The 
augmented missing-consistency value, denoted as MC;, is the 
number of exclusions for the features tagged either 1 or # in f.:. 
In this example, MC

v 
= 2 and MC; = 3. MC

v 
always equals O 

for the three consistencies, GC, CC, SC, defined previously. 
MC; = 1 for both examples in the GC and SC. MC; always 
equals O for CC. 

The missing-consistency rate is defined as MC,= MC
v
/11 f.:\\. The augmented missing-consistency rate is defined as MC,+ = 

MC:/llf.:11+ . In this example, MC,= 2/7 and Mc,+= 3/10. 
The general situations of the types of consistency with respect 

to the measurements are listed in Table I. 

B. The Cooperative-Classification Procedure

The cooperative-classification procedure uses the measure­
ments previously defined to determine the assignment of sample 
s. Let { C} be the set of all established classes. Subsets of { C},



TABLE I 

C
V 

c, c: c,+ 

GC II fell > II fell ,;;l 

.;:; II fell
+ 

cc II fell > II fell ,;;l 

.;:; II/ell
+ 

SC .;:; II fell <l .;:; II/e ll
+ 

<l 

MC .;:; II fell <l ,;:; llfell
+ 

<l 

named {GC}, {CC}, {SC}, {MC} will be constructed that 
contain the classes having GC, CC, SC, and MC matching with 
the sample s, respectively. It is noted that 

{ GC} u {CC} U {SC} U {MC} = { C}. 

An active set, denoted as {AC}, will be used in the procedure. 
IIACJI will be used to denote the number of elements in the 
set AC. 
Procedure Coop-Classifier 

1) IF not empty of {CC}, THEN {AC}= {CC},
ELSE IF not empty of {GC}, THEN {AC}= {GC},
ELSE IF not empty of {SC}, THEN {AC}= {SC}, 

ELSE {AC}= {MC}. 
2) Apply following rules on {AC}:

v'c)3c, [( c
J 

=t- C;) and (C,( c;) < C,( c;))] => ( ci ft. {AC})],
v'c1[3c,[c

1 
=t- c;) and (Cv(c)•C,(c) < Cv(c;)•C,(c))] =>

( CJ ft. { Ac})],
v'cj[3c, [( c1 =f. C;) and (C,+ ( Cj) < C,+ ( C; ))] => ( Cj ft. {AC})],
v'cJ [3c;[(c1 =t- c;) and cc: (cJ)*c,+ (cJ ) < c: (c;)•C,+ (c;))]
=> (c1 ft. {AC})],
v'ci [3c;[(c1 =t-c,) and cc: (cJ)•C,+ (cJ ) < c: (c;)•C,+ (c;))]
=> (c1 ft. {AC})],
v'c/[3c;[c1 =t- c,) and (MC,(cJ ) > MC,(c;))] => (cJ ft.
{AC})],
v' c /[3 c;[c1 =t- c;) and (M C v (cJ )* MC,(cJ ) >
MCv( c,) * MC,( c1 ))] => (cJ ft. { AC})],
v' Cj [3c; [( cl =t- C;) and (MC,+ ( Cj ) > Mc,+ ( C; ))] => ( Cj ft.
{AC})],
v' c1[3, [(c1  =t- c;) and (MC: (cJ)* MC,(cJ ) >
Mc: (�I )* Mc,+ ( c;)) l => ( Cj ft. {Ac})].

3) If {AC} = {MC}, THEN for all c/[MC,(c1) < TMc )] =>
( cJ ft. { AC})], where T MC is a threshold of missing-con-
sistency rate. 

4) Sample s is assigned to {AC}.

Again we see that the cooperative-classification procedure is 
rejection-natured. The outcome of the procedure will also have 
three different situations: 

1) IIACJI =1,
2) IIA CJI = O,
3) IIACII > 1. 

For the Case 1), sample s is uniquely assigned to a class. Case 
2) usually results a new class being declared. Case 3) needs more 
treatment. We may declare that those classes are all possible 
assignments of s. To make an unique assignment, other measure­
ments, such as the dm(f,1,J,_1 ) can be used to further discriminate
the classes in { A C } .

V. LEARNING PROCEDURES OF THE CLASSIFIERS
The quality of the classification in dynamic environment heav­

ily depends on the ability of the learning procedures that make 
the system be able to adjust to the feature and class variations. 
The following learning procedures are applicable to both the 
univariate-classifier and the cooperative classifier. Before getting 
into the description of the learning procedures, we define the 
concept of mismatching of the classification that is to be used in 
our learning algorithms. 

