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The complexity of biochemical intracellular signal transduction net-
works has led to speculation that the high degree of interconnectivity
that exists in these networks transforms them into an information
processing network. To test this hypothesis directly, a large scale
model was created with the logical mechanism of each node de-
scribed completely to allow simulation and dynamical analysis. Ex-
posing the network to tens of thousands of random combinations of
inputs and analyzing the combined dynamics of multiple outputs
revealed a robust system capable of clustering widely varying input
combinations into equivalence classes of biologically relevant cellular
responses. This capability was nontrivial in that the network per-
formed sharp, nonfuzzy classifications even in the face of added
noise, a hallmark of real-world decision-making.

information processing � systems biology

Intracellular signal transduction is the process by which chemical
signals from outside the cell are passed through the cytoplasm to

cellular systems, such as the nucleus or cytoskeleton, where appro-
priate responses to those signals are generated. Unlike classical
biochemical pathways (such as those involved in various metabolic
activities) that are generally well understood and characterized by
a degree of understandability and efficiency that can be described
as elegant, signal transduction pathways are noted for their non-
linear, highly interconnected nature. Stimulation of a given cell
surface receptor can induce the activation of a network of tens or
even hundreds of cytoplasmic proteins; these networks are not
necessarily receptor-specific because different receptors, even those
associated with highly differing cellular functions, often activate
common sets of proteins (1–3). How differential responses are
generated by these networks is not obvious nor is the reason cells
evolved such a complicated mechanism for transducing signals.
Thus, a full understanding of the mechanism of intracellular signal
transduction remains a major challenge in cellular biology.

Similarities in the structure of signal transduction networks to
parallel distributed processing networks have led to speculation that
signal transduction may involve more than simple passing along of
signals. One hypothesis is that signal transduction pathways func-
tion as an information-processing system that confers nontrivial
decision-making ability (4–8). The number and variety of surface
receptors indicates that cells, either as single cells or as part of
multicellular organisms, likely encounter a large amount of infor-
mation from their environments. Thus, surface receptors function
as cellular sensory systems that bring in information that must be
centralized and integrated and the proper cellular response de-
cided. Decision-making in real-world cellular environments (which
are often chaotic, noisy, or contradictory) is unlikely to be relatively
trivial (e.g., linear feedback) but, rather, a higher-order, nontrivial
decision-making function analogous to neural networks. The ability
of individual cells to process information and make nontrivial
decisions would have an obvious advantage in terms of adaptation
but might also characterize a fundamental difference between living
and nonliving systems (9, 10).

Testing the hypothesis of signal transduction networks as non-
trivial decision-making systems requires a systems biology approach

because it is likely that the decision-making function is an emergent
property of the entire system working in concert (11–13). Numer-
ous studies have been performed on the static connectivity maps of
signal transduction networks to compare them to other naturally
occurring large-scale networks (14). The next major step to extend
these results (and a crucial requirement to test explicitly for
emergent functions multifamily signal transduction networks) is to
study the actual dynamics of a large-scale system (15). To simulate
and observe the dynamics of a system, each node’s logic (or
‘‘instruction set’’) for activation must be determined based on the
activation states of all of its regulatory inputs; i.e., the complete logic
of each node in the system must be taken into account. In this study,
we have created a large-scale model of signal transduction consist-
ing of three major receptor families; receptor tyrosine kinases
(RTKs), G protein-coupled receptors (GPCR), and Integrins.
Using logical instruction sets for each node derived from mecha-
nistic data in the biochemical literature, we show that this signal
transduction network is able to perform nontrivial pattern recog-
nition, a high-level activity associated with decision-making in
machine learning. Nontrivial pattern recognition involves decision-
making based on input information that is not necessarily clean or
clear-cut; i.e., decision-making in real-world environments. In ad-
dition to the ability to classify clearly even relatively indistinct
inputs, we show this pattern recognition function is robust in that
it is able to perform even under high noise conditions. Together,
these results are strong evidence that intracellular signal transduc-
tion networks have emergent functions that are characteristic of a
nontrivial decision-making system.

Results and Discussion
Because of the highly organized nature of the cytoplasm, the size
and shape of the kinetic curves representing the in vitro interaction
of two signal transduction elements may not represent the true
interaction of those elements in the cell. Because of this, continu-
ous, differential equation-based models are difficult to parameter-
ize realistically. This is an important limitation because the dynam-
ics of a continuous model depend highly on the parameter values
used. In cases where the function of the system being modeled is
known, it is sometimes possible to reverse-engineer the parameters
necessary for a continuous model (16–18). In the present study, the
emergent functions of the network are only hypothesized, therefore
making the reverse-engineering of parameters impossible.

