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Abstract

Background: New mathematical models of complex biological structures and computer
simulation software allow modelers to simulate and analyze biochemical systems in silico and form
mathematical predictions. Due to this potential predictive ability, the use of these models and
software has the possibility to compliment laboratory investigations and help refine, or even
develop, new hypotheses. However, the existing mathematical modeling techniques and simulation
tools are often difficult to use by laboratory biologists without training in high-level mathematics,
limiting their use to trained modelers.

Results: We have developed a Boolean network-based simulation and analysis software tool,
ChemChains, which combines the advantages of the parameter-free nature of logical models while
providing the ability for users to interact with their models in a continuous manner, similar to the
way laboratory biologists interact with laboratory data. ChemChains allows users to simulate
models in an automatic fashion under tens of thousands of different external environments, as well
as perform various mutational studies.

Conclusion: ChemChains combines the advantages of logical and continuous modeling and
provides a way for laboratory biologists to perform in silico experiments on mathematical models
easily, a necessary component of laboratory research in the systems biology era.

Background

As our understanding of cellular processes such as signal
transduction, genetic regulation, etc., grows, it is becom-
ing clear that their emerging complexity means that they
can no longer be studied exclusively by classical reduc-
tionist techniques [1]. Thus, a systems approach is
required if these cellular functions are to be fully under-
stood [1,2]. A systems approach to the study of biochem-
ical networks requires the creation of models (and
software to simulate them) that take into account the
numerous interactions of chemical components of the

whole system [2,3]. The subsequent use of these models
and software tools have the potential to serve laboratory
biologists as a complimentary method to pre-screen their
laboratory experiments, as well as help them to refine or
even develop new hypotheses.

The most common ways to represent these interactions
are ones using continuous methods, generally including
ordinary differential equations (ODE) or partial differen-
tial equations (PDE) [2,4-6]. To put them in motion, a
number of software tools to simulate and subsequently
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analyze the dynamics of these models have been devel-
oped (e.g., E-Cell [7], CellDesigner [8], Dizzy [9], Cellera-
tor [10,11], Virtual Cell [12], etc.). However, one of the
problems with using differential equations is that each
equation requires the knowledge of many parameters that
make up the kinetic basis of the network interactions,
which in many cases (especially for large-scale models)
may be difficult to obtain [3]. In addition, as the size and
connectivity of the models increases, the complexity of
the underlying differential equations also increases, limit-
ing their use to only investigators trained in higher-level
mathematics.

An alternative to differential equation modeling is the use
of discrete models [3,13]. This method is based on quali-
tative and parameter-free information (e.g., protein x acti-
vates protein y) which is available in the biomedical
literature and/or directly from laboratories, simplifying
the process of building and modifying the models.
Although discrete (Boolean) models have been adopted
to study the dynamics of gene regulatory networks and in
the studies of signal transduction networks [14-16], the
overall use of Boolean models to visualize biochemical
processes is sparse relatively to the differential equation-
based approach. As a result, only a limited number of soft-
ware tools based on this approach exist (e.g., GinSim [17],
SQUAD [18], and CellNetAnalyzer [13]).

One reason for the lack of development of Boolean mod-
eling tools for life sciences is that biologists aren't well
versed in discrete modeling. In most cases, nodes in such
models are in either an ON or OFF state, often represented
by '1' and '0', respectively. For laboratory scientists who
are accustomed to dealing with continuous data (e.g., dos-
age levels, protein activity levels, etc.), such representation
may be unintuitive and difficult to use. Thus one way to
advance the use of discrete models for biological systems
would be to create the ability to interact with them using
continuous terms.

In this report, we describe in detail ChemChains, a suite
of software tools used in our recent study [14]. Chem-
Chains was developed as a core platform to simulate, ana-
lyze and visualize the dynamics of large-scale Boolean
biochemical networks under tens of thousands of differ-
ent environments, while enabling users to interact with
the model in a continuous manner. Thus biological inves-
tigators can interact with their models in a familiar way,
while preserving the benefits of parameter-free models.
Although ChemChains simulations performed in [14]
were done in a synchronous fashion (i.e., all nodes in the
model updated at the same time during every simulation
step), ChemChains also offers asynchronous updating
where certain nodes can update at different time points
during the simulation process.

http://www.biomedcentral.com/1752-0509/3/58

Implementation

Boolean networks and their dynamics

Although relatively simple, Boolean networks are able to
capture the dynamics of systems ranging from trivial to
exceedingly complex, including those of living systems
[19].

Boolean networks

These networks are collections of labeled Boolean nodes
connected with directed edges. In Boolean networks, the
state of each node at time ¢ can be either ON or OFF, often
represented by '1' and '0', respectively. Consider the sim-
ple network shown in Figure 1A[20]. This network has
three nodes and each node is connected to each of the
others. The activation function (or mechanism) and the
logical connections for each node can be described by a
truth table (Figure 1B). Truth tables give the ON/OFF state
(shown as a 1 for on and a 0 for off) of each node as a
function of the ON/OFF state of the other two nodes con-
necting to it. Herein, nodes that determine the activation
function of another node are referred to as "input nodes"
or "inputs". Thus the third table shows that node 3 will be
on if either input 1 or 2 (or both) are on.

The network exists at time t in some initial state, with each
separate node either on or off. At the next time (¢ + 1), the
states of all three nodes will change according to the tables
shown. The evaluation of the entire system from time t to
time ¢ + 1 can be represented in a single table (shown in
Figure 1C) where the column ¢ contains all the possible
initial states of the system and column ¢ + 1 shows the
result of application of the logic set to each initial condi-
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A simple network and its logical connections.
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tion. Continued iteration by the same method results in a
trajectory of the system as the states change over time.

Boolean attractors

The network introduced in Figure 1 is simple enough to
view all of the possible trajectories, which are shown in
Figure 2[20]. In panel A, for example, the system is shown
to be at an initial state of node 1 = 0, node 2 = 0 and node
3 = 0, or 000. According to the logic tables in Figure 1B
(or, equivalently, the map shown in Figure 1C), at the
next time point the system will remain at 000. This trajec-
tory is indicated by the arrow in Panel A. Similarly, Panels
B and C show the trajectories for the other possible start-
ing combinations.

