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For all its limitations, however, the Copenhagen Accord is the first real step to fighting 

climate change in the 21st century. [1] 

 

1. Introduction 

During the 2009 Copenhagen conference, China pledged to reduce its carbon intensity 

(defined as a reduction in CO2 per unit of GDP) by 40%-45% and set a target to be below 

2005 levels by 2020. To continue and reinforce the energy-saving and emission-reduction 

strategy that began in the 11th five-year plan (2006-2010), the carbon intensity target will be 

integrated into the national 12th five-year plan (2011-2015). This raises an important issue: 

what is the best way to allocate the national CO2 reduction goal among provinces or 

industries?1 Earlier allocation procedures of energy-saving and emission-reduction targets in 

the 11th five-year plan relied on each province’s proposals.2 There is no bottom-up analysis of 

energy saving potential [3] or cost-benefit analyses to guide the allocation. Therefore, the 

allocation is controversial from the perspectives of equity and efficiency [4]. Recently, the 

National Development and Reform Commission (NDRC) recognized that the allocation of 

energy-saving and emission-reduction targets was not systematically set in the 11th five-year 

plan [5].  In the 12th five-year plan, more attention should be given to establishing targets that 

take into account differences among provinces [3].  

                                                           
1 In the UN Climate Change Conference in Tianjin, which was held on October 22, 2010, before the COP16 in 

Cancun, the experts from China’s think-tank of energy policy express their opinions on the allocation of CO2 

intensity in the 12th five-year plan. The debate was between region-based allocation and industry-based 

allocation. The concern on the region-based allocation of CO2 intensity is that it may hamper the domestic 

carbon market in the future, partly a result of market segmentation and rising transaction costs. The problem 

with the industry-based plan is that the unbalanced technology development among regions will make it unfair 

to the undeveloped regions. The Chinese government has experience in regional allocation of SO2, and therefore 

we predict that it will  adopt the regional allocation plan with considering more differences among the regions in 

the future [2].   
2 The central government first requested each province propose its own target. Most provinces proposed to 

follow the central government’s target of 20 percent, but four provinces proposed higher targets, and seven 

provinces proposed lower targets. Then the National Development and Reform Committee accepted those 

provinces that committed to a 20 percent or higher reduction and negotiated for higher targets with provinces 

that had committed to less than 20 percent. See details in the World Bank’s report, pp. 37-38 [4]. 
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Many equity principles have been proposed based on the equity perspectives and 

principles, which largely focused on the fairness of resource allocation and burden-sharing 

across nations [6]. These principles normally fall into three categories, allocation-based 

principles (focus on equitable initial distribution), process-based principles (the correct 

process of cost allocation) and outcome-based principles (the final allocation of the net 

benefit and cost). A successful criterion should be effective and implementable [7]. Among 

these equitable distribution principles, the idea of making per capita CO2 emissions the basis 

for equitable burden sharing is a much-discussed option favored by many developing 

countries [8]. The "Contraction and Convergence" schemes from the Global Commons 

Institute [9] and the Brazilian proposal made during the Kyoto Protocol negotiations, are both 

results of this principle. However, there may be opportunities to use this criterion in 

combination with other rules because no single principle can be expected to resolve this issue 

[8, 10].  

Most literature focuses on the schemes of CO2 emission allocation among nations [11, 

12,13]. Few studies address the regional allocation by country.  Wei and Rose [14] built a 

nonlinear programming model to minimize the total energy conservation cost, and then 

proposed an interregional energy conservation-quota trading scheme in an efficient and 

equitable manner in China. Their simulation results suggest that this tradable quota system 

among regions can help China not only achieve the goal of energy conservation in a cost-

effective way, but also stimulate and balance regional development.  

Differing from Wei and Rose [14], the purpose of the paper is determining how to 

allocate CO2 abatement among regions. Specifically, we aim to identify which province has a 

higher (lower) capacity to undertake more (less) burden, rather than to calculate how much 

CO2 should be reduced. We propose a CO2 Abatement Capacity Index (ACI) to evaluate each 

province’s responsibilities and abilities regarding climate change mitigation using a weighted 
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equity and efficiency index. The results show that a large gap exists between CO2 reduction 

potentials and marginal abatement costs in various provinces and regions. The final ACI 

rankings may vary greatly and depend on the policymakers’ preferences between equity and 

efficiency. However, some provinces, such as Inner Mongolia, Shanxi, Ningxia and Shanghai 

can be identified to take increased loads regardless of preferences, contrarily, Jiangxi, 

Guangxi, Hainan, and Yunnan should be distributed less loads. 

This paper is organized as follows. Section 2 introduces the methodology. Section 3 

describes the variables and data. Section 4 constructs the CO2 Abatement Capacity Index and 

examines the provincial difference of CO2 abatement potential. The conclusion follows in 

Section 5. 

 

2. Methodology 

The traditional neoclassical production model does not include an undesirable output 

such as pollution. This is mainly because there is no market price for this undesirable output. 

The distance functions and Data Envelopment Analysis (DEA) are two commonly-used 

methods to handle this problem [15].3 The distance function approach enables the production 

modeling of a multi-input and multi-output technology when the prices are not available [21, 

22, 23]. However, it needs a pre-determined function form to estimate the distance function 

as a frontier, and efficiency is measured in a fixed direction. To overcome this shortage, 

Chung et al. [24] developed a directional distance function, which is a generalization of 

Shephard’s distance function and encompasses all known distance functions [25]. It can be 

estimated by both parametric and non-parametric DEA methods, which have been used to 

                                                           
3  There are indirect and direct approaches to incorporating undesirable outputs into the production function. An 

indirect way is to shift undesirable outputs to inputs [16] or inversely transform the undesirable outputs [17, 18, 

19]. The indirect approach inverts the undesirable output values to “normal” ones while keeping the original 

technology set. In contrast, the direct approaches keep the original output data unchanged but modify the 

assumption of the technology set to treat the undesirable outputs appropriately [20]. 
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evaluate environmental performance across firms [26, 27] and to compare environmentally 

sensitive productivity across regions/industries [28] and across countries [29].  

Although the directional distance function has many desirable features, it does not 

incorporate input and output slacks, which are an important source of inefficiency and may 

result in a biased estimation [30, 31]. This paper exploits an extended Slacks-Based Measure 

(SBM) of efficiency DEA model proposed by Cooper et al. [32].4 It directly employs input 

and output slacks in production of an efficiency measurement. The advantage of this 

approach is that it is a non-radial and non-oriented model that can capture the whole aspect of 

inefficiency. This property is particularly attractive as we are interested in the reduction of 

undesirables rather than the increase of desirables. In addition, the DEA model constructs a 

non-parametric envelopment frontier over all sample data such that all observed points lie on 

or below the frontier [33], which does not require the imposition of a functional form on the 

underlying technology [23]. The points lying on the frontier are regarded as the best 

performers and thus become the benchmark line relative to other sample points. 

We denote the input, desirable output and undesirable output for n decision-making units 

(DMUs) by the three vectors, xRm, yRs1, and bRs2, respectively. The environmental 

production possibility set is defined by 

𝑃 = {(𝑥, 𝑦, 𝑏)| 𝑥 ≥ 𝑿𝜆, 𝑦 ≤ 𝒀𝜆, 𝑏 ≥ 𝑩𝜆, 𝜆 ≥ 0}, (1) 

where Rn is the intensity vector, X is a (mn) matrix of inputs, Y is a (s1n) matrix of 

desirable outputs, B is a (s2n) matrix of undesirable outputs, and X,Y,B > 0. Assuming that 

the technology generates constant returns to scale (CRS), the extended SBM model with 

undesirable outputs is represented below. 