To avoid the problem of parameterizing a quantitative model, a
discrete Boolean model of signal transduction was created (19, 20).
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Because Boolean logic is qualitative in nature (21), there is no need
to consider the parameters associated with the individual protein
interactions (e.g., initial concentration, pH, etc.). The qualitative
logic of cytoplasmic protein interactions is generally straightfor-
ward to derive from the biochemical literature, where results are
usually expressed in qualitative terms (e.g., protein x activates
protein y, protein z deactivates y, etc.). Beginning with the classical
epidermal growth factor receptor (EGFR) to extracellular signal-
regulated kinase (Erk) pathway, all upstream interactions for each
member of the pathway were determined by extensive search of the
literature, and a logic table (representing an instruction set) was
created for each protein node. For each node, the logic table, the
literature cited, and an explanation of how the logic was determined
can be viewed in an online database, which can be found at
http://mathbio.unomaha.edu/Database, and further details on the
modeling can be found in Materials and Methods as well as sup-
porting information (SI) Text. It should be noted that no automated
methods were used in the creation of the database, rather, all papers
(nearly 800) were read and all pertinent information added to the
database by hand. The extent of the connectivity of the network can
be seen in Fig. 1.

To test the model’s ability to replicate known qualitative behav-
iors of the actual biological network, tests were first conducted to
find the optimal input settings to do controlled experiments. This
is directly analogous to optimization experiments in actual labora-
tory studies (e.g., determining the optimal medium and plating
conditions of a cell before performing a growth factor titration).
Thus, a sample of 10,000 random inputs was applied to the network
and the behavior of individual outputs was correlated with selected
inputs as shown in SI Text. Based on these results, optimized
conditions were determined and controlled, qualitative input–
output experiments were performed by using those conditions with
the input of interest varying from 0% to 100%. The results of those
controlled experiments can be seen in Fig. 2 and show that many

classical, input–output functional relationships in the literature are
reproduced by the model. These include the classical relationships
of each family of receptors and known interdependencies between
those families. These results indicate that Boolean logic can be used
to describe each node of a large-scale intracellular signal transduc-
tion network qualitatively and the resulting model replicates many
of the major known activities of the original system.

With a functioning, large-scale Boolean model of intracellular
signal transduction in hand, the next step was to test the hypothesis
of emergent information-processing functions in the system. This
was accomplished by applying a sample of 10,000 random, stress-
limited input combinations and categorizing the activity of the
individual output nodes by using three different ranges; 0 (0–9%
ON), 1 (10–29% ON), and 2 (30–100% ON), as shown in Fig. 1.
Based on these categories, the combined response of all four
outputs (i.e., the global response) to a given input combination can
be expressed as a ternary string of length four, with each bit
representing an individual output node. These ranges were chosen
because they reduce the global output space to a more manageable
size (34 � 81 states) and because ranges of this size are at the limits
of resolution of actual laboratory data commonly used (e.g.,
blotting). Results presented do not depend on these ranges because
experiments were performed with different ranges (from three to
six) with very similar results (see SI Text). These runs were
performed at 2% noise (a baseline noise level described more
fully below).

The results of this analysis with 10,000 runs is shown in Table 1.
The most striking aspect of the results shown in Table 1 is the
relatively small number of global outputs. There are 34 � 81
possible global outputs of the system, but after 10,000 different
inputs, only 38 outputs (50% of the total global output space) are
observed, many at low frequency. There are only 15 outputs that

Fig. 1. The Boolean model of signal transduction and method of simulation.
The actual connection graph of the 130-node Boolean model is shown inside
the cell. The inputs are external to the cell and the outputs are nodes that are
part of the network and thus inside the cell. The four nonstress output nodes
were selected on the basis of their role in regulating other major cellular
functions, as indicated. The stress outputs are the two stress-activated protein
kinases SAPK and p38. As a demonstration of how simulations are performed,
four random inputs are applied to the network, indicated as runs 1–4. These
inputs are stress-limited because the stress inputs are limited to values be-
tween 0% and 5% ON, whereas the nonstress inputs are random values
between 0% and 100% ON. After the application of each of the inputs, the
network is iterated until it reaches a cycle, and the percentage ON of each
output is calculated. This results in four corresponding individual outputs,
shown at the bottom. The global outputs are the combination of all four
individual outputs and are represented by conversion to a ternary string
(shown on the bottom right) based on the ranges described in the text.