Because there are a finite number of nodes in the system
(N), there are a finite number (2V) of possible states of the
system. Thus, as the system travels in time, it must (regard-
less of trajectory) re-enter a state previously encountered.
As shown in Figure 2A and 2B, when the system is at state
000 or 111, it remains there (encountering itself over and
over), thus those two states are referred to as steady-states.
Panel C shows that if the system is at state 001 or 010, it
cycles between those two states, a trajectory that is referred
to as a period 2 cycle. Finally, panel B shows that there are
four other states of the system (110, 100, 011, and 101)
that follow trajectories to the steady-state 111. In sum-
mary, Figure 2 shows that the network described in Figure
1 has three conditions (namely the two steady-states 000
and 111, and a period 2 cycle containing 001 and 010)
called attractors into which the trajectories of all initial
states eventually settle.

100
A i
000 110<—011—>111

'

C 101

001 010

LN

Figure 2
All possible trajectories and attractors for the net-
work in Figure I.
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Using attractors to characterize node activation

As can be seen in Figure 2, once a Boolean network has
settled onto an attractor, it will remain there. Thus, it is
possible to characterize the activation state of each node
in the network by determining the "percent ON" of each
node over the entire attractor. For example, there are three
attractors (Figure 2) of the network introduced in Figure 1.
Looking at the fixed point attractors in Panels A and B in
Figure 2, it is obvious that all three nodes are 0% and
100% ON, respectively. However, in Panel C there are dif-
ferent behaviors. On this attractor, node 1 is 0% ON, but
nodes 2 and 3 are both 50% ON as they alternate between
0 and 1 at every step in the attractor. Consider another
example - a simple hypothetical two-component positive
feedback loop in which node A activates node B and vice
versa with two different configurations of truth tables for
each node (Figure 3A &3B, respectively). In Figure 3A,
both nodes are activated when the other node is 1, but
deactivated when the regulating node is 0. As shown in
Figure 3A, this configuration and activation mechanism
results in three attractors (or tristability), that will make
both nodes either 0%, 50%, or 100% ON, depending on
the initial state of each node. The tristability (in terms of
percent ON) is also demonstrated by results from a sam-
ple ChemChains simulation experiment shown in the
graph in Figure 3A (bottom). The second truth table con-
figuration (Figure 3B) depicts an activation mechanism in
which both nodes lack the negative regulatory step (where
the inactive state of the regulating node causes the other
node go to 0). As shown in Figure 3B, setting up the truth
tables this way results in the system moving to one of two
attractors, depending on the initial condition (bistabil-
ity). In terms of percent ON, this configuration results in
both nodes being either 0% or 100%ON as shown by
results from a ChemChains simulation experiment (Fig-
ure 3B). It is also worth noting that bistability (demon-
strated in the above example) is an intriguing higher order
property of positive feedback regulation found in many
real biological networks. The Boolean positive feedback
loop in Figure 3B hence makes a nice example of how the
bistability phenomenon can be simulated using Chem-
Chains.

ChemChains overview

ChemChains is a platform-independent, command-line-
driven simulation and analysis tool for Boolean networks
implemented in C++, using object-oriented methodology.
By default, ChemChains uses synchronous updating for
all nodes in the model, however, asynchronous updating
for user-selected nodes is also available (see Delay and
Sustain Nodes sections below). The software is built in an
extension-based fashion, which will allow for the expan-
sion of the collection of analysis tools used in Chem-
Chains. The current version of ChemChains consists of
the main simulator engine and two extensions (described
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A simple positive feedback loop. Two possible configurations of a positive feedback loop in which node A activates node B
and node B activates node A. A) First configuration, in which the truth tables and state transition diagram depict the most triv-
ial activation mechanisms of nodes A and B; each node is simply activated when the other node is | and deactivated when the
other node is 0. In addition a sample simulation experiment (consisting of 20 simulations with randomly selected initial states)
using ChemChains was done to illustrate the connection between the system's three attractors and the percent ON measure
of each node (note that the percent ON levels where the same for both nodes, hence one diagram per configuration is
shown). B) In the second sample configuration of a two-component positive feedback loop the truth tables depict activation
mechanisms of both nodes in which each node is, similarly to the first configuration, activated by the other node, but is not
necessarily turned off when the other node is off. As illustrated by the state transition diagram and a ChemChains simulation
experiment (also consisting of 20 simulations with randomly selected initial states) in Panel B, this set-up results in two attrac-

tors, and thus two possible percentage ON levels (0% and 100% ON) for each node, depending on the initial condition.

below) used in our recent publication on information
processing in signal transduction networks [14]. To run
ChemChains, users must provide several input files
(described below). Once simulations and/or analyses are
initiated, ChemChains will create several types of output
file formats. Both the input files, as well as the desired out-
put format and the output files must be specified by users
in the form of command-line parameters provided to
ChemChains at the time of program initiation. Available
parameters are summarized in Table 1.

Software input

To simulate Boolean networks with ChemChains, two
input files are required: a network descriptor file and a
simulation specification file.

Network descriptor

Network descriptor file is a ChemChains-specific text file
containing the collection of activation mechanisms of
Boolean nodes in a given Boolean network model. In this
file, the activation mechanism of each node is described
on a new line in the following format:

Bool:name:initial state(True or False):inputl,
input2..inputN:list of states of input nodes for non-initial state
of a node of interest (separated by comma)

The "Bool" prefix tells the software that the node is of type
Boolean (users can also declare other types of nodes such
as Input, Sustain, Delay, and Output, all of which are dis-
cussed below).
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Table I: Summary of available ChemChains parameters.
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Parameter Description

General parameters used with all running modes
-ispecs filename Simulation specification file name
-ilogic filename Network descriptor file name

-v Verbose mode

Parameters used with FileConversion mode

-TT2ND Creates a network descriptor file from a set of truth tables

-ND2TT Converts the network descriptor into a set of truth tables

-itables path File path for list of truthtables, and the nodelist

-inodelist filename File for List of Nodes, Used with TT2ND

-o filename Specifies the location of FileConversion output

Parameters used with Visual mode

-vis filename Instantiates ChemChains in the visual mode and saves the output file provided by filename
-A Output all nodes

Parameters used with Calculation mode
-calc experimentname

instantiates ChemChains in the calculation mode

-n Xxx Number of consecutive simulations

-noBits Suppress printing of bit files

-rand_init randomly selects initial states for all nodes and creates new logic file
Parameters used with Pattern analysis extension

-patterns runs pattern analysis after each simulation

-isettings xxx Patterns file with node activity range settings

-inodes xxx File with nodes to be analyzed

For example, consider a node X with two input nodes A
and B that both need to be ON in time t for X to be ON in
t+1. The truth table depicting this scenario (Table 2) is
represented as (initial state of X = ON):

Bool:X:True:A, B:TF, FT, FF (i.e., node X with inputs A and B
is ON, unless A and B, in time t, are: A-ON & B-OFF, A-OFF
& B-ON, or A and B are both OFF),

or for the case where the initial state of X is OFF:

Bool:X:False:A, B:TT (i.e., node X with inputs A and B is OFF,
unless A and B, in time t, are both ON)

The initial state (i.e., t = 0) of each node has to be defined
prior to any simulations. The initial states can be assigned
either by the user (see the "FileConversion" section
below), or for more general analysis, randomly by Chem-
Chains using the 'rand_init' parameter. Using the
'rand_init' parameter results in the creation of a new net-
work descriptor file during each simulation, reflecting the
new initial states of all nodes. Each network descriptor file

Table 2: Truth table for node X

A B X
| | |
| 0 0
0 | 0
0 0 0

is subsequently saved in the 'logic’ folder (output formats
and directories discussed below) of the conducted experi-
ment for later review.

Simulation specification file

ChemChains is a feature-rich logic network simulation
software which offers users many advanced simulation
options. These options are specified by users in the simu-
lation specification file, the second of the required input
files, which is loaded into the program before each simu-
lation experiment. The following describes the various
options contained within this file:

a) Runtime

The runtime variable specifies the overall length of each
simulation, as well as the number of iterations (transient
time) before any analysis is conducted. The syntax for the
runtime environment is specified as

RunTime:TransientTime:TotalTime

For example, to conduct a simulation consisting of 200
iterations and 50 transient time units, the runtime is
declared as

RunTime:50:200

b) External Input nodes

ChemChains users have the ability to specify external
input nodes (or "external inputs") representing various
external biological factors (such as receptor ligands, stress,
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etc.). Note, that external input nodes are not the same as
the "input nodes" (or "inputs") discussed in the Boolean
networks section. In fact, external input nodes are external
to the network and part of the outside environment.
Although they are of a Boolean nature (i.e., can be either
0 or 1), external input nodes do not have any input nodes
of their own (and hence no truth table). In fact, their activ-
ity is set by the user (or randomly selected by Chem-
Chains as shown below). To provide users the ability to
interact with the logical model in a continuous manner,
the level of activity of each external input node can be set
to a percentage ON (specified by an integer 0-100).
Despite the fact that external input nodes are Boolean
nodes, for any given simulation, this is accomplished by
placing the external input nodes on a cycle that yields a
desired % ON (see the Using attractors to characterize node
activation section). For example, if a particular external
input is set at 33%, it is put on a cycle of 100100100100...
which is held constant for the duration of the experiment.
The sequence and order of the ON- and OFF- states is gen-
erated by ChemChains during each simulation. The cur-
rent implementation of ChemChains offers two ways to
distribute the ON/OFF state along this sequence: i) evenly
(i-e., from the example above, the input will be ON every
other iteration) and ii) with noise (the Noise variable is
explained in the following section) which allows for a
more realistic simulation of a biological process where
network inputs are almost always noisy. Users can select
time frames of simulations with different levels of activity.
For example, in a simulation consisting of 200 iterations,
a user may want to see how the network behaves when an
input is set to 10% ON during the first 50 iterations, 50%
during iterations 51 - 100, and 100% for the remaining
number of iterations. Note that the changes in the external
input activities occur in a stepwise manner (e.g., as soon
as the simulation reaches iteration 51, the activity of an
external input will change from 10% to 50%). The format
underlying the declaration of external inputs is as follows:

Input:name:initial/default value:random(R)/
fixed(F):noise(N)/fixed/(F):time to be introduced:dosage (in
percentage):duration of the dosage

Consider the above mentioned example of a 200-iteration
network simulation. To set a hypothetical external input
"In1" to be ON 10% (with no noise) for the first 50 itera-
tions, 50% ON during iterations 51 through 100, and
100% during iterations 101 - 200 (and with an initial
state set to "False"), the following line is added to the sim-
ulation specification file:

Input:Inl:False:F:F:1:10:49,51:50:49,101:100:99

To run ChemChains in an automated fashion and simu-
late a network under a wide variety of external environ-

http://www.biomedcentral.com/1752-0509/3/58

ments (by using the -n parameter to run n number of
consecutive simulations), users can also specify an activity
range for a given external input. During each simulation,
ChemChains will select a different percentage ON for the
external input. For example, to simulate a network with
In1 varying between 0 and 100%, In1 must be declared as
follows:

Input:Inl:False:R:F:1:0-100:199

¢) Noise

The noise variable allows the activity level of external
input nodes to randomly bounce around the defined
value within a specified range. For example, if the activity
level for an external input is set to 50% with a noise range
of 5, the actual activity level, at time t, will be 50%-+/-5. To
measure the current level of activity for each external
input, and ensure that it is within the desired range during
a simulation, ChemChains uses a "sliding window" (of
user pre-defined length) approach. Upon each iteration,
the algorithm randomly selects a new activity level value
within the given range. If the percentage within the win-
dow is below the new value, the external input will turn
ON. On the other hand, if the percentage is above the
activity level, the external input will be OFF in time t+1.