                                                           
4  The model employed here is consistent with the directional distance function; as seen later, we keep the 

desirable output constant and estimate the excessive inputs and undesirable outputs. This is a special case 

employing a directional vector (gx,gy,gb)= (-x,0,-b). 
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  (2) 

s.t. 𝑥0 = 𝑋𝜆 + 𝑠−  

𝑦0 = 𝑌𝜆 − 𝑠𝑦  

𝑏0 = 𝐵𝜆 + 𝑠𝑏  

𝑠− ≥ 0, 𝑠𝑦 ≥ 0, 𝑠𝑏 ≥ 0, 𝜆 ≥ 0. 

The vectors s-Rm, syRs1, and sbRs2 correspond to excesses in inputs, shortages in 

desirable outputs, and excessive undesirable outputs, respectively. The objective value in 

function (2) satisfies 0 <   ≤ 1. A DMU0 (x0,y0,b0) is efficient if and only if  = 1.  In such an 

optimal case, all input and output slacks equal zero compared with other inefficient DMUs.   

2.1  Undesirable output abatement potential model 

If the DMU0 is inefficient, it can be improved and become efficient by reducing the 

surplus input s-, increasing the desirable outputs sy, and reducing the excesses in undesirable 

outputs sb. For the inefficient DMU0 (x0,y0,b0) and its projection DMU0
*(x0

*,y0
*,b0

*) in the 

frontiers, the following relationships exist: 

𝑥0
∗ = 𝑥0 − 𝑠− , 𝑦0

∗ = 𝑦0 + 𝑠𝑦,  𝑏0
∗ = 𝑏0 − 𝑠𝑏 .  (3) 

The efficiency of undesirable output will be b0
*/b0 [31].5 Here we define the Feasible 

Abatement (FAi,t) and Abatement Potential (APi,t) of undesirable output for sample i at period 

t as follows: 

𝐹𝐴𝑖,𝑡 = 𝑠𝑖,𝑡
𝑏   (4) 

𝐴𝑃𝑖,𝑡 =
𝑠𝑖,𝑡

𝑏

𝑏𝑖,𝑡
= 1 −

𝑏𝑖,𝑡
∗

𝑏𝑖,𝑡,
 (5) 

 

where FA expresses the slack of undesirable outputs that can be reduced by efficiency 

improvement toward the frontier, and AP measures the inefficiency level of undesirable 

outputs and its value between 0 and 1. A higher value indicates greater inefficiency and 

                                                           
5  According to the definition of Farrell [34], input efficiency equals the ratio of minimum-to-actual input usage, 

while output efficiency equals the ratio of actual-to-maximum potential output. 
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greater potential of reducing the undesirable outputs [35]. It should be noted that a zero value 

of AP does not imply that the DMUs are perfect and without any excessive undesirable 

outputs or inefficiency during the production process. Rather, it indicates that the DMUs are 

Pareto-Koopmans efficient among all of the comparison samples.  

2.2  Undesirable output shadow price model 

The dual linear program (LP) of function (2) can be represented as follows: 

max 𝑢𝑦𝑦0 − 𝑣𝑥𝑜 − 𝑢𝑏𝑏0  (6) 

s.t.  𝑢𝑦𝑌 − 𝑣𝑋 − 𝑢𝑏𝐵 ≤ 0 

𝑣 ≥
1

𝑚
[1 𝑥0⁄ ]  

𝑢𝑦 ≥
1+𝑢𝑦𝑦0−𝑣𝑥0−𝑢𝑏𝑏0

𝑠
[1 𝑦0⁄ ]  

 𝑢𝑏 ≥
1+𝑢𝑦𝑦0−𝑣𝑥0−𝑢𝑏𝑏0

𝑠
[1 𝑏0⁄ ], 

where s=s1+s2; the dual variables vRm, uyR s1, and ubR s2  can be interpreted as the virtual 

price of inputs, desirable outputs and undesirable outputs, respectively. Assuming that the 

absolute shadow price of a marketable desirable output is equal to its market price, the 

relative shadow price of undesirable output with respect to desirable output can be expressed 

as [21, 26]  

𝑝𝑏 = 𝑝𝑦 ∙
𝑢𝑏

𝑢𝑦
 . (7) 

The shadow prices reflect the tradeoff between desirable and undesirable [21]. This can 

be interpreted as the marginal abatement cost [22, 36].  
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3. Variables and Data 

The data cover 29 provinces for the period 1995-2007.6 The production of GDP (Y) 

requires capital stock (K), labor force (L), and energy consumption (E) as inputs and, as a 

byproduct, yields one undesirable output, CO2 emission (B). GDP deflates to the constant 

2005 price. The labor input is calculated as the value of employment at the end of the current 

year; both values are obtained from the China Statistical Yearbook [37]. The data on energy 

consumption are collected from the China Energy Statistical Yearbook [38] .The capital stock 

is unavailable in any statistical yearbook, and therefore, we have to estimate this using the 

following perpetual inventory method:  

𝐾𝑖,𝑡 = 𝐼𝑖,𝑡 + (1 − 𝛿𝑖)𝐾𝑖,𝑡−1,  (8) 

where Ii,t, i and Ki,t represent gross investment, depreciation rate, and capital stock for 

province i at time t, respectively. Here we select 1952 as the initial capital stock, as provided 

by Zhang et al. [39], and extend the capital stock serial to 2007. All serial data are converted 

to 2005 prices.  

The data on CO2 emission at the province level are not available. Based on the criteria 

published by the International Panel on Climate Change (IPCC) [11] and the National 

Coordination Committee Office on Climate Change and Energy Research Institute of NDRC 

[40], we estimate the CO2 emissions emitted through the burning of fossil fuels by the 

following formula: 

𝐶𝑂2 = ∑ 𝐸𝑖 × 𝐶𝐹𝑖 × 𝐶𝐶𝑖 × 𝐶𝑂𝐹𝑖 × (44 12⁄ )6
𝑖=1 ,     (9) 

where i is the index of different types of fossil fuel, including coal, gasoline, kerosene, diesel, 

fuel oil, and natural gas. Ei, CFi, CCi, and COFi represent the total consumption of fuel i, the 

                                                           
6  There are 31 provinces, autonomous regions, and municipalities on the Chinese mainland. This study does not 

include Hong Kong SAR, Macao SAR or Taiwan Province. We combine Chongqing, the fourth municipality in 

China, with the Sichuan Province because the former was part of the Sichuan Province before 1997. Tibet is 

excluded because of the absence of energy data. 



8 
 

transformation factor, the carbon content of fuel i, and the carbon oxidation factor, 

respectively.  44/12 is the ratio of the mass of one carbon atom combined with two oxygen 

atoms to the mass of an oxygen atom. In addition, the CO2 emissions from cement production 

are calculated by multiplying the quantity of cement production of each province by the 

carbon dioxide emissions coefficient of cement. All the data of energy consumption are taken 

from the energy balance tables by region in the China Energy Statistical Yearbook [38]. The 

data of cement production are taken from various Statistical Yearbooks of each province over 

various years. 

The descriptive statistics for input and output for China and three regions are presented 

in Table 1. 7 The mean and standard deviation of GDP and capital stock in the eastern region 

are much higher than in the central and western regions. Meanwhile, the eastern area 

consumes the largest amount of energy and emits the most CO2. 