Fig. 2. Qualitative, individual input–output relationships in the Boolean
model of signal transduction. (A) Positive relationship between EGF and Akt
(25). (B) Positive relationship between EGF and Erk (34). (C) EGF dependence
on Integrin stimulation by extracellular matrix (ECM) proteins for Erk stimu-
lation (27). (D) Low-level stimulation of Erk by high levels of ECM (36). (E)
Hormonal stimulators (alpha�s�lig) of G-associated GPCR activation of adenyl-
ate cyclase (AC) (37, 38). (F) GPCR activation of Erk. (39) (G) GPCR stimulation
of Erk depends on transactivation of the EGFR (40). (H and I) Activation of the
stress-associated MAPK’s SAPK and p38 by stress (33, 34). (J and K) Activation
of Rac and Cdc42 by ECM (28). (L) Activating mutations of known protoon-
cogenes such as Ras result in growth factor-independent activation of Erk (41).
Note that the references refer to classical, qualitative input–output relation-
ships (not necessarily quantitative dose–response curves), and the dose–
response curves presented here are intended to demonstrate how the Bool-
ean model qualitatively reproduces the referenced input– output
relationships over a range of inputs.
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appear �100 times (19% of the total output space), and they
account for 9,389 (94%) of the runs. This result is even more
dramatic when the global outputs are categorized by using six
different ranges; 0–10%, 11–20%, 21–30%, 31–40%, 41–50%, and
�50%. With these six ranges, the size of the output space is
64 � 1,296 states, yet there are only 24 outputs (1.9%) that occur
�100 times, accounting for 8,597 (86%) of the inputs run (SI
Table 5).

The average degree (K) of the current network is 4.4, and the
average bias (P) is 69.8%. Although these parameters are
predictive of relatively chaotic behavior in autonomous Boolean
networks (22), the ordered behavior seen in the relatively small
number of global responses may be a reflection of the high
proportion of nodes (73.8%) with canalyzing inputs (23). The
current network is not autonomous, so interpretation of K, P,
and the effects of canalyzing inputs on network behavior may be
different from the effects on the random, autonomous networks
in which these parameters have been studied (21, 23). However,
the fact that the network maps the wide ranging global inputs to
a relatively small number of global responses indicates that the
current system has a small number of attractors with large basins

of attraction, which is consistent with results with autonomous
networks with the similar connection parameters (21, 23).

The second prominent feature of the results is the biological
significance of both the global and individual outputs observed.
From the global output prospective, the output states 0000, 1000,
and 2000 are prominently represented because those outputs were
associated with 3,967 of the 10,000 random inputs. The outputs 1000
and 2000 represent quiescent states in which the outputs are
inactive, with the exception of Akt, a protein that must remain
active to suppress apoptosis (24). The state 0000 would be associ-
ated with apoptosis because Akt activity is very low. Looking at the
individual qualitative input–output relationships within these three
prominent global outputs, it can be seen that they are characterized
by low levels of extracellular matrix (ECM) and increasing levels of
EGF. This is consistent with the responsiveness of Akt activity to
EGF signaling found in the literature (25, 26) and consistent with
the input–output relationship of Akt and EGF presented in Fig. 2.
Despite the fact that EGF increases to high levels in the 2000
output, Erk activity does not increase. As expected from the known
dependence of EGF on ECM/Integrin stimulation (27), ECM levels
associated with these outputs is low, and Erk activity appears in the