MC
V 

MC, MC; MC,+ 

0 0 ,;:; (llfcll
+ 

- II fe ll) <l 

0 0 0 0 

0 0 ,;:; (llfcll
+ 

- llfcll) <l 

.;:; II fell <l .;:; II fell
+ 

<l 

A. Sample-Class Mismatching (MM's) 
When a sample s comes to the classification system in the

dynamic environment, an assignment is attempted to be made by 
the classifier towards the classes established. We call it a mis­
matching between the fs and the fc 's, denotes as MM, when the 
sample is assigned incorrectly. The mismatching can be catego­
rized into following three types. 

1) MMI-Maladapted-matching. Sample s is mistakenly de­
clared as a new class n but actually it belongs to an old 
class c. 

2) MMII-Malapropos-matching: Sample s is mistakenly as­
signed to an old class k but it actually belongs to a)
another old class c, or b) a new class n which has not been
established yet.

3) MMIII-Maladroit-matching: Sample s is assigned to a
subset {Ck} that contains more than one class. The actual
class of sample s may belong to a) an old class c in the 
{Ck}, b) an old class c out of the {Ck}, c) a new class n 
not established in the system yet.

The key issue for the system to adapt to the feature and class 
variations in the dynamic environment is to detect, identify, and 
eliminate these mismatchings. The patterns of mismatching can 
be identified by the analysis of the current classification result 
with the history of the classification process and assisted by a 
supervised learning process [2], [5]. In our learning processes for 
the classifiers operating in dynamic environment, the task control 
is directed to the corresponding procedures for each mismatching 
pattern identified. 

B. Exploration of the Classification Space 
Two underlying procedures are used in the learning procedures 

that handle individual patterns of mismatching. 

1) An inclusion procedure on feature f' that achieves the
result of [(s-> c) => (fs' a: f;)]. 

2) An exclusion procedure on feature f' that achieves the
results of [(s--> c) => (fs; a:/,_'.)].

We use the value of str(f/) to signal the switch of feature tags 
among 0, 1 and # in the inclusion and exclusion procedures. The 
two procedures are described next. 

Procedure Inclusion (f,.1,f/) 
IF (l/,_'I < > 0) AND ( Ifill< > 0) THEN 

str(f') = str(f')+ 1, 
REPEAT 

/.( = µ', + d 111(fs', f') * (/,' -µ',), 
0/ = o,' + dm(f/,f'))•(f,.' -µ',)2 

UNTIL p(/,..');;;, �: 
ELSE IF (1/,.'I = 0) THEN 

µ', =/,..', 

lf'I=#, 
str(f')=l; 

IF (lf.'I =#) and ( str(f') > M ,trcngth) THEN lf'I =1.



L� i . 
µc----+___..._ _ _,.. f1

t--- dis(f� ___ .,.. 

(a) 

L f� . µ��I ti 

----- dis(f� ----­

(b) 

Fig. 4. Feature density function adjusted in procedure Inclusion. (a) Before 
adjustment. (b) A
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Fig. 5. Feature density function adjusted in procedure Exclusion. (a) Before 
adjustment. (b) After adjustment. 

The M,trcngth in the procedure is a specified threshold for switch­
ing the tag between 1 and #. M

0 
is a prespecified constant. 

An illustration of the Inclusion process is shown in Fig. 4. Fig. 
4(a) depicts the situation of sample feature f/ and the probability 
density of f,_' before the call of the procedure and Fig. 4(b) 
depicts the situation after the execution of the procedure. 

Procedure Exclusion (f,',fJ 
IF (l.fc'I < > 0) AND (l.f/11 < > 0) THEN 

str (f,') = str (J;')-1, 
REPEAT 

µ', = µ'c - dm(fs',f.')*(/,' - µ',), 
a,'= a: - dm(f,',f,'))•(f/ - µ',)

2 

UNTIL p(i') < t 
IF (lf'.I = #) and (str (f') < - Mstrength) THEN lf'I = 0 ,  

str (j/) =1, 
IF ( If'.= 1) and (str (J;') < - Mstrength) THEN lf.'.I = #, str (f.') 

=l. 

An illustration of the exclusion procedure is shown in Fig. S. 
Fig. S(a) depicts the situation before the call of the procedure, 
and Fig. S(b) depicts the situation after the execution of the 
procedure. 

The following are descriptions of the learning procedures for 
cases distinguished by the MM 's. 

ID(ci) 

{C} I Freq(ci) 

I 

Sem(ci) 

ID(P) 

{F} 

Freq(P) Sem(ti) 

lfcil str(fci) 
�i crci Sci 

Fig. 6. Matrix representation of feature-class space. 

1) An MMI is identified such that sample s is recognized as
class c rather than a new class n: 
for all features with Ifs' I = 1, call Inclusion
(/,' ,//).

2) An MMII is identified such that the sample s is recog­
nized as a new class n rather than an old class k.

• Add n to { C }. For all features with I/ii= 1, call
Inclusion(/,', f; ).

• Choose feature /,' such that (/,' er. Jn and for all J[t
< dm

(fs', m < dm
(f/,Jj)], call Exclusion(fs',f;).