Table 1  

Summary Statistics for Inputs and Outputs in China, 1995–2007 

 

Region 

Inputs Desirable output 
Undesirable 

output 

Capital 

(billion Yuan in 

2005 prices) 

Labor 

(10000 

people) 

Energy 

(10000 tons of coal 

equivalent) 

GDP 

(billion Yuan in 

2005 prices) 

CO2 emission 

(10000 tons) 

China 
9194.6 2238.8 6525.6 4804.9 12373.7 

(8443.6) (1570.3) (4676.4) (4523.8) (8941.2) 

#East 
13908.9 2286.1 8261.2 7457.4 15483.5 

(10569.7) (1569.4) (5830.7) (5752.0) (11310.1) 

#Middle 
7521.3 2649.0 6694.1 4177.1 13105.6 

(4618.1) (1332.0) (3056.4) (2267.3) (5956.3) 

#West 
5347.5 1858.7 4481.5 2389.3 8367.4 

(5098.3) (1666.0) (3359.4) (2264.3) (6046.1) 

Source: Authors’ calculation 

 

                                                           
7  The east region includes Beijing, Tianjin, Hebei, Liaoning, Shanghai, Jiangsu, Zhejiang, Fujian, Shandong, 

Guangdong and Hainan. The middle region includes Shanxi, Jilin, Heilongjiang, Anhui, Jiangxi, Henan, Hubei 

and Hunan. The west region includes Inner Mongolia, Guangxi, Sichuan, Guizhou, Yunnan, Shaanxi, Gansu, 

Qinghai, Ningxia and Xinjiang. 
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4. Empirical Results  

This study employs the DEA Solver Pro 5 to solve the linear program problem. First, we 

calculate the CO2 abatement potential and CO2 shadow price. Then, we construct the CO2 

Abatement Capacity Index from equity and efficiency principles, and finally, we investigate 

the determinants of the CO2 abatement potential among provinces. 

4.1 CO2 abatement potential  

Table 2 lists the CO2 abatement potential by province and region. The whole sample 

period is divided into two stages (1995-2001 and 2002-2007).8 Column (I) presents the 

provincial feasible abatement volume of CO2. The zero values of CO2 abatement potential in 

column (II) for Beijing, Shanghai, and Guangdong indicate that these provinces are relatively 

efficient and lie on the frontier compared with other provinces. The zero values in columns (I) 

and (II) do not mean that there is no inefficient production and reduction space of CO2 

emission, but imply that these efficient provinces perform the best and cannot further 

improve their efficiency compared with the other provinces. In contrast, the large values of 

potential abatement for Guizhou, Ningxia, Inner Mongolia, Gansu, Xinjiang, etc., which are 

mostly located in the western region, reveal that these provinces emit excessive CO2 due to 

production inefficiency during this period. In other words, there is a greater opportunity to 

reduce surplus CO2 emission by efficient improvement in production for these provinces. In 

addition, we observe that many provinces’ feasible abatement volumes and abatement 

potentials increase after 2002. For some provinces like Shanxi, its average abatement 

potential increases from 38% during 1995-2001 to 72% during 2002-2007. It indicates that 

efficiency degeneration and inefficient CO2 emission has occurred since 2002. This 

observation is consistent with the research on the energy intensity where it declines 

                                                           
8 According to NBS’s statistical data, the energy intensity (measured as China’s energy consumption per GDP) 

is declining during  the period 1980-2002 and rising after 2002. Considering both energy intensity and CO2 

abatement potential that reflects the utilization efficiency, one referee suggests we check for a dramatic 

difference before and after 2002.  We verify this result and later we use the year 2002 as a dummy variable in 

econometric analysis for break-point test. 
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continually to the lowest point in 2002 and then rises.  This efficiency degeneration mainly 

resulted from the accelerated industrialization and urbanization process and infrastructure 

development since 2002, which accompanies a high expansion of energy-intensive sectors 

and energy-consuming investment [3, 41, 42].  

The values in column (III) are used to evaluate the impact of the regional abatement 

scale on the whole country. In the period 1995-2007, the CO2 feasible abatement of Hebei, 

Shandong, Inner Mongolia, Liaoning, Henan, Shanxi, Sichuan, and Guizhou account for 55% 

of the national feasible abatement. If we investigate the period from 2002 to 2007, there are 

seven provinces with values higher than 5%, which include Shandong, Hebei, Inner 

Mongolia, Shanxi, Henan, Liaoning and Guizhou. These provinces contribute up to 51.2% of 

the whole CO2 feasible abatement and have a greater influence on the national goal. 

The final summarized statistics in Table 2 compare the potential abatement by regions. 

The eastern region (29%) ranks lowest in terms of potential abatement and is the most 

efficient in production. The western region (56%) has the greatest CO2 abatement potential 

due to production inefficiency. On average, the overall potential reduction of CO2 was 41% 

during the period 1995-2007. That is, 41% emissions, equivalent to 153.78 million tons of 

CO2 per year, can be cut if each province can perform as efficiently as Beijing, Shanghai, and 

Guangdong. Among the three regions, the middle region contributes 35% to the national 

feasible abatement, while the eastern and western regions contribute 33% and 32%, 

respectively.  

4.2 CO2 marginal abatement cost 

The marginal cost (Yuan in 2005 prices) of CO2 reduction (ton) by province and region 

are listed in Table 3. Over the entire period of 1995 to 2007, Beijing has the highest average 

marginal abatement cost (266.5 Yuan/ton), while Shanxi, the main coal-producing area in 

China, has the lowest (31.1 Yuan/ton). Shandong registers the greatest negative change in the 
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average marginal abatement cost; it decreased from 137.2 Yuan/ton during 1995-2001 to 26.5 

Yuan/ton during 2002-2007. Shanghai’s average marginal abatement cost increased the most, 

climbing from 127.1 Yuan/ton in stage 1 to 197.3 Yuan/ton in stage 2. It indicates that it is 

becoming less expensive to reduce additional CO2 emissions in Shandong, while becoming 

more expensive in Shanghai.   

The bottom three rows of Table 3 show the results by region. The CO2 shadow prices 

vary widely across regions. On average, the highest marginal abatement cost with respect to 

CO2 is observed in the east region (157.6 Yuan/ton) during the whole period. The middle 

region has the second highest shadow price (98.1 Yuan/ton) registered since 1996. The 

western region shows the lowest marginal cost of CO2 (79.9 Yuan/ton). For the whole 

country, the shadow price of a marginal decrease in CO2 emissions increased from 94.4 

Yuan/ton in 1995, reached the peak at 139.5 Yuan/ton in 2002, and then declined. Its 

trajectory is also consistent with the trend of energy intensity and CO2 abatement potential, 

which was caused mainly by accelerated urbanization and industrialization since 2002.[3, 41, 

42]  

4.3 CO2 abatement capacity index 

There are numerous studies that contribute to the equity criteria for global warming 

policy. Rose et al. [43] distinguished allocation-based, outcome-based and process-based 

criteria. However, among these principles, the developing countries tend to favor egalitarian 

or per capita distribution, while developed world prefer sovereignty or grandfathering 

principle [6, 44]. Recognizing that most of these principles can be further specified, here we 

follow Pan (2003) in that we concentrate on “egalitarian” and “ability to pay” principles 

which developing countries favored [6].  

Table 2 
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CO2 abatement potential by provinces and regions 

Province 

(I) CO2 Feasible abatement  

per year (10000 tons/year) 

(II) CO2 Abatement 

potential (%) 

(III) Contribution to 

overall FA (%) 