Table 1. Outputs of the network and their average associated inputs

Global output
(ternary) Count

Average input Average output

ECM EGF ExtPump �q�lig �i�lig �s�lig �12�13�lig IL1�TNF Stress Akt Erk Cdc42 Rac

1000 2,346 26 26 54 49 48 50 49 2 2 19 3 2 1
2000 1,488 24 67 39 51 49 50 52 1 2 42 4 2 1
1011 952 79 21 55 49 51 50 52 2 2 19 4 19 16
2100 851 31 80 43 51 44 49 50 3 2 49 14 3 1
2110 833 58 78 45 50 53 50 48 2 2 47 15 17 5
2111 626 85 65 28 50 52 50 52 2 2 42 15 21 13
1010 463 50 34 70 46 57 50 44 2 2 21 4 15 5
2010 429 54 70 53 49 54 52 49 1 2 42 5 15 4
2121 361 89 71 55 49 57 47 42 2 2 42 17 37 14
1021 278 87 29 76 48 59 49 45 2 1 19 5 36 20
2011 232 80 46 29 51 55 50 55 1 2 35 6 19 14
1001 149 72 17 40 49 27 55 53 2 2 18 3 5 13
2120 136 69 85 74 48 56 50 38 2 2 52 18 37 6
0000 133 29 12 70 47 9 48 47 2 2 6 2 0 2
1111 112 82 34 48 53 48 54 51 4 2 24 11 21 16
1121 87 89 41 71 51 56 42 41 3 1 23 11 39 19
2021 78 87 61 63 46 63 57 49 1 1 38 6 36 14
1110 71 55 46 64 49 49 48 46 4 2 24 11 17 6
1100 58 35 50 57 51 39 52 46 4 2 25 10 4 2
2020 36 72 79 90 55 58 43 42 0 2 46 5 38 6
0011 30 80 13 90 53 16 52 47 1 2 7 2 18 18
1022 28 98 9 70 52 66 49 46 2 2 16 4 39 31
2200 26 26 97 77 47 26 52 45 4 2 68 37 1 0
2221 25 90 82 47 53 65 27 30 4 1 51 32 46 13
0001 25 79 14 73 54 2 54 45 2 3 6 2 4 14
2001 21 76 52 18 54 36 65 61 1 2 36 6 7 11
2101 20 82 73 22 53 28 40 51 3 2 45 13 6 11
2210 18 62 95 72 64 43 53 37 4 2 62 33 18 4
2220 17 74 95 75 50 53 52 41 4 2 61 33 43 6
1020 14 58 44 91 39 62 45 24 1 2 20 4 34 7
1012 13 98 5 49 46 62 37 51 1 2 18 3 26 30
2211 12 86 84 31 55 36 43 58 4 3 53 31 24 12
0010 10 48 8 90 62 17 47 52 2 2 7 2 12 6
1101 10 78 38 41 42 7 44 58 4 2 22 10 6 12
1120 4 61 56 85 55 50 34 5 4 1 26 14 40 6
0021 3 81 17 97 41 30 68 48 2 0 8 3 34 20
1122 3 96 6 47 53 85 74 21 3 1 21 13 48 31
0022 2 92 3 98 28 15 35 31 2 0 9 2 35 31

�q�lig, �i�lig, �s�lig, and �12�13�lig are abbreviations for generic ligands for the respective G� subunit of GPCR. Other abbreviations are as in the text. Standard
deviations were calculated but are not shown for clarity because the variance can be observed directly in the scatter plots in Fig. 3 and SI Fig. 5.
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global outputs only when input levels of both ECM and EGF are
high. Similarly, global outputs with increased Cdc42 and Rac
activity correlate strongly with high levels of ECM; both Rac and
Cdc42 are classically associated with cytoskeletal regulation in
response to ECM (28). As a control, the network was randomly
‘‘rewired’’ 100 times, i.e., the inputs to each node were randomized
while preserving the in- and out-degrees as well as the logical table
of the individual nodes. The complementary control was also
performed 100 times, i.e., the graph of the network was held
constant while the logic was randomized. In both controls, the
number of outputs diminished to a trivial number of outputs (an
average effective number of 1.92 and 1.04, respectively), with no
biological significance in the correlation of input and output (see SI
Text). This indicates that both the graph and the logic are important
for the variety and biological significance of the outputs.

The facts that the individual qualitative input–output relation-
ships from Fig. 2 are present in Table 1 and that the global outputs
are biologically relevant support the validity of characterizing
ranges of output activity. However, the real power of this analysis
is the ability to observe how the system clusters combinations of
inputs and then maps them to the global outputs. To visualize this
mapping at a more detailed level, all 9,389 input vectors associated
with the 15 most frequent global outputs were subjected to principal
component analysis (PCA) (29). In the resulting plot, shown in Fig.