Although the sequence of 0's and 1's for a given external
input node will will yield 50% 1's, it will no longer be
periodic, instead it will appear chaotic, a more realistic
resemblance of biological stimuli. For example, a simula-
tion with the noise parameter set to 5 and a sliding win-
dow of length 50 is specified in the specification file as

Noise:50:5

d) SnapshotAnalysis

The SnapshotAnalysis parameter allows ChemChains to
capture the state of the network dynamics at a specified
iteration point during a simulation. The SnapshotAnalysis
parameter is specified as follows:

SnapshotAnalysis:period:point1, point2,..pointN

where the period defines the length (in number of itera-
tions) of the simulation segment to be analyzed, whereas
pointl, point2,...pointN represent at which iteration the
analysis will begin.

e) Mutation

The Mutation parameter enables users to turn ON/OFF
any node in the network to perform mutagenesis studies
(e.g.., gain-of-function, and/or loss-of-function). When a
node is "mutated", its corresponding truth table is ignored
by the simulation engine and the activity of the node
becomes immutable for the entire course of the simula-
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tion. For example, to simulate a loss-of-function of node
X, the user would declare the Mutation parameter as

Mutation:OFF:X

To make node X constitutively active, 'OFF' is replaced
with 'ON".

f) Delay Nodes

While ChemChains simulates networks synchronously by
default, it is possible to introduce an asynchronous factor
into the simulations by declaring a Delay and/or a Sustain
Node (see below for the definition of Sustain Nodes). A
Delay node receives a signal from a single network node
but will not respond to it for a specified number of itera-
tions. Delay nodes can be created in the simulation speci-
fication file in addition to the regular (of type "Bool")
network nodes declared in the network descriptor file. The
syntax to declare a Delay node is as follows:

Delay:name:initial value:input:iterations to wait

g) Sustain Nodes

Similarly to Delay nodes, Sustain nodes receive a signal
from a single parent node, but contrary to Delay nodes,
Sustain nodes remain in their current state for a user-spec-
ified number of iterations, regardless of the state of their
inputs. To declare a node as a sustain node in the specifi-
cation file, the users use the following syntax:

Sustain:name:initial value:input:duration (in iteration units)

h) Output Nodes

In addition to "Bool", "(External) Input", "Delay", and
"Sustain" nodes, users can create nodes of type "Output".
Output nodes mirror the activity of their input node and
are used for nodes that will be outputted during the visual
mode (discussed below). Output nodes are created in the
simulation specification file as follows:

Output:output name:initial value:input node name

Output formats

Once ChemChains is initiated, a main output directory
'CCoutput' is created outside of the ChemChains pro-
gram's directory, which subsequently stores all output
files generated by ChemChains. Currently, ChemChains
can be run in three modes, each producing different types
of output formats. The first mode is a file conversion
mode used to convert truth tables to a network descriptor
file, whereas the second modes is a single-simulation vis-
ual mode which allows users to visualize the activity of
any given output node during the course of a simulation.
The third mode is a calculation mode which enables users
to perform automated experiments involving tens of

http://www.biomedcentral.com/1752-0509/3/58

thousands of independent simulations with various levels
of network stimuli. All available modes are detailed
below.

File Conversion mode

As described above, to run ChemChains, a logical network
descriptor is required. While it can be created manually,
creating truth tables in a tabular form poses a more intui-
tive way of defining the activation mechanism for each
node. Once users create all truth tables describing their
network, the truth tables need to be converted to the
required network descriptor file. This conversion can be
accomplished by using the 'FileConverter' extension avail-
able in ChemChains. To use this extension, users can save
the truth tables in tab-delimited text files (one truth table
per file) and create a list of nodes contained in the net-
work. To initiate the conversion process, ChemChains
needs to be run with the -TT2ND' parameter. In addition,
a node list file (Table 3), an output file, as well as a direc-
tory path containing the set of truth tables must be speci-
fied via the '-iNodes', -0, and '-iTables' parameters,
respectively. Once the conversion is complete, the net-
work descriptor is saved in the previously specified output
text file.

Furthermore, FileConverter can be used to re-create the
truth table for each node from a given network descriptor
file. This is done by instantiating ChemChains using the '-
ND2TT' parameter, whereas the input file (network
descriptor file) is specified via the '-ilogic' parameter. The
corresponding truth tables are created in an output folder
defined by the user (by using the '-0' parameter).

Visual Mode
The visual mode allows users to visualize the dynamics
(i.e., the sequence of the ON/OFF states) of the output

Table 3: Sample node list file.

Node Name Node ID Initial State
Node | | |
Node 2 2
Node 3 3 |
Input | IN4
Input 2 IN5

The node list file is a tab-delimited text file is supplied to ChemChains
in order to convert a set of truth tables to a network descriptor file.
The first column contains the name of all network nodes (including
external external inputs). The second column provides the node ID.
Note that for external input nodes, the ID has to contain the 'IN'
prefix which helps the software to recognize external input nodes
from the remaining network nodes. The initial state column is where
the user can specify the initial state for each node (while external
input nodes are also included in this file, their initial states do not
need to be specified, as the sole purpose of this file is to mediate the
creation of network descriptor file which solely contains nodes of
type "Bool").
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nodes declared in the specification file (discussed above)
during the course of a single simulation. The output cre-
ated by ChemChains is a text file containing a table of
activity for each output node in terms of the OFF/ON
states (Figure 4), where '*'(star) represents the ON state,
whereas '.'(dot) represents the OFF state of a particular
output node. To run ChemChains in the visual mode, the
user needs to provide both input files (network descriptor
and simulation specification files), as well as an output
file using the '-vis' command-line parameter (Table 1).
The output file with stars and dots for each output node
will be created and saved in the ChemChains output
directory.