1995-

2001 

2002-

2007 

1995-

2007 

1995-

2001 

2002-

2007 

1995-

2007 

1995-

2001 

2002-

2007 

1995-

2007 

Beijing 0  0  0 0  0  0  0.0  0.0  0.0  

Tianjin 2109  2157  2132 44  31  36  2.0  1.1  1.5  

Hebei 10549  16104  13113 55  54  54  10.2  8.3  9.0  

Shanxi 4599  14293  9073 38  72  58  4.4  7.3  6.2  

Inner Mongolia 5755  15018  10030 69  74  72  5.6  7.7  6.9  

Liaoning 9342  10850  10038 57  51  54  9.0  5.6  6.9  

Jilin 5071  6826  5881 61  58  59  4.9  3.5  4.0  

Heilongjiang 6504  6237  6380 57  45  51  6.3  3.2  4.4  

Shanghai 0  0  0 0  0  0  0.0  0.0  0.0  

Jiangsu 3954  8436  6023 22  27  25  3.8  4.3  4.1  

Zhejiang  1445  6932  3978 12  29  23  1.4  3.6  2.7  

Anhui 5333  7731  6440 52  51  52  5.1  4.0  4.4  

Fujian 0  1918  885 0  18  12  0.0  1.0  0.6  

Jiangxi 1384  2714  1998 29  33  31  1.3  1.4  1.4  

Shandong 5835  19275  12038 29  44  39  5.6  9.9  8.3  

Henan 6727  13837  10009 43  49  46  6.5  7.1  6.9  

Hubei 4233  8659  6275 36  49  43  4.1  4.4  4.3  

Hunan 3175  5684  4333 35  39  37  3.1  2.9  3.0  

Guangdong 0  0  0 0  0  0  0.0  0.0  0.0  

Guangxi 788  2744  1691 15  33  25  0.8  1.4  1.2  

Hainan 72  802  409 8  41  30  0.1  0.4  0.3  

Sichuan 7766  8905  8292 46  38  42  7.5  4.6  5.7  

Guizhou 5377  10333  7664 75  79  77  5.2  5.3  5.3  

Yunnan 1594  4560  2963 32  48  42  1.5  2.3  2.0  

Shaanxi 3227  5749  4391 50  53  52  3.1  3.0  3.0  

Gansu 3158  4298  3684 65  62  63  3.0  2.2  2.5  

Qinghai 661  1212  915 59  62  61  0.6  0.6  0.6  

Ningxia 1306  3900  2503 71  82  79  1.3  2.0  1.7  

Xinjiang 3627  5437  4463 60  61  61  3.5  2.8  3.1  

China 10982 20506 15378 38  42  41  100 100 100 

# East 3028  6043  4420  26  30  29  32  34  33  

# Middle 4628  8248  6299  44  51  48  36  34  35  

# West 3326  6216  4660  53  58  56  32  32  32  
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Table 3   

CO2 marginal abatement cost by provinces and regions (Yuan/ton in 2005 price) 

Provinces 
Stage 1 

1995-2001 

Stage 2 

2002-2007 

Overall mean 

1995-2007 

Beijing 259.0  275.2  266.5  

Tianjin 110.3  163.3  134.7  

Hebei 86.2  16.8  54.2  

Shanxi 30.0  32.3  31.1  

Inner Mongolia 60.4  31.3  47.0  

Liaoning 83.9  97.1  90.0  

Jilin 75.9  100.2  87.1  

Heilongjiang 83.6  125.4  102.9  

Shanghai 127.1  197.3  159.5  

Jiangsu 149.8  106.7  129.9  

Zhejiang 168.6  167.6  168.1  

Anhui 91.2  113.6  101.5  

Fujian 269.3  218.2  245.7  

Jiangxi 138.7  157.3  147.3  

Shandong 137.2  26.5  86.1  

Henan 110.3  43.7  79.5  

Hubei 76.8  119.1  96.3  

Hunan 131.2  148.5  139.2  

Guangdong 190.7  214.4  201.7  

Guangxi 92.0  158.5  122.7  

Hainan 239.5  147.5  197.0  

Sichuan 104.2  21.7  66.1  

Guizhou 48.3  17.6  34.1  

Yunnan 131.3  127.0  129.4  

Shaanxi 97.0  110.1  103.1  

Gansu 68.3  88.8  77.8  

Qinghai 78.7  88.7  83.3  

Ningxia 55.4  43.6  50.0  

Xinjiang 77.8  94.6  85.6  

China 116.3  112.2  114.4  

# East 165.6  148.2  157.6  

# Middle 92.2  105.0  98.1  

# West 81.3  78.2  79.9  
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We construct the CO2 ACI by taking into account both equity and efficiency principles.9 

The ACI is calculated by weighting the equity index and efficiency index as follows.  

ACIi,t=Equityi,t+(1-)Efficiencyi,t,     (10) 

where Equityi,t is the CO2 abatement equity index for province i at period t and is combined 

with the per capita CO2 emission and the per capita GDP, which are used to represent the 

equity criterion of “egalitarian” and “ability to pay[6, 8, 44, 45, 46]. The Efficiencyi,t is the 

CO2 abatement efficiency index and consists of two components. The first component is the 

carbon intensity, the ratio of CO2 emission to GDP. It is used to measure the emission benefit 

and productivity [7]. The second one is the CO2 shadow price. It is employed to capture the 

marginal abatement cost.10  All variables are normalized by the “Min-Max” method11 and 

given the same weight when merged into equity and efficiency indexes.12 The parameter  

satisfies 0 ≤   ≤ 1 and reflects the policymakers’ preferences between equity and efficiency 

principles.  

We plot the average score of the equity index and efficiency index for 29 provinces from 

1995 to 2007 in Figure 1. The dotted lines OA, OB and OC correspond to the same weight 

between equity and efficiency ( = 1/2), a preference for the efficiency principle ( = 1/3), 

and a preference for equity principles ( = 2/3).  

                                                           
9 Chinese government has no detailed allocation plan for CO2 intensity yet. The previous energy-saving plan is 

based on each province’s proposal shown in the introduction.   
10  As equations (2) and (6) reveal, the CO2 abatement potential and the shadow price are duals, following one 

reviewer’s suggestion, we select the shadow price to be involved in the efficiency index.  
11  The “Min-Max” normalization method converts xi to zi by zi=(xi-MinX)/(MaxX-MinX). The variable of the 

CO2 shadow price is reverse transformed. 
12  For simplicity, we first assign the same weight to each variable when calculating the Equity and Efficiency 

indexes, later we will check if different weights affect the final results. 
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Figure 1 Distribution of Equity and Efficiency Indexes by Province (1995-2007) 

The OA line shows there is no preference between equity and efficiency, and the points 

above (below) OA indicate that their efficiency score is higher (lower) than the equity index. 

Points far from the OA line indicate an asymmetric relationship between equity and 

efficiency performances. In addition, because the ACI index is combined with the equity and 

efficiency scores, each province’s projected distance on line OA reflects its capacity to 

reduce CO2. In this case, Shanxi gains the largest projected distance and the highest ACI 

score among all provinces, thus it should and can afford more abatement burden efficiently.  

From Figure 1, we can observe that Inner Mongolia is located in the upper-right zone, 

meaning a high value of both Equity and Efficiency indexes. It is also far from the original 

point, thus achieving a higher ACI score when compared with other provinces. Most 

developed provinces, such as Beijing, Shanghai, and Tianjin, are scattered in the lower-right 

zone, showing that these provinces have higher Equity value but lower Efficiency value. In 

contrast, the upper-left zone, which includes Guizhou, Shanxi, and Ningxia, indicates that it 
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will be more efficient in reducing CO2 emissions in these regions. Moreover, we observe that 

in the lower-left zone, Hainan, Jiangxi, Guangxi, Yunnan, Hunan, and Fujian are close to the 

origin, which means that they have fewer responsibilities and abilities and are relatively less 

efficient in cutting CO2 emissions.   

The lines OB and OC reflect the policymakers’ choices between efficiency and equity. If 

one favors the efficiency principle to allocate the CO2 abatement task, those provinces with 

the highest projected distance on line OB, such as Shanxi, Ningxia, Guizhou, and Inner 

Mongolia, will be given high priority and a larger share of the CO2 reduction burden. If the 

decision-maker prefers the equity principle, as line OC demonstrates, larger abatement shares 

will be distributed among regions such as Shanghai, Inner Mongolia, Ningxia, and Shanxi.  

It is obvious that, under different choices between equity and efficiency principles, the 

outcome may vary greatly. Some extreme choices include the line OA rotating clockwise to 

the X axis and completely adopting the equity principle while ignoring allocation efficiency. 

In such a case, Shanghai ranks first and is able to afford more load than the other provinces.  

We calculate the ACI score based on three assumed preference parameters ( = 1/2, 2/3 

and 1/3) and list the results in Table 4. Although the rankings of the provinces in Table 4 vary 

depending on different choices between equity and efficiency, some common provinces can 

be identified. Regardless, some provinces such as Inner Mongolia, Shanxi, and Ningxia 

should be allocated a larger burden share of the CO2 abatement because of their high per 

capita emission and low abatement cost, but Shanghai should take on more burdens due to its 

high ability to pay and high per capita emission level. Contrarily, Jiangxi and Hainan can be 

distributed less loads because of their low emissions and high abatement costs, while 

Guangxi and Yunnan also can take on fewer burdens due to their low income levels and low 

emissions per capita. 
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Table 4  

Average ACI score and rank by province in 1995-2007 

Provinces 

Equity Efficiency 

Equity and 

Efficiency are 

same important 

(=1/2) 

Prior to Equity 

principle 

(=2/3) 

Prior to 

Efficiency 

principle 

(=1/3) 

Per 

capita

 CO2 

Per 

capita

 GDP 

CO2 

intensity 

CO2 

shadow

 price 

ACI Rank ACI Rank ACI Rank 

Beijing 4.7 3.4 1.5 266.5 0.39 (7) 0.52 (6) 0.26 (15) 

Tianjin 5.8 2.4 2.6 134.7 0.46 (6) 0.56 (5) 0.36 (7) 

Hebei 3.6 1.1 3.6 54.2 0.39 (8) 0.37 (9) 0.41 (5) 

Shanxi 4.8 0.9 5.6 31.1 0.65 (1) 0.58 (4) 0.73 (1) 

Inner Mongolia 5.8 1.1 5.5 47.0 0.62 (3) 0.60 (2) 0.64 (4) 

Liaoning 4.4 1.4 3.5 90.0 0.39 (9) 0.41 (7) 0.36 (8) 

Jilin 3.7 1.0 4.0 87.1 0.35 (11) 0.34 (11) 0.35 (10) 

Heilongjiang 3.3 1.1 3.4 102.9 0.29 (14) 0.29 (15) 0.29 (13) 

Shanghai 6.1 3.9 1.7 159.5 0.53 (5) 0.69 (1) 0.37 (6) 

Jiangsu 3.3 1.7 2.1 129.9 0.25 (17) 0.30 (14) 0.21 (21) 

Zhejiang 3.7 2.0 1.9 168.1 0.27 (16) 0.34 (12) 0.21 (22) 

Anhui 2.0 0.6 3.4 101.5 0.19 (23) 0.16 (22) 0.22 (20) 

Fujian 2.2 1.4 1.6 245.7 0.12 (25) 0.15 (24) 0.08 (28) 

Jiangxi 1.5 0.7 2.3 147.3 0.09 (28) 0.08 (28) 0.10 (27) 

Shandong 3.4 1.4 2.5 86.1 0.29 (12) 0.31 (13) 0.27 (14) 

Henan 2.3 0.8 2.9 79.5 0.22 (19) 0.20 (20) 0.24 (16) 

Hubei 2.5 0.8 3.2 96.3 0.22 (18) 0.21 (19) 0.24 (18) 

Hunan 1.8 0.7 2.6 139.2 0.13 (24) 0.11 (25) 0.14 (24) 

Guangdong 2.9 1.9 1.6 201.7 0.20 (21) 0.26 (17) 0.15 (23) 

Guangxi 1.4 0.6 2.3 122.7 0.09 (27) 0.07 (29) 0.11 (26) 

Hainan 1.7 0.8 2.0 197.0 0.08 (29) 0.09 (27) 0.08 (29) 

Sichuan 1.7 0.7 2.9 66.1 0.20 (22) 0.16 (23) 0.24 (17) 

Guizhou 2.7 0.4 6.9 34.1 0.54 (4) 0.40 (8) 0.67 (3) 

Yunnan 1.6 0.6 2.6 129.4 0.11 (26) 0.10 (26) 0.13 (25) 

Shaanxi 2.3 0.7 3.3 103.1 0.21 (20) 0.19 (21) 0.23 (19) 

Gansu 2.3 0.5 4.4 77.8 0.27 (15) 0.22 (18) 0.32 (11) 

Qinghai 2.9 0.7 4.0 83.3 0.29 (13) 0.26 (16) 0.32 (12) 

Ningxia 5.5 0.8 7.0 50.0 0.64 (2) 0.59 (3) 0.69 (2) 

Xinjiang 3.9 1.0 4.0 85.6 0.36 (10) 0.35 (10) 0.36 (9) 

Note: the unit of per capita CO2, per capita GDP, CO2 intensity and CO2 shadow price is ton/person, 

10000Yuan/person, ton/10000Yuan and Yuan/ton, respectively. 

 

It is also apparent that the weight assigned to the component of Equity and Efficiency 

indexes will affect the final distribution. To examine the possible impact of component 

weight on the distribution, we drop the variable of CO2 shadow price and CO2 intensity from 

the Efficiency index and plot the distribution in Figure 2 and Figure 3, respectively. 

Compared with Figure 1, although the location of most provinces moved, their distribution 
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among four blocks did not change greatly. Three developed provinces, Shanghai, Beijing, and 

Tianjin, are still located in the lower-right zone. Inner Mongolia, Shanxi, Ningxia, and 

Guizhou also remain situated in the upper block. However, Gansu and Hebei crossed the 

border slightly and moved into the upper-left zone in Figure 2 and Figure 3, respectively. If 

decision makers have no preference between equity and efficiency principles, both figures 

suggest that Inner Mongolia, Shanxi, Ningxia, Shanghai, Guizhou, and Tianjin will be given 

high priority to assume more burden because these provinces have a larger projected distance 

on line OA, thus a higher ACI score.13 

 

Figure 2 Distribution with two Equity 

components and one Efficiency component 

(CO2 intensity) 

 

Figure 3 Distribution with two Equity 

components and one Efficiency component 

(shadow price) 

 

We also check the impact of different composition of Equity index on the distribution. In 

Figures 4 and 5, we assign the whole weight 1 to per capita CO2 and per capita GDP, 

respectively. In Figure 4, most provinces move toward the right when per capita GDP is 

ignored. Shanxi and Ningxia, which are located in the upper-left zone in Figure 1, now move 

to the upper-right zone. Xinjiang and Liaoning also move into the lower-right zone from the 

                                                           
13  For those samples close to the original point, their ranks do not change significantly. Due to size limitation, 

we do not mark them in Figures 2 and 3, or in the following Figures 4 and 5. 
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lower-left zone. This new distribution means that these provinces--most are developing 

regions--will be allocated with more CO2 abatement burden if the payment ability has not 

been taken into account. In Figure 5, most samples move toward the left when per capita CO2 

is dropped. Although Inner Mongolia moves to the upper-left zone from upper-right zone, its 

distribution among four blocks is similar to Figure 1. If the policymakers think equity is the 

same as the efficiency rule, both Figures 4 and 5 suggest that, Inner Mongolia, Ningxia, 

Shanxi, Guizhou, Tianjin, and Shanghai should be given a greater abatement share, although 

each province’s ACI score and rank may vary. 

 

Figure 4  Distribution with one Equity 

component (per capita CO2) and two Efficiency 

components 

 

Figure 5 Distribution with one Equity 

component (per capita GDP) and two 

Efficiency components 

 

There are several options for a final regional allocation scheme. Once the central 

governmental policymakers set up the proper components of Equity and Efficiency indexes, 

as well as the weigh coefficient between Equity and Efficiency, the provincial ACI score can 

be calculated. One may accurately distribute the CO2 abatement volume target by relative 

ACI share in aggregated ACI, or classify these provinces by cluster analysis, for example, the 
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average share burden can be set up equal to the national goal and the top five and the bottom 

five provinces will be allocated above-average and below-average targets.14 

Furthermore, in addition to administrative policy and regulation, more market-based 

instruments can be developed to prompt efficiency improvement and emission abatement. 

Many studies and practices have proven that a tradable emission permit system is feasible and 

can achieve the goal efficiently [43, 14]. China is approaching this direction and has 

established several tradable emission permit markets, such as Beijing Environment Exchange, 

Shanghai Environment and Energy Exchange, and Tianjin Climate Exchange. Currently, 

most trade markets are for technology and property transfers. Some pollutants or CO2-related 

transactions are voluntary exchanges, rather than the real market transactions that happened 

in the European Climate Exchange. In the next five years, China also plans to carry out pilot 

carbon trading in some industry sectors and provinces [2].  However, considering China’s 

national strategy in international climate negotiation, the fact that China has yet to take on 

quantitative caps on emissions, the previous experience of implementing the energy-saving 

and emission-abatement goal during the 11th five-year plan, as well as the efficient decision-

making and enforcement of the bureaucracy, there is no basis for carbon emission rights 

trading in China right now and it requires a certain length of time for China to trade carbon 

emission rights [47].   

4.4 Determinants of CO2 abatement potential 

As shown in Table 2, great differences exist in CO2 abatement potential, thus the 

inefficient emissions among provinces. To further investigate the driving force of CO2 

abatement potential, we conduct an econometric analysis as follows: 

                                                           
14  In the 11th five-year planning period, many provinces are allocated the same energy-saving target with 

national goal (20%), but Jilin (30%), Shanxi (25%), Inner Mongolia (25%) and Shandong (22%) undertake 

more burdens, while Hainan (12%), Guangxi (15%), Guangdong (16%), Fujian (16%), Yunnan (17%) and 

Qinghai (17%) afford less burdens. This practical distribution of energy-saving targets deviates from our ACI 

ranks as shown in Table 4, which were developed based on equity and efficiency considerations. These 

differences again reflect that allocation of energy-saving and emission-abatement in the 11th five-year plan was 

not systematically set and need to allocate target more scientifically in the 12th five-year plan [3, 5 ].  
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𝐴𝑃𝑖,𝑡 = 𝛽0 + 𝛽1𝑙𝑛(𝑟𝐺𝐷𝑃)𝑖,𝑡 + 𝛽2𝐻𝑒𝑎𝑣𝑦𝑖,𝑡 + 𝛽3𝑆𝑒𝑟𝑣𝑖𝑐𝑒 + 𝛽4𝐶𝑜𝑎𝑙𝑖,𝑡 

+𝛽5𝑇𝑟𝑎𝑑𝑒𝑖,𝑡 + 𝛽6𝐷2002 + 𝜀𝑖,𝑡, (11) 

where APi,t is the CO2 abatement potential (inefficient emission) for the i–th province at year 

t. 0 is a constant item and i,t is an error term. The independent variables ln(rGDP), Heavy, 

Service, Coal and Trade denote the initial income levels, the share of the heavy industry 

sector in the economy, the share of tertiary industry share in GDP, the share of coal in total 

energy and the share of international trade in GDP, respectively. The dummy variable D2002 

is used to check if year 2002 is a turning point. 

The most developed regions, such as Beijing and Shanghai, register a lower CO2 

abatement potential, while the less developed regions have higher AP values (Table 2). 

Because the abatement potential of CO2 reflects the inefficient emission of CO2 during the 

production process, it is expected that the richer provinces, which are normally accompanied 

by higher economic efficiency, have less inefficient emissions and lower CO2 abatement 

potential. Here we use the per capita GDP to represent the initial income levels (in logarithm 

form). 

Some studies found that industrial structure change exerts great influence on energy 

efficiency [48, 49]. A shift from the high-energy-consumption sectors to the low-energy-

consumption sectors can increase total energy efficiency, which may lead to less CO2 

abatement potential. We use the ratio of the heavy industry sector to GDP and the share of the 

tertiary industry in GDP to indicate each province’s industry structure. We expect that the 

coefficients of the heavy industry share and the tertiary industry share are positive and 

negative, respectively. 

Because various energy products have different carbon contents, energy composition 

should be taken into account as an important factor [50]. In order to control for potential 

provincial varying trends in fuel mix, we follow Auffhammer and Carson’s [51] method to 
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use the share of coal in total energy consumption to proxy the energy consumption 

structure.15 The data of coal and total energy consumptions are taken from China Energy 

Statistical Yearbook [38]. Because the carbon content of coal is higher than other non-coal 

energy products, the coefficients of Coal are expected to be positive. 

As Taskin and Zaim [52] revealed, the openness of a country is one of the key 

determinants of environmental efficiency.  In the last three decades, China’s open-door policy 

has substantially increased imports and exports. To capture the effect of openness on CO2 

abatement potential, we use the share of imports and exports in the total economy to represent 

the openness levels for each province. It can also be used to proxy the institution change [53]. 

The sign of the variable Trade is expected to be negative.  

Considering that the CO2 abatement potential value is between 0 and 1, a Tobit 

estimation on Equation (11) is employed [28]. To avoid potential problems caused by 

unobserved variables, we apply the generalized least squares (GLS). The Hausman-test 

prefers the fixed-effect (FE) model.  Table 5 lists the results of the Tobit regression with year 

controlled and the two-way FE estimation results. 

As expected, the sign of the variable ln(rGDP) is negative, but the coefficients are 

insignificant in all estimators. It suggests that there is no remarkable connection between the 

economic development level and the CO2 abatement potential.  

The sign of the variable Heavy is consistent with our expectations. The remarkable 

positive coefficient suggests that a greater share of the heavy industry sector in the economy 

leads to more inefficient CO2 emissions. On the contrary, the significantly negative 

coefficient of the variable Service indicates that a greater share of tertiary industry in GDP 

leads to a lower CO2 abatement potential. 

                                                           
15 More importantly, it is better to add the share of renewable energy to capture the differences between fossil 

fuel and renewable energy, but the data of renewable energy consumption for each province is not available. 
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Table 5 

Regression results of CO2 abatement potential 

Independent variables Tobit FE 

Per capita GDP 

ln(rGDP) 

-0.076 

(0.059) 

-0.104 

(0.104) 

Heavy industry share 

Heavy 

0.648 *** 

(0.135) 

0.401 *** 

(0.154) 

Tertiary industry share 

Service 

-0.743 *** 

(0.269) 

-0.607** 

(0.256) 

Coal share 

Coal 

0.610 *** 

(0.116) 

0.683 *** 

(0.118) 

International trade share 

Trade 

-0.167 *** 

(0.065) 

-0.074 * 

(0.044) 

Year Dummy 

D2002 

0.14 *** 

(0.05) 

0.17 ** 

(0.076) 

Constant item 
-0.143 

(0.142) 

-0.098  

(0.147) 

Observations 315 371 

Log likelihood 221.5  

Adj. R2  0.591 

Notes: ***, ** and * denote that the variables are statistically significant at the 1, 5 and 10 

percent levels, respectively. Standard errors are reported in parentheses. 

 

The energy composition, represented by the share of coal in total energy consumption, is 

consistent with our expectations in the whole sample. This indicates that the composition of 

energy consumption plays an important role in the fluctuation of provincial CO2 abatement 

potential. The significant positive coefficient of Coal suggests that the inefficiency of CO2 

emission will raise the increasing consumption of more coal energy mixes. 

The Trade variable is notably correlated with the CO2 abatement potential. Its negative 

coefficient reveals that greater trade openness leads to more efficient CO2 emissions. In 

addition, the significantly positive coefficient of the dummy variable D2002 verifies that the 

CO2 abatement potential has significantly increased since 2002. 

According to the magnitude of coefficients, coal share in total energy consumption, 

tertiary industry share and heavy industry share contribute to the majority of abatement 
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potential’s variety, while trade openness contributes relatively less. In other words, the 

industry composition and the energy mix play relatively important roles on the change in CO2 

abatement potential. 

In summary, the large gap of CO2 abatement potential among provinces may result from 

different industry structures, energy compositions, and degrees of openness. A greater share 

of the heavy industry sector and more consumption of coal energy mixes in the economy 

leads to more inefficient CO2 emissions. The more the service sector develops and the more 

open trade is, the more efficient CO2 emissions will be. 

 

5. Conclusion  

China has committed to reducing its carbon intensity by 40-45% below 2005 levels by 

2020.  The economic reform in the past 30 years has allowed free market to take on more 

roles in economic development. However, government still intervenes in the economics 

directly, especially in the energy sector. Under this setting, we predict that government will 

still make a key role in allocating CO2 abatement. The purpose of the paper tries to propose 

how to equitably and efficiently distribute this national goal to each province. We identify 

some provinces with the highest (lowest) capacity to reduce CO2 from both equity and 

efficiency perspectives. We apply the “common but differentiated responsibilities” rule, 

which is used in international negotiation and the allocation of CO2 permits across nations, to 

regional distribution in China.  

By taking undesirable output into account, an extended SBM DEA model is employed to 

measure redundant CO2 emissions using data from 29 provinces in China over the period 

1995-2007. The estimated provincial CO2 marginal abatement costs, combined with carbon 

intensity, are merged into the CO2 abatement efficiency index. The CO2 abatement equity 
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index is defined by per capita CO2 and per capita GDP. Then, the CO2 ACI is constructed by 

the weighted CO2 abatement efficiency index and the CO2 abatement equity index.  

The ACI ranks may vary and it depends on the decision makers’ preferences between 

equity and efficiency principles, as well as the components of Equity and Efficiency indexes. 

By setting different parameters in three scenarios, the results suggest that Inner Mongolia, 

Shanxi, Ningxia and Shanghai should increase their loads, while Jiangxi, Guangxi, Hainan, 

and Yunnan should have their loads reduced. However, an interregional tradable emission 

permit system can help obtain both equity and efficiency objectives in the future.  

There exists a large reduction potential gap between the eastern, the middle and the 

western regions. The emission abatement potential (inefficient emission) in the eastern region 

is 29%, while it is 48% and 56% in the middle and western regions, respectively. On average, 

41% national CO2 emissions are excessive due to inefficient production (equivalent to 153.78 

million tons per year). The east, middle and west regions contributed 33%, 35% and 32%, 

respectively, of the national feasible abatement during this period. Our regression results 

indicate that the large gap of CO2 abatement potential among provinces may result from 

different industry structures, energy compositions and degrees of openness. In addition, the 

distribution of marginal cost across regions and over time is unbalanced. The national 

marginal abatement cost climbed from 94.4 Yuan/ton in 1995 to 139.5 Yuan/ton in 2002 and 

then continuously declined. The developed eastern region (157.6 Yuan/ton) shows the highest 

marginal cost to reduce CO2, while the average shadow prices in the middle and western 

regions are 98.1 Yuan/ton and 79.9 Yuan/ton, respectively.   

Finally, we have to admit the limitation of applying DEA models to province levels in 

China.  DEA models have a strong assumption of homogeneity among the decision-making 

units [54].  They are most frequently used in analyzing productive efficiency of firms and 

organizations. We apply DEA to provincial level analysis following the other literature in 
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regional/industrial studies [28, 55, 56] and the research among countries [29, 35, 57, 58, 59, 

60].  However, each province is different in the availability of technology and labor mobility. 

Our regression in Section 4 further examines the provincial difference of CO2 abatement 

potential. In the future research, we will pursue a better solution to fit the homogenous 

assumption of the DEA model.   

  



27 
 

References 

[1] Time, 2009. Lessons from the Copenhagen Climate Talks, http://www.time.com/time/spe

cials/packages/article/0,28804,1929071_1929070_1949054,00.html , December 21, 2009. 

[2] China News Weekly, 2010. How to allocate carbon emissions? http://www.chinanews.co

m.cn/ny/2010/10-22/2605387.shtml, in Chinese, October 22, 2010. 

[3] M.D. Levine, L. Price, L., N. Zhou, D. Fridley, N. Aden, H. Lu, M. McNeil, N. Zheng, Q. 

Yining, P. Yowargana, Assessment of China’s energy-saving and emission-reduction 

accomplishments and opportunities during the 11th five year plan, Lawrence Berkeley 

National Laboratory, Berkeley, CA, 2010. 

[4] World Bank, Mid-term evaluation of China’s 11th five year plan, http://go.worldbank.org/

75Y6K60E70, February 12, 2009. 

[5] Xinhuanet, 2010. NDRC recognize the allocation of energy-saving and emission-

reduction in 11th five-year plan is not appropriate.http://news.xinhuanet.com/fortune/2010-

09/30/c_12622103.htm, September 30, in Chinese. 

[6] J.H. Pan, Emissions rights and their transferability: equity concerns over climate change 

mitigation. Int Environ Agreem-P. 3(2003) 1-16. 

[7] S. Gupta, P.M. Bhandari, An effective allocation criterion for CO2 emissions. Energ 

Policy. 27(1999), 727-736. 

[8] M. Cazorla, M. Toman, International equity and climate change policy, Resources for the 

Future, Climate Issue Brief # 27. (2000). 

[9] Global Commons Institute, Contraction and Convergence: A Global Solution to a Global 

Problem, Global Commons Institute, London, U.K. 1997. 

[10] S. Kverndokk,  Tradeable CO2 emission permits: initial distribution as a justice problem, 

The Centre for Social and Economic Research on the Global Environment (CSERGE), 

Global Environmental Change Working Paper 92-35 (1992). 

http://www.time.com/time/specials/packages/article/0,28804,1929071_1929070_1949054,00.html
http://www.time.com/time/specials/packages/article/0,28804,1929071_1929070_1949054,00.html
http://www.time.com/time/specials/packages/article/0,28804,1929071_1929070_1949054,00.html
http://www.time.com/time/specials/packages/article/0,28804,1929071_1929070_1949054,00.html
http://www.chinanews.com.cn/ny/2010/10-22/2605387.shtml
http://www.chinanews.com.cn/ny/2010/10-22/2605387.shtml
http://www.chinanews.com.cn/ny/2010/10-22/2605387.shtml
http://www.chinanews.com.cn/ny/2010/10-22/2605387.shtml
http://go.worldbank.org/75Y6K60E70
http://go.worldbank.org/75Y6K60E70
http://go.worldbank.org/75Y6K60E70
http://go.worldbank.org/75Y6K60E70
http://news.xinhuanet.com/fortune/2010-09/30/c_12622103.htm
http://news.xinhuanet.com/fortune/2010-09/30/c_12622103.htm
http://news.xinhuanet.com/fortune/2010-09/30/c_12622103.htm
http://news.xinhuanet.com/fortune/2010-09/30/c_12622103.htm


28 
 

[11] Intergovernmental Panel on Climate Change, Climate Change 2007: The Physical 

Science Basis, Cambridge University Press, New York, 2007. 

[12] Organization for Economic Co-operation and Development, Environmental Outlook to 

2030, OECD Publishing, Paris, 2008. 

[13] United Nations Development Programme, Human Development Report 2007/2008—

Fighting Climate Change: Human Solidarity in a Divided World, Palgrave Macmillan, New 

York, 2008. 

[14] D. Wei, A. Rose, Interregional sharing of energy conservation targets in China: 

efficiency and equity. Energy J. 30(2009) 81-112. 

[15] N. Van Ha, S. Kant, V. Maclaren, V., Shadow prices of environmental outputs and 

production efficiency of household-level paper recycling units in Vietnam. Ecol Econ. 

65(2008) 98-110. 

[16] F.M. Gollop, G.P. Swinand, From total factor to total resource productivity: An 

application to agriculture. Amer J Agr Econ. 80(1998) 577-583.  

[17] S.A. Berg, F.R. Forsund, E.S. Jansen, Malmquist indices of productivity growth during 

the deregulation of Norwegian Banking 1980-89. Scan J Econ. 94(1992), 211-228. 

[18] C.A.K. Lovell, J.T. Pastor, J.A. Turner, Measuring macroeconomic performance in the 

OECD: a comparison of European and non-European countries. Eur J Oper Res. 87(1995) 

507-518. 

[19] L.M. Seiford, J. Zhu, Modeling undesirable factors in efficiency evaluation. Eur J Oper 

Res. 142(2002)16-20. 