3) An MMIII is identified such that sample s is recognized as
an old class c rather than an old class k. 
• For all features with I.I/ I = 1, call Inclusion(!,', J;'. ).
• Choose feature /,' such that (/,' er. fn and for all J[t

< dm(fs',fl:) < dm U/,ff)], call Exclusion(/,',/;).
4) An MMIII is identified such that sample s is recognized as 

a new class n.
• Add n to {C}. For all features with \.l'\=1, call

Inclusion( fs', f; ).
• For every class k in {Ck}: Choose feature /,' such that

(l' er. m and for all J[t < dm (l', f!J < dn,(f/, ff)],
call Exclusion( fs' ,fl:). 

S) An MMIII is identified such that sample s is recognized as 
an old class c in {Ck}.
• For all features with 1.//1 = 1, call Inclusion(!,', J;' ).
• For every other class k in {Ck} except c. Choose

feature t such that (fs' er. m and for all J[t <
dm Us',fD < dm U/,ff)l, call ExclusionU:,m.

6) An MMIII is identified such that sample s is recognized as
an old class c out of {Ck}

'. 

• For all features with lfs'I =1, call Inclusion(f/,f:).
• For every class k in {Ck}: Choose feature fs' such that

<l' er. m and for _all J[t < dm (fs',JD < dm U/Jf)l, 
call Exclusion( fs' ,!!'.).

VI. ExPERIMENTATION 

Experiments are conducted on the tagged feature-class repre­
sentation and the two classifiers for pattern classification in 
dynatnic environment we described previously. 

We maintain a feature set { F} and a class set { C} for learning 
in the classification system. Element in { F} is a 3-tuple that 
specifies the identification of the feature ID(/'), the frequency of 
the appearance Freq (f' ), and the semantics of the feature 
Sem (Ji ). Element in { C} contains also a 3-tuple that specifies 
the identification of the class ID ( c, ), the frequency of appear­
ance Freq ( c, ), and the semantics of the class Sem ( c;). The 
product of { F} and { C} forms the set { f' } that specifies the 



TABLE II 
ExPERIMENT RESULTS USING UNIVARIATE CLASSIFIER 

Test 1 Test 2 Test 3 Test 4 Test 5 )'est 6 
4 Classes 4 Classes 8 Classes 8 Classes 4 Classes 8 Classes 
4 Features 8 Features 4 Features 8 Features 16 Features 16 Features 

Group 1 4 10 8 4 1 0 
Group 2 9 8 11 12 3 2 
Group 3 4 10 8 9 4 4 
Group 4 8 6 4 9 4 1 
Group 5 7 7 1 5 3 3 
Group 6 4 4 3 6 0 4 
Group 7 3 5 2 7 2 2 
Group 8 6 4 8 6 0 2 
Group 9 7 3 4 5 0 2 
Group 10 2 3 3 4 2 0 
Group 11 1 4 3 6 1 1 
Group 12 3 2 2 4 0 2 
Group 13 2 2 3 3 1 0 
Group 14 3 3 2 2 1 1 
Group 15 2 2 3 2 0 0 
Group 16 2 2 3 1 0 0 

TABLE III 
EXPERIMENT RESULTS USING COOPERATIVE CLASSIFIER 

Test 1 Test 2 Test 3 Test4 Test 5 Test 6 
4 Classes 4 Classes 8 Classes 8 Classes 4 Classes 8 Classes 

4 Features 8 Features 4 Features 8 Features 16 Features 16 Features 

Group 1 4 10 8 
Group 2 9 8 11 
Group 3 4 8 8 
Group 4 7 3 4 
Group 5 6 6 1 
Group 6 3 2 3 
Group 7 2 5 2 
Group 8 3 4 2 
Group 9 4 1 0 
Group 10 2 3 3 
Group 11 1 2 1 
Group 12 2 2 2 
Group 13 2 1 2 
Group 14 1 1 1 
Group 15 2 1 2 
Group 16 1 0 1 

features of each class. We call the { C }, { F }, and { fc'.} together 
the feature-class ( F - C) space. Each element in { fc'.} has a 
5-tuple that specifies the tag of the feature lfc'.I, the strength of 
the feature str(fc'), the parameters /L;

c 
and o; of p(f;), and the 

inclusion threshold t- The feature-class space is structurally 
conformed as a two-dimensional matrix, as it is shown in Fig. 6. 

At the initial stage of the classification, the { C }, { F} and 
{ fc'} are all empty. To do the test, a set of background classes 
and their feature distributions are randomly generated in the 
experiments. There is no a priori knowledge about these back­
ground classes available to the F - C space and the classifiers. 