3A, each point (representing an individual input combination) is
colored according to the ternary output string with which it was
associated. It shows all 9,389 inputs together, and the different
colors appear to separate into discrete clusters. To confirm this, the
plots in Fig. 3B show several combinations of different colors to
indicate the degree of overlap of inputs associated with the most
common global outputs. The results show that when the random
input vectors are plotted in three-dimensional space based on their
values, they form a random scatter as expected. But when each
vector in that scatter plot is colored based on the global output with
which it is associated, all of the input vectors associated with a
particular output are not randomly scattered but, rather, clustered
in distinct areas with little overlap with inputs associated with other
outputs. Thus, this signal transduction system clusters neighbor-
hoods of input combinations into equivalence classes of global
outputs; i.e., all input combinations of the same color are consid-
ered to be functionally equivalent because they elicit the same
global output response. The 100 randomly rewired and random
logic control networks were also tested for separation and in
rewired networks where there was more than one output to test, the
number of outputs that demonstrated clustering of inputs was
greatly reduced and separation in the random logic networks was
eliminated. The details of PCA, how it was applied to the network,
statistical analysis, results with the rewired controls, and further

Fig. 3. Scatter plots of all input
vectors associated with the first 15
global outputs of Table 1. (A) The
inputs associated with the 15 most
common outputs are plotted in
three dimensions by using principle
component analysis (PCA, see Ma-
terials and Methods). All 9,389 in-
puts plotted together, with each in-
put colored according to which of
the 15 outputs it is associated. It
appears that all inputs associated
with a given output (indicated by
the color) are clustered. (B) To verify
that the model uniquely clusters in-
puts based on associated outputs,
selected colored clusters in A are
plotted on separate axes so the sep-
aration of each cluster is visible. For
example, the 2,346 input values as-
sociated with the output 1000
(shown as black points) are clus-
tered with little overlap with input
values associated with outputs 2000
and 1011, as shown in the first plot.
Taken together, these results show
that the Boolean signal transduc-
tion model divides the input space
into distinct equivalence classes
that are associated with biologically
appropriate global outputs.
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discussion of the biological relevance of these results can be found
in Materials and Methods and SI Text.

The results presented show that this signal transduction network
model is capable of taking a wide array of random hormonal input
combinations and classify them into a relatively small number of
biologically appropriate, sharply defined equivalence classes of
global responses. This function can, by definition, be called pattern
recognition, a concept used in machine learning and neural net-
works (30, 31). The ability to recognize input patterns and classify
them is a decision-making function that is a form of information
processing. It involves dividing a multidimensional space into
associated classes, the boundaries of which must be carefully
determined to recognize inputs correctly based on their class
association (30). The practical effect of this type of processing is that
the very large number of combinations of possible hormonal inputs
to which a cell may be exposed (many of which are relatively
indistinct) are clustered by the signal transduction network accord-
ing to the much smaller number of global cellular responses that are
possible for a cell to make to each input. Thus, this network is able
to make decisions even in the face of less than clear-cut
environmental cues that are common in realistic environments.

To determine the robustness of signal transduction decision-
making, the above experiments were carried out with different
noise levels. For example, if in a given run, an input such as EGF
is set to 50% ON, no added noise would mean that the node is a
exactly 50% throughout the entire run. Adding 2% noise to a 50%
value would mean that the input varied chaotically between 48%
and 52% with an average of 50%. Five percent noise for that input
would result in the input varying chaotically between 45% and 55%,
and so on. In the above simulations, noise was added at what was
considered to be a normal background level of 2%. The results of
testing of other noise levels of up to 20% can be seen in SI Tables
7–9. It is clear that the pattern recognition ability of the network in
terms of global responses is nearly unaffected by even high levels of
noise. This surprising level of stability was verified by repeating the
individual input–output relationships of Fig. 2 with varying levels of
noise. Even at high levels of noise, the input–output relations
remained intact (data shown SI Fig. 6), confirming the ability of the
system to recognize patterns in even very noisy inputs.

It has long been noticed that complex, interconnected pathways
of biochemical signal transduction networks bear a resemblance to
parallel, distributed computer networks. This led to conjecture by
some that the overwhelming complexity of these networks might
not be an accident of evolution but, rather, a key characteristic of
a finely tuned information-processing system that is able to make
nontrivial decisions (5, 6, 31, 32). To test this hypothesis directly, we
have created a large-scale, literature-based, logically complete
model of a multifamily signal transduction network. The model was
then exposed to tens of thousands of different combinations of
environmental stimuli, and the global responses (i.e., combinations
of multiple outputs) were observed. The reason for this approach
was to look for emergent properties of the system by moving beyond
the exploration of the important and now well established dynamics
of specific, individual stimