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Abstract: Themajority of hot subdwarfs lie on or close to the heliummain-sequence. Many have hydrogen-rich surfaces,
but a substantial fraction of the hotter subdwarfs have hydrogen-depleted or hydrogen-deficient surfaces. Amongst the
former, three were known to show extraordinary overabundances of heavy elements including zirconium and lead.
Using Subaru/HDS, we commenced a high-resolution survey of hydrogen-depleted subdwarfs to discover newmembers
of the class. UVO 0825+15, was found to exhibit strong lead lines, to be an intrinsic variable in K2 field 5, and to have
a relatively high space motion. Two other lead-rich subdwarfs have been found in the Subaru sample. A much wider
survey is in progress using SALT/HRS. Discoveries so far include one extreme helium star similar to V652 Her, and an
intermediate helium star with possible comparison to HD144941. Analyses of the hotter and more compact members of
the sample are continuing.

Keywords: stars: chemically peculiar, stars: subdwarfs

1 Introduction

Whilst the majority of hot subdwarfs are hydrogen-rich, to
the extent that helium is strongly suppressed in their spec-
tra, a sizable fraction (some 10%) show helium enrich-
ments from near equity with hydrogen up to cases where
hydrogen lines are hard to identify. The diversity of sur-
face chemistry represented by the helium-rich hot subd-
warfs is partially apparent in the number of spectral types
identified by Drilling et al. (2013). The same authors also
noted that low-resolution systems could not distinguish
between certain classes of helium-rich hot subdwarf and
extreme helium stars. Hence there is a substantial prob-
ability that unidentified extreme helium stars could be
found amongst existing spectroscopic surveys. At higher
resolution, the extent of very exotic chemistries was recog-
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nised by Naslim et al. (2011, 2013) with the discovery of ex-
tremely zirconium-rich and lead-rich subdwarfs. A possi-
ble hypothesis is that radiative levitation concentrates se-
lected species at precise levels in the stellar photosphere;
when these levels coincide with the line-forming layers,
extreme overabundances are observed. Whilst much work
on a theoretical framework for this hypothesis remains to
be done, the extreme rarity of stars with exotic chemistries
has demanded a search for additional specimens. This
poster describes recent progress on a surveyusing the Sub-
aru High-Dispersion Spectrograph (HDS) and the South-
ern African Large Telescope (SALT) High-Resolution Spec-
trograph (HRS). The principal aims are to identify ex-
treme helium stars, exotic chemistry subdwarfs, and also
to obtain more detailed surface chemistries for the other
helium-rich subdwarfs and hence to test hypotheses for
their origins.

2 Observations

Subaru/HDS

Subaru/HDS observations of five northern intermediate
He-sdBs identified from the Németh et al. (2012) survey
were obtained in service mode on 2015 June 3. Two échelle
spectra of each star were reduced to one dimension, blaze

https://doi.org/10.1515/astro-2017-0439
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Figure 1. Subaru/HDS atlas of helium-rich hot subdwarfs binned to show major hydrogen and helium lines. Straight lines cover gaps due to
CCD defects and the gap between the two CCDs.

corrected, resampled and combined to a single spectrum
(Figure 1).

SALT/HRS

During 2016/17, SALT/HRS observations were obtained
for some 40 southern helium-rich subdwarfs identified
from low-resolution surveys, including GALEX (Németh
et al. 2012) and Edinburgh-Cape (Stobie et al. 1997). The
échelle spectra were reduced to one dimension (Crawford
2015), blaze corrected, resampled and stitched. Hydrogen
is clearly present in seven of the 40 spectra, shown in the
bottom part of Figure 2. One (J19188–3104) is a bona fide
He-poor sdB star. Six are likely intermediate helium sdB
and sdOB stars The remaining 33 stars (Figures 2,3) have
helium-dominated spectra; comparison of the Balmer and
Pickering lines provides clear evidence of a low hydrogen
abundance. Their spectra range from those dominated by
neutral helium to a few in which only ionized helium is
visible.

3 Methods

The principal object is to measure the surface properties
of each star, including effective temperature Teff, surface
gravity g, and the abundances of hydrogen, helium and
other elements. This is done by fitting the merged spec-
trum in a three-dimensional grid of model spectra cover-
ing Teff, g and He/H ratio. Theoretical stellar atmospheres
and emergent spectra are computed with the package lte-
codes (Jeffery 2003; Winter 2006), which includes sterne
(Behara and Jeffery 2006), spectrum (Jeffery et al. 2001),
lte_lines (Jeffery 1991) and sfit (Jeffery et al. 2001). These
assume that the atmosphere is semi-infinite, plane par-
allel, and in radiative, hydrostatic, and local thermody-
namic equilibrium. Grids are custom built for a variety
of chemistries; the choice is important because the dis-
tribution of elements heavier than helium strongly influ-
ences the atmosphere structure, especially at low hydro-
gen abundances. Where necessary, the choice of model
grid is iterated with the chemistry determined from the
next step. Once Teff, g, He/H and an approximate metal
distribution are established (and then fixed), a finalmodel
atmosphere is computed. The high-resolution spectrum is
renormalized to a spectrum computed from this model so
that only weak lines contribute to the subsequent fit. El-
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Figure 2. Blue SALT/HRS atlas of hot subdwarfs binned to show major hydrogen and helium lines. Seven stars at the bottom of the panel
show significant hydrogen. Above the break, all stars are helium-rich, and have been arranged approximately in order of increasing
Heii/Hei (upwards). The rest wavelengths of principal hydrogen, helium and carbon lines are indicated. The spectra have not been cor-
rected for velocity shifts. All wavelengths are in air.
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Figure 3. As Figure 2 continued. All stars in this panel are helium-rich and have been arranged approximately in order of increasing Heii/Hei
(upwards).