A sample generator is designed to provide inputs to the classi­
fiers. First, a background class, say c;, is chosen randomly. 
Sample features are then generated with respect to the prespeci­
fied feature distributions of c;. Noises are added to the sample. A 
{O, 1} random number is used to set the tags of the sample 
features, therefore changes the presences of the sample feature 
set. These patterns are then classified by the attributes of the 
classes and features established so far in the F - C space. 

The contents of {C}, {F}, and {/,'} are established and 
augmented in terms of the information carried by the samples 
when the classification process proceeds. Generally, an introduc­
tion of a new class in the sample pattern leads to a new row 

4 1 0 
13 3 2 
9 0 2 
9 1 1 
5 2 0 
6 0 1 
6 2 1 
5 0 2 
4 0 0 
4 1 0 
3 1 1 
5 0 2 
3 1 1 
4 1 1 
2 0 0 
2 0 0 

added to the F - C space; and introduction of a new feature in 
the sample pattern leads to a new column added to the F - C

space. To avoid the overgrowth of the F - C space, obsolete 
classes must be detected and deleted from { C} periodically in a 
long run of the system. It is done by referring to the frequency 
measure Freq ( c,) of the classes. Occasionally two classes may 
need to be merged to one single-class according to the feature 
distributions and the situation of the classification. It is the same 
for the feature set { F}. These problems are not to be discussed 
in this correspondence. 

Several test results for the univariate and cooperative classifiers 
are shown in tables II and III, respectively. Each test is organized 
into 16 groups. Sixteen samples are generated in each group 
randomly. The contents of the tables list the total number of 
mismatchings for the sample patterns classified. The maximum 
number of classes and features in each test is indicated in the 
tables. 

Since the number of misclassifications for the test cases de­
pends on how the background class and feature distributions are 
set and valued, therefore it does not necessary stand for the 
precision or accuracy of the classifications. However from the 
results we can see that the trend of the decreasing of misclassifi­
cation rate is obvious when the classification process proceeds. It 



signals the effectiveness of the classifiers along with the use of the 
learning procedures in such feature and class sets variant envi­
ronment. Some higher rates in first few groups are caused be­
cause most of the classes are just introduced to the classifier at 
that stage. Note that the set of features available to the classifier 
is randomly decided. Therefore both the number of features and 
the appearnace of the features vary continually. The tables also 
exhibit that the cooperative-classifier has better performance 
than the univariate-classifier in terms of the error rate of the 
classifications. However the univariate-classifier needs less com­
putation than the cooperative-classifier. 

VII. CONCLUSION 

Pattern recognition is a general purpose task underlying for 
many application systems. The incompleteness and uncertainty 
of the feature and class presentation in dynamic environment 
makes the system be difficult from applying traditional statistical 
pattern recognition techniques. The configuration of the classi­
fiers operating in such environment must possesses the properties 
that are distinct from the traditional techniques. In this corre­
spondence we have discussed 1) a tagged feature and class 
representation of the pattern recognition problem in the dynamic 
environment; 2) the statistical feature evaluation based univari­
ate- and cooperative-classifiers that bear no constrains to the 
variations of the sets of classes and features; and 3) the inductive 
learning procedures that are used to the creation of a class-fea­
ture space adaptive to the variations of the dynamic environment. 

Rather than trying to formulate the discriminant functions that 
are defined on the fixed sets of classes and features, the univari­
ate classifier and the cooperative classifier discussed in this paper 
applies a classify-by-rejection approach on a candidate class set. 
The classification is based on the individual evaluation of the 
features presented in the sample patterns and the classes. Statisti­
cal distribution properties of the features are retained in the so 
developed processes. There are many other techniques that can 
be combined to make the process of pattern classification in 
dynamic environment more subtle. For example, when the distri­
butions of the class features are all settled or available, discrimi­
nant functions defined on the subset of the features can be 
constructed according to the feature set presented in the sample 
pattern. These functions have to be reconstructed every time to 
classify a sample. 

The tagged feature-class space permits the building of an 
hierarchical structure of the classifications conveniently. Because 
both the classes and features are tagged, they are not necessary to 
be distinct every where. The outcome of a classification at one 
level of the process therefore can be coupled to the feature set at 
another designated level of the hierarchy for making further 
decisions. When viewing each row of the F - C space as a 
production rule where the features are the conditions and the 
classes distinguished as the conclusions, the structure of F - C 
space permits both value tuning and rule constructions from the 
learning processes. 

A content-addressable data retrieve characteristic is also pos­
sessed by the univariate- and cooperative-classifiers. A complete 
set of features of a class can be recovered from a partial presenta­
tion of the features in the sample pattern by accessing the 
contents of the F - C space. The sample pattern formed by the 
partial features acts as an index to the complete set of the 
contents of a class. The application of this property can be found 
in the database retrieving, the prediction of occluding or missing 
part of objects in an image, natural language understanding, and 
various of other applications. 
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