0: NodeA
1: NodeB
2: NodeC

000

000

i

1 [
D %®
B e

4*x*

¥ *
6%,
1%,
8%,
g%,
s S
i
12%

13 . .

14 *  *
k.
16% .
L%
18% .
19%
20%

Column
Column
Column

Figure 4

A sample output file created in the visual mode. A
sample network was iterated 20 times and the activity of
three output nodes (NodeA, NodeB, and NodeC) were cap-
tured.
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Calculation mode

Once ChemChains is started in the calculation mode, a
'stats' directory is created in the main ChemChains output
folder to house all of users' subsequent simulation exper-
iments. Output files of each experiment are stored in the
stats directory in a folder labeled by the user (see '-calc'
parameter in Table 1). The list of all output files created
during each experiment is summarized in Table 4.

To provide users with the ability to visualize and/or ana-
lyze the dynamics of the network of each simulation at the
ON/OFF state level of each node, ChemChains saves
strings of 1/0 bits for each simulation in text files stored in
the 'bits' directory. Each column in each file represents the
ONJ/OFF states for one node (including external inputs)
in the network, where '1' codes the ON state and '0' codes
the OFF, whereas the rows represent the state of that node
in time ¢t of a given simulation. Because detailed bit print-
ing of each simulation requires a significant amount of
simulation time, bit outputting can be suppressed by
using the '-noBits' parameter.

The most notable feature of ChemChains is the ability of
users to interact with their models in a continuous man-
ner. Similarly to the external input nodes, the activity of
each node is calculated and expressed as a percent ON (as
described in the Boolean networks and their dynamics sec-
tion). This allows users of ChemChains to observe activa-
tion patterns of all nodes in the network across thousands
of simulations with varying stimuli levels. The activity lev-
els of all nodes during each simulation can be found in a
tabular file (‘allNodes_avg.csv'). To provide users with
detailed experiment information, the 'nodesAvg' directory
contains separate files with activity levels (and the values
of external inputs that resulted in the node's activity) for
each node in the network. ChemChains also allows users
to capture "snap shots" of the network's dynamics in dif-
ferent time points of a single simulation. This feature can
be enabled in the simulation specification file as
described in the Simulation specification file section. The
snapshot activity information obtained about the net-
work is subsequently saved in the 'snapshotsAnalysis'
directory.

In addition, the calculation mode allows users to perform
various analyses after each simulation. These analyses are
implemented as separate extensions to the software, and
can be instantiated using various parameters when start-
ing new experiments. The current version of ChemChains
contains the 'Patterns’ extension used in our recent study
[14]. Description of this extention follows.

Patterns extension
ChemChains can be used to conduct experiments consist-
ing of thousands of simulations under various input con-
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Table 4: Summary of output files/directories created for each ChemChains experiment.

File/Directory Name

Description

allNodes_avg.mtb
input_dosages.csv
patternNodes_avg.csv
input_labels.csv
node_labels.csv
specs.txt

logic/

nodesAvg/
snapshotAnalysis/
patterns/

bits/

Tab-delimited text file with activation levels of all nodes across all simulations

Activity levels of all external inputs across all simulations

Activity levels of nodes specified for pattern analysis. (Created only during pattern analysis)
List of external input nodes

Names of all nodes in the network

Simulation specification file used for this experiment

Directory containing all logic files associated with this experiment

Directory containing activity level information for each node

Directory to hold node activity information obtained from multiple points in the course of a simulation
Output directory for the patterns extension

Output directory holding ON/OFF sequences for all nodes in the network

http://www.biomedcentral.com/1752-0509/3/58

ditions (including any number of mutations), generating
a large amount of data ready for systems analysis. The pat-
terns extension allows users to view the system's dynamics
in a more organized and intuitive manner by classifying
the activity levels of user-defined nodes into groups based
on a pre-defined activity level range, called patterns.

For example, consider a single-simulation experiment
which results in output node A being 70% ON, node B 2%
ON, and node C 23% ON. To create a pattern representing
the activity of these nodes as the outcome of the simula-
tion, the percentage ON of individual output nodes is
classified as one of three levels (note that these levels have
been chosen arbitrarily for this example, and can be
changed by the user as described later in this section): i)
"Low" if the node percent ON is between 0% and 10%, ii)
"Medium" for nodes that are ON 11-30%, or iii) "High"
nodes with activity between 31% and 100%. Each level is
subsequently coded as '0' (low), '1' (medium), and '2'
(high). Therefore, the pattern for output nodes A, B, and
Cis 201"

When performing ChemChains experiments consisting of
multiple simulation, each simulation will be assigned to a
pattern based on the outcome of individual output nodes,
as explained above. Simulations assigned the same pat-
terns will form groups represented by the pattern. Each
pattern is then associated with an average input vector and
average output vector (Figure 5B). Figure 5 illustrates how
the output of the Patterns extension is created using par-
tial data generated from a ChemChains experiment on a
large-scale model used in our recent paper [14]. The exter-
nal input nodes of the large-scale model used include
Extracellular Matrix (ECM), Epidermal Growth Factor
(EGF), External Calcium Pump (ExtPump), four G-Pro-
tein Coupled Receptor ligands (aq, as, ai, and «1213),
IL1/TNF, and extracellular stress, whereas the output
nodes of interest are Akt, Erk, Cdc42, and Rac. The subse-
quent experiment consisted of 10,000 simulations with

randomly generated combinations of external input node
dosages during which the activity (percentage ON) of the
four aforementioned output nodes was measured. See Fig-
ure 5 caption for more details demonstrating how the
multiple simulation output is created.

Because the ranges defining each activity level (e.g., low,
medium, high), as well as the number of levels used in the
example are arbitrary, users can define these properties
according to their needs in the 'inFiles/exts/Patterns/set-
tings.txt' text file. The patterns output nodes are defined
(one node per line) in the 'inFiles/exts/Patterns/pattern-
sOutNodes.txt' file. These patterns consist of the defined
output nodes, whose activity reaches levels within a user-
specified range over multiple simulations, as well as the
input sets that result in these levels, allowing users to
assess global-input vs. global-output relationships. The
summary results (average patterns) from the pattern anal-
ysis extension are saved by ChemChains in a tab-delim-
ited output file, while the detailed data (i.e., simulations
with the activity levels of each output and input node, that
belong to each pattern) are stored in a spreadsheet file cre-
ated in a folder named after the pattern, in the 'patterns'
folder for later revisions of the experiment data.

Results and discussion

Modeling of biological processes has become an impor-
tant component of biomedical research that provides
additional tools to study and understand the underlying
mechanisms of these processes. The biological modeling
community has made significant progress in developing a
number of sophisticated mathematical tools and methods
that provide the ability to create models and view their
dynamics. However, with the increasing sophistication of
the mathematics underlying the representation and simu-
lation of various biological systems, only investigators
who are trained modelers can use and develop such sys-
tems; it essentially becomes impossible for laboratory sci-
entists to create and use sophisticated models directly.
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A Ternary Pattern: 1000 2000 1011
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An example of pattern creation. Panel B is a summary table of the output data generated by the Patterns extension. The
leftmost part of this table contains patterns generated throughout the experiment, whereas the "Count" column represents
the number of simulations whose output nodes resulted in the particular pattern, as described in the main text (for easier
exemplification, only patterns that occurred more than 100 times are listed in the table). The next two sections of this table
contain the average input and average output vectors, respectively. Panel A illustrates the process of creating average input
vectors of the top three patterns; that is, for each pattern, the average of external-input dosages of all simulations that were
assigned to the particular pattern is calculated. Similarly, the average output vectors are calculated by averaging the output
node activity levels across simulations that led to a given pattern. As shown in Panel C, the top three average output vectors
(and patterns) were calculated from 2,346, 1,488, and 952 simulations, respectively.

Due to the complex mathematics and the immense
number of parameters required, the practical use of con-
tinuous models and simulation tools as a daily part of lab-
oratory research is difficult. Although other approaches
based on less mathematical concepts such as Petri Nets
(which uses a weighted firing approach) have been used
for modeling of biological processes [21,22], Boolean
modeling combines the mathematical simplicity of those
methods with a more intuitive way of interpreting the
subsequent models. On the other hand, the inherent dis-

crete nature of logical models does not square with the
fact that laboratory experiments are performed in terms of
continuous data (e.g., specifying levels of ligands, pro-
teins activity, etc.). This creates an interpretation barrier
between the data output of discrete tools and the experi-
ments laboratory biologists conduct. In other words, it
would be best for biologists if their in silico experiments
produced richer data than 0's and 1's. To address this
issue, ChemChains allows users to interact with their
Boolean models in a continuous fashion, while preserving
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all advantages of logical modeling. Users have the ability
to specify the activity of their external input nodes (repre-
senting various network stimuli) as a percentage ON. Sim-
ilarly, the activity levels of all (or user-selected) nodes are
expressed as percent ON. As discussed in the Implementa-
tion section, the "percent ON" is a way to represent an
attractor in Boolean models, and the biological meaning
of the percent ON measure is dependent on the nature of
the nodes and the overall model. For example, it might
correspond to the level (or probability) of phenotype
manifestation such as differentiation into a particular cell
type or, as in our signal transduction model from our
recent study [14], percent ON could correspond to the
ability of a signaling molecule (e.g., protein) to transmit a
signal received from another signaling molecule to a
downstream effector molecule. Depending on the nature
of the signaling molecule, that ability might be expressed
in terms of protein activity, expression, concentration, etc.
The advantage of the percent ON measure used in Chem-
Chains is that it provides a semi-quantitative way to meas-
ure the levels of the nodes' activity and/or the direction of
a change in these levels due to perturbations, something
that laboratory scientists deal with on daily basis and
hence can find intuitive and relatively easy to use.

In addition to the above mentioned functionality that
makes in silico simulations of Boolean models more acces-
sible to laboratory scientists, ChemChains also offers
powerful analysis that can be performed by running auto-
mated experiments in which users can simulate their
models under tens of thousands of randomly generated
external conditions. The available Patterns extension cate-
gorizes each simulation and a specified group of output
nodes into discrete groups, representing global responses
(patterns) based on their activity level. Each pattern is
then represented by an average output vector and an asso-
ciated average (external) input vector, which provides a
quick way for biologists to learn how their model
responds to certain a set of stimuli and how these stimuli
map to a specific response; an important feature to aid the
understanding of how complex biological structures func-
tion and improve the development (and efficiency) of
treatments for diseases associated with these systems [23].
Furthermore, investigators can use the software output to
easily verify how well the activity levels of specified nodes
fit the available empirical laboratory data (e.g., the effects
of receptor activation on the activity of a protein in a dif-
ferent area of the network). This presents to biologists a
novel tool to obtain insight about unavailable regulatory
information, which can be confirmed or rejected by a con-
trolled experiment in the laboratory.

Table 5 shows output produced by the Patterns extension
after a sample simulation experiment performed on a
Boolean model representing a signal transduction net-

http://www.biomedcentral.com/1752-0509/3/58

work in a generic fibroblast cell. The sample experiment
consisted of 1,000 simulation with randomly selected
dosage values for external inputs. The simulated model
was introduced in our recent publication [14], and con-
sists of three main pathways; the Tyrosine Receptor
Kinase, Integrin, and G-protein Coupled Receptor path-
ways (and comprises of about 135 nodes and 800 connec-
tions). The external input nodes (that make up the average
input vector) in Table 5 represent ligands associated with
these pathways, while the output nodes (nodes of inter-
est) make up the average output vector, providing biolo-
gists with the aforementioned important input-output
mapping information. An example of a real biological
application of ChemChains and the Patterns extention is
our recent study in which the use of these tools in the
combination with the above mentioned large-scale
Boolean model of biochemical signal transduction net-
work revealed important information about the role of
signal transduction networks as information processing
and decision-making machinery of the cell [14].

Another ChemChains function of great use for many lab-
oratory scientists is the ability to perform in silico muta-
tional studies. ChemChains offers the ability to select
nodes that will simulate the loss-of-function or gain-of-
function scenarios (which can be specified in the simula-
tion specification file provided to ChemChains prior to
new simulations). As an example of how ChemChains, in
combination with the Patterns extension, can be used for
the above mentioned mutation studies is illustrated on
the signal transduction model (mentioned above) in
Table 6. In this example, Ras (a protein often responsible
for some types of cancer) was "mutated" to stay ON,
which resulted in a significant activity increase of Erk (a
cell growth regulatory component, [24,25]) as well as the
anti-apoptosis Akt, a possible indication of uncontrolled
cell growth. This corresponds to a cancerous cell, whose
signaling has been altered. This type of input-output map-
ping allows biologists to predict the behavior of the
model in response to its stimuli.

As illustrated by the above examples, ChemChains and its
Patterns extension provide biologists with a set of tools
that allow predictive model simulations based on the
nature of the responses produced as a result of given stim-
uli (including internal pathological-related conditions
such as a cancerous protein mutations). In addition, this
software forms a solid platform for laboratory biologists
to bring Systems Biology to their laboratory by being able
to perform simulations and analysis of model of biologi-
cal structures directly and independently of mathemati-
cians and modelers.

ChemChains is under constant development to expand its

functionality and increase its user-friendliness. The fol-
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Table 5: Sample output generated by the Patterns extension.

Average Inputs Average Outputs
Global Count ECM EGF ExtPump alpha_q alpha_i alpha_s alpha_12_13 ILI_TNF Stress Akt Erk Cdc42 Rac
Output Ligand Ligand Ligand Ligand
1000 218 23 26 55 51 50 45 55 2 2 20 3 | |
2000 157 23 67 38 45 47 51 50 | 2 43 4 2 |
2100 96 29 78 40 50 44 44 54 4 2 48 14 3 2
2110 96 60 76 48 48 55 53 48 2 2 47 15 17 6
1011 77 73 21 55 46 60 50 53 2 2 20 5 18 15
2111 62 85 68 34 54 53 49 58 2 2 43 16 21 13
2010 46 54 65 54 47 50 52 45 | 2 40 5 15 5
1010 4] 49 30 66 43 48 52 46 2 2 20 4 15 6
2121 37 88 70 54 54 58 48 41 2 | 41 17 38 14
1021 35 88 26 77 47 55 57 33 2 2 19 5 36 21
201 | 29 84 50 40 54 53 63 54 | 2 35 6 19 15
1001 16 69 18 40 59 25 50 54 2 | 18 4 5 12
0000 13 45 10 49 47 4 54 54 2 2 6 3 0 5
1121 12 83 40 60 46 41 48 31 2 2 24 12 40 17
2120 10 69 82 71 46 57 55 37 2 | 49 16 34 6
(NN 8 82 30 29 60 41 53 38 3 2 25 10 18 16
1022 7 97 7 85 48 64 18 39 2 2 13 4 40 33
2021 6 87 62 56 62 57 53 51 | 3 38 6 33 14
1110 5 55 56 72 58 51 55 38 4 2 26 12 16 6
1020 5 62 46 87 51 24 43 18 2 | 20 5 32 8
1100 4 29 54 68 46 29 44 44 4 2 22 Il 2 2
2200 4 38 95 74 46 36 36 54 4 3 67 34 4 3
2210 3 67 95 72 45 41 20 52 4 2 62 31 23 5
0001 3 79 10 87 64 9 65 73 3 0 8 4 5 15
0011 3 78 14 92 49 22 74 67 0 3 8 0 18 18
2221 2 92 91 54 Il 49 12 54 4 | 58 30 38 12
2020 2 70 89 98 54 34 3 46 0 3 65 3 46 6
2220 | 71 99 77 67 63 27 16 5 5 55 33 33 8
1101 | 89 40 18 31 | 68 22 5 5 27 12 7 14
2101 | 93 79 66 75 0 77 97 4 | 53 22 7 12

In this particular experiment, ECM, EGF, ExtPump, alpha_g, alpha_i, and alpha_I12_13 ligands were set to vary between 0—100% ON, while ILI_TNF and Stress varied between 0 and 5% ON. The
first and second columns summarize all global outputs (or patterns) and their frequency produced by the model in response to the various external stimuli. Columns labeled as Average Inputs
represent all external inputs and their average % ON value for a given global output. Similarly, Average Outputs contain output nodes and their average % ON for a given pattern. In this example
the patterns are in ternary: 0-9% ON = 0, 10-29% ON = I, and 30-100% ON = 2. These ranges were determined to be the most useful in previous experiments [14], but any ranges (or
discretization) can be used. Focusing on the first row, it can be seen that there were 218 of the 1000 simulations where output pattern was '1000', i.e., Akt output was in the 10-29% range, Erk
was in the 0-9% range, etc. Of those 218 simulations, the average output values of Akt was 20, the average Erk value was 3, etc. The average external-input values that elicited the '1000' response
is given in each of the Inputs columns, e.g., the average external-input value that resulted in the '1000' response was ECM = 23% ON, EGF = 26% ON, etc. These experiments were carried out
under non-stress conditions, thus ILI_TNF and Stress external inputs varied only from 0 to 5% ON.
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g Table 6: Sample experiment output with constitutively active Ras.