[20] H. Scheel, Undesirable outputs in efficiency valuations. Eur J Oper Res. 132(2001) 400-

410. 

[21] R. Fare, S. Grosskopf, C.A.K. Lovell, S. Yaisawarng, Derivation of shadow prices for 

undesirable outputs: a distance function approach. Rev Econ Stat. 75(1993) 374-380. 



29 
 

[22] J.S. Coggins, J.R. Swinton, J.R., The price of pollution: a dual approach to valuing CO2 

allowances. J Environ Econ Manage. 30(1996) 58-72. 

[23] A. Hailu, T.S. Veeman, Environmentally sensitive productivity analysis of the Canadian 

pulp and paper industry, 1959-1994: an input distance function approach. J Environ Econ 

Manage. 40(2000) 251-274. 

[24] Y.H. Chung, R. Fare, S. Grosskopf, Productivity and undesirable outputs: a directional 

distance function approach. J Environ Manage. 51(1997) 229-240. 

[25] R.G. Chambers, Y. Chung, R. Fare, Benefit and distance functions. J Econ Theory. 

70(1996) 407-419. 

[26] J.D. Lee, J.B. Park, T.Y. Kim, Estimation of the shadow prices of pollutants with 

production/environment inefficiency taken into account: a nonparametric directional distance 

function approach. J Environ Manage. 64(2002) 365-375. 

[27] R. Fare, S. Grosskopf, D.W. Noh, W. Weber, Characteristics of polluting technology: 

theory and practice. J Econom. 126(2005) 469-492. 

[28] M. Watanabe, K. Tanaka, Efficiency analysis of Chinese industry: a directional distance 

function approach. Energ Policy. 35(2007), 6323-6331. 

[29] S. Kumar, Environmentally sensitive productivity growth: a global analysis using 

Malmquist-Luenberger index, Ecol Econ. 56(2006) 280-293. 

[30] W.W. Cooper, Z. Huang, S.X. Li, B.R. Parker, J.T. Pastor, Efficiency aggregation with 

enhanced Russell measures in data envelopment analysis, Socioecon Plann Sci. 41(2007) 1-

21. 

[31] H. Fukuyama, W.L. Weber, A directional slacks-based measure of technical inefficiency, 

Socioecon Plann Sci. 43(2009), 274-287. 

[32] W.W. Cooper, L.M. Seiford, K. Tone, Data Envelopment Analysis: A Comprehensive 

Text with Models, Applications, References and DEA-solver software, Kluwer Academic 



30 
 

Publishers, Boston, 2006. 

[33] T. Coelli, A guide to DEAP version 2.1: A data envelopment analysis (Computer) 

program, The Centre for Efficiency and Productivity Analysis Working Paper 96/8 (1996), 

Department of Econometrics, University of New England, Armidale. 

[34] M.J. Farrell, The measurement of productive efficiency, J R Stat Soc Ser A. 120(1957) 

253-281. 

[35] J.L. Hu, C.H. Kao, Efficient energy-saving targets for APEC economies. Energ Policy. 

35(2007) 373-382. 

[36] M. Lee, The shadow price of substitutable sulfur in the US electric power plant: a 

distance function approach, J Environ Manage. 77(2005) 104-110. 

[37] National Bureau of Statistics of China, China Statistical Yearbook, various years, China 

Statistics Press (in Chinese), Beijing, 1996-2008.  

[38] National Bureau of Statistics of China, China Energy Statistical Yearbook, China 

Statistics Press (in Chinese), Beijing, 1998, 2000, 2004, 2008.  

[39] J. Zhang, G.Y. Wu, J.P. Zhang, Estimating China’s provincial capital stock, Working 

Paper Series, China Center for Economic Studies, Fudan University, 2007. 

[40] National Coordination Committee Office on Climate Change and Energy Research 

Institute of National Development and Reform Commission, National Greenhouse Gas 

Inventory of the People’s Republic of China, Chinese Environmental Science Press (in 

Chinese), Beijing, 2007. 

[41] H. Liao, Y. Fan, Y.M. Wei, What induced China’s energy intensity to fluctuate: 1997-

2006? Energ Policy. 35(2007) 4640-4649. 

[42]  N. Zeng, Y. Ding, J. Pan, H. Wang, J. Gregg, Climate change—the Chinese challenge, 

Science, 8 (2008) 730-731. 



31 
 

[43] A. Rose, B. Stevens, J. Edmonds, M. Wise, International Equity and Differentiations in 

Global Warming Policy, Environmental and Resource Economics, 12 (1998), 25-51. 

[44] A. Lange, C. Vogt, A. Ziegler, On the importance of equity in international climate 

policy: an empirical analysis, Energy Econ. 29(2007), 545-562. 

 [45] B. Metz, International equity in climate change policy. Integrat Ass. 1(2000) 111-126. 

[46] L. Ringius, A. Torvanger, A. Underdal, Burden sharing and fairness principles in 

international climate policy. Int EnvironAgreem-P. 2(2002) 1-22. 

[47] Xinhua, Conditions for China’s emission trading scheme premature, http://www.chinada

ily.com.cn/bizchina/2010-09/30/content_11370345.htm , September 30, 2010.  

[48] Z.X. Zhang, Why did the energy intensity fall in China’s industrial sector in the 1990s? 

The relative importance of structural change and intensity change. Energy Econ. 25(2003) 

625-638. 

[49] K. Fisher-Vanden, G.H. Jefferson, H.M. Liu, Q. Tao, What is driving China’s decline in 

energy intensity? Resource Energy Econ. 26(2004) 77–97. 

[50] C. Wei, J. L. Ni, M.H. Shen, An empirical analysis of provincial energy efficiency in 

China. China & World Econ. 17(2009) 88-103. 

 [51] M. Auffhammer, R.T. Carson. Forecasting the path of China's CO2 emissions using 

province-level information. Journal of Environmental Economics and Management.  55(2008) 

229-247. 

[52] F. Taskin, O. Zaim, The role of international trade on environmental efficiency: A DEA 

approach. Econ Model. 18 (2001) 1-17. 

[53] A. A. Levchenko, Institutional quality and international trade. Rev Econ Stud. 74(2007) 

791-819. 

[54] D.A. Haas, F.H. Murphy, Compensating for non-homogeneity in decision-making units 

in data envelopment analysis. Eur J Oper Res. 144(2003) 530-544. 

http://www.chinadaily.com.cn/bizchina/2010-09/30/content_11370345.htm
http://www.chinadaily.com.cn/bizchina/2010-09/30/content_11370345.htm
http://www.chinadaily.com.cn/bizchina/2010-09/30/content_11370345.htm
http://www.chinadaily.com.cn/bizchina/2010-09/30/content_11370345.htm


32 
 

[55] L. Liang, D. Wu, Z. Hua, MES-DEA modelling for analyzing anti-industrial pollution 

efficiency and its application in Anhui province of China. Int J Global Energy. 22(2004) 88-

98. 

[56] J.L. Hu, S.C. Wang, Total-factor energy efficiency of regions in China. Energy Policy. 

34(2006) 3206–3217. 

[57] O. Zaim, F. Taskin, Environmental efficiency in carbon dioxide emissions in the OECD: 

A non-parametric approach. J Environ Manage. 58(2000) 95–107. 

[58] J.L. Zofio, A.M. Prieto, Environmental efficiency and regulatory standards: The case of 

CO2 emissions from OECD industries. Resource and Energy Econ. 23(2001) 63–83. 

[59] R. Fare, S. Grosskopf, F. Hernandez-Sancho, Environmental performance: An index 

number approach. Resource and Energy Econ. 26(2004) 343–352. 

[60] P. Zhou, B.W. Ang, K.L. Poh, Slacks-based efficiency measures for modeling 

environmental performance. Ecol Econ. 60(2006) 111–118. 


	Regional allocation of carbon dioxide abatement in China
	Recommended Citation

	OLE_LINK1
	OLE_LINK2
	OLE_LINK1
	OLE_LINK2