206 | C. S. Jeffery et al., Spectroscopy of peculiar hot subdwarfs

emental abundances are obtained by minimizing the dif-
ference (χ2) between a theoretical spectrum from the fixed
model and the observed spectrum. Line-by-line analyses
have been carried out in a few cases and found to agree,
within errors, with the χ2 analysis (Jeffery et al. 2017).

4 Results

UVO0825+15.

UVO0825+15 was found to be both highly variable in light
(K2 Campaign 5) and also to show strong lead lines and
a high radial velocity (Subaru/HDS). The light curve has
proven difficult to interpret, with peaks in the power spec-
trum being variable in both amplitude and frequency and
at frequencies low enough to correspond to g-modes in a
star that is too hot even for p-modes to be excited. The at-
mosphere is super-rich in lead, germaniumand strontium.
A detailed analysis is given by Jeffery et al. (2017)

Figure 4. Surface properties of super metal-rich hot subdwarfs,
including the pulsating stars LS IV−14∘116 and UVO 0825+15, the
iron-group CP stars UVO0512–08 and PG0909+276 (Wild & Jeffery:
sdOB8), and the new lead-rich discoveries.

PG 1559+048 and FBS 1749+373.

Analysis of the remaining four Subaru/HDS stars is in
progress (Naslim at el. in prep). Provisional Teff, g and
surface abundances are shown in Figures 3 and 4. Both
PG 1559+048 and FBS 1749+373 show lead lines, with
abundances ≈ 3.5 dex above solar. Yttrium is detected
in PG 1559+048, with marginal evidence for germanium.
These lead-rich stars have helium abundances of 0.21 and
0.36 (number fraction) respectively.

Figure 5. Surface abundances of super metal-rich hot subdwarfs,
including the pulsating stars LS IV−14∘116 and UVO 0825+15, the
iron-group CP stars UVO0512–08 and PG0909+276 (Wild and
Jeffery 2017), and the new lead-rich discoveries. Abundances are
shown relative to solar values (dotted line). Mean abundances and
ranges for normal subdwarfs are also shown. The latter are shown
by connected open circles as (i) Z ≤ 26 (solid lines): the average
abundances for cool and warm sdBs (Geier 2013) and (ii) Z ≥ 27
(broken lines): the range of abundances measured for five normal
sdBs from UV spectroscopy (O’Toole and Heber 2006). Adapted
from Jeffery et al. (2017)

J18455−4138.

Originally classified as a helium-rich subdwarf,
J18455−4138 (=GALEX J184559.8–413827) was observed
with SALT/HRS. The raw data indicated a prominent
spectrum of strong sharp lines which, after reduction,
were shown to be mostly due to singly-ionized nitrogen.
The Balmer lines are negligible, and He ii 4686 is much
weaker than in other He-rich subdwarfs (Figure 2). Bear-
ing a strong similarity to V652Her, a fine analysis demon-
strated that J18455−4138is not a hot subdwarf but, rather,
a relatively high-gravity extreme helium star with Teff=
26170 ± 750K, log g/cm−2 = 4.22 ± 0.10 and a sur-
face characterized by CNO-processed helium with a 1%
contamination from hydrogen (Jeffery 2017). Whilst the
formation of such N-rich low-luminosity extreme helium
stars has been strongly associated with the product of a
double heliumwhite dwarfmerger (Saio and Jeffery 2000),
other models are possible (Figure 6).

J19376−4303.

The raw SALT/HRS spectrum of J19376−4303 (=GALEX
J193736.4–430300) appears similar to that of J18455−4138,
prompting an equally urgent analysis. The reduced spec-
trum reveals much stronger Balmer lines, indicating hy-
drogen and helium abundances of 76% and 33% respec-
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tively. With Teff≈ 26 770 K and log g/cm−2 ≈ 4.24 ± 0.10,
J19376−4303 lies close to the main sequence, with only
moderate helium enhancement and relatively normal CNO
abundances, these provisional results await analysis of
higher S/N data and careful evaluation.

Figure 6. Surface properties of J18455−4138 and J19376−4303,
compared with extreme helium stars and related objects. The
positions of the Eddington limit (Thomson scattering: dashed),
luminosity-to-mass contours (solar units: dotted) and lower bound-
aries for pulsation instability (metallicities Z =0.004, 0.01, 0.03:
dot-dashed) (Jeffery and Saio 1999) are also shown. Post-merger
evolution tracks for models of He+He white dwarf mergers (Zhang
and Jeffery 2012, 0.30+0.25 and 0.30+0.30M⊙) are shown in ma-
roon. Part of the post-flash track of a 0.46921 M⊙ ’late hot flasher’
(metallicity Z = 0.01) is shown in orange (Miller Bertolami et al.
2008).

5 Challenges

It is too early for this report to reach conclusions, but ma-
jor challenges are easily apparent.
– One is presented by the very sharp lines observed in all
of the zirconium/lead-rich subdwarfs, implying very low
projected rotation velocities (typically < 5 km·s−1). Con-
traction following common-envelope ejection or a white-
dwarf merger would imply at least some residual rota-
tion, though efficient angular momentum loss processes
are known.
– A second is the absence of zirconium/lead-rich subd-
warfs in binary systems. Is this because they are all merg-
ers, or because any companion capable of ejecting the en-
velope has a very low mass?
– A third challenge is the nature of the pulsations in

UVO0825+15 and LS IV−14∘116. Too hot for either p- or
g-mode non-radial pulsations, could they be r-modes, or
something else?
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