% Average Inputs Average Outputs

g Global Count ECM EGF ExtPump alpha_q alpha_i alpha_s alpha_12_13 ILI_TNF Stress Akt Erk Cdc42 Rac

= Output Ligand Ligand Ligand Ligand

S

Q

o 2200 229 39 62 37 51 50 49 51 2 2 49 79 4 3

g 2211 172 83 46 42 46 48 45 52 2 2 42 75 18 15

& 2210 153 55 69 53 51 52 51 49 2 2 48 82 I5 5

é 1000 142 19 23 64 51 46 47 45 2 2 19 3 | |

< 2000 75 I 62 44 54 54 50 56 | 2 42 3 0 0

-_g 1211 45 87 24 71 48 46 53 54 2 2 23 63 16 19

: 2100 32 13 78 6l 49 51 48 51 3 2 49 15 | 0

% 2201 28 83 46 22 46 56 51 57 2 2 46 76 6 14

= 1200 25 41 27 77 48 50 43 47 2 2 22 6l 5 4

& 1201 21 75 9 65 57 48 46 47 2 2 21 58 5 17

< 1210 16 54 37 83 48 6l 38 50 2 2 23 64 14 6
2221 13 89 68 57 43 35 53 49 2 | 46 79 32 15
1001 6 58 I 49 43 26 52 53 | 3 16 | 5 I
2220 5 79 92 86 39 82 33 45 3 2 57 88 32 8
1100 5 32 12 46 45 65 44 57 2 2 22 18 6 4
1011 4 66 13 71 24 33 60 45 2 2 14 2 19 14
1010 4 50 14 88 63 66 46 62 | 2 15 | 16 7
2110 3 36 35 29 31 64 55 55 3 | 34 18 I 5
1212 2 95 4 50 40 65 68 91 2 | 23 56 12 31
1110 2 60 39 84 71 6l 26 8l 5 3 23 19 19 8
00l 2 67 | 91 54 5 46 74 2 4 8 2 10 17
1202 2 90 5 6l 68 53 41 51 2 4 19 57 9 30
111 2 67 16 100 55 89 80 20 2 3 13 16 24 15
0001 [ 71 0 64 68 4 97 69 5 | 8 5 6 17
0100 | 47 16 100 31 13 | 85 3 5 9 15 4 6
0201 | 92 3 100 73 92 85 82 2 5 5 53 6 29
2212 [ 99 I5 47 59 24 32 17 4 0 34 64 23 30
0010 [ 29 20 98 73 7 71 63 | 5 7 | I 3
1002 | 98 3 58 43 5 59 70 5 3 13 5 9 33
1221 [ 100 38 87 95 40 79 51 0 | 23 69 33 26
1021 [ 8l 23 88 73 10 78 22 | 0 15 | 34 21
0212 | 100 9 99 62 54 19 3 5 | 9 57 17 34
21011 | 50 14 24 41 90 22 32 3 0 31 27 18 10
0202 [ 100 4 90 41 49 39 48 5 5 9 55 2 33
0211 | 75 9 96 80 91 95 21 | 3 8 57 I 17

(page number not for citation purposes)

Similarly to Table 5, results summarized in this table were generated during an experiment consisting of 1,000 simulation with the same paremeters (e.g., all dosages were selected randomly in a
stress limited environment, discretization, etc.). Contrary to the simulation from Table 5 however, in this example, cells were simulated with constitutively active Ras. Results of this experiment
show a marked increase in Erk activity (as has been suggested by laboratory research, [24,25]), simulating a growth-factor independent activation of Erk. This phenomena can be easily seen either
in the Global Output and Count columns where 229 of the 1,000 simulations produced the "2200' pattern (global output) and over 500 simulations resulted in "22XX' or the Average Output
column which shows that the majority of external-input combinations resulted in Erk average activity of 75-82%.
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lowing are examples of areas of ChemChains develop-
ment our group is addressing or planning to address in the
near future. Although the software offers rich functional-
ity while keeping the number of command-line parame-
ters to run the tool low, a graphical user interface would
make ChemChains more intuitive and user-friendly. Our
group is currently implementing a graphical user interface
that will allow laboratory scientists to build logical net-
works, as well as perform simulation and analysis that will
provide users with the means to display their results in a
more exible and intuitive way than is currently available.
For example, users will be able to control the dosage levels
of external inputs via slider controls and observe the activ-
ity of output nodes in real time.

Additionally, as new models and simulation tools are cre-
ated and implemented, respectively, the need for a stand-
ard way of sharing model information between various
research groups and their simulation tools became appar-
ent. To address this need, M. Hucka et. al. [26] have devel-
oped the Systems Biology Markup Language (SBML), a
standard describing network models. SBML has been
adapted by a large number of simulation tools, allowing
users to share their models. Because SBML currently sup-
ports mostly continuous modeling techniques, Chem-
Chains is currently not SBML-compatible. However, the
SBML developers are currently working on the integration
of logical models into the standard for the upcoming ver-
sion of SBML, therefore the next version of ChemChains
is anticipated to include a support for SBML.

Furthermore, to ensure that scientists can use Chem-
Chains for extensive simulations of large-scale models,
the software will require the support of multi-core/proces-
sor computers. Thus our group is planning on optimizing
ChemChains to take advantage of not only multi-core
processor computers, but also more powerful supercom-
puters. This will decrease the amount of time needed to
run ChemChains simulations and analysis.

Conclusion

As systems biology and the development of mathematical
models progress and these models become more com-
plex, their use requires more advanced mathematical
knowledge. For laboratory biologists to take advantage of
the systems biology paradigm as a compliment to their
laboratory experiments, simulation tools that will allow
them to perform in silico simulation experiments in a
mathematically friendly fashion is a must. Our group has
developed ChemChains, a simulation and analysis plat-
form to allow laboratory scientists to visualize the dynam-
ics of biological processes using non-mathematical,
parameter-free logical models. In addition, ChemChains
allows laboratory scientists to interact with mathematical
models in a way which resembles laboratory experiments,

http://www.biomedcentral.com/1752-0509/3/58

and provides the investigators with new tools to see the
big picture in the realm of biological processes. The soft-
ware allows biologists to perform simulations of their
model under thousands of varying stimuli and learn how
the models respond to different combinations of condi-
tions, an important step to understanding how many
complex biological processes, such as signal transduction,
function.

Availability and requirements

ChemChains has been tested on a Windows and Linux
platforms. To run ChemChains on a Windows-based
computer, a *nix environment needs to be installed (such
as Cygwin [27]) ChemChains software along with a
detailed tutorial on how to use the tool are available on-
line [28].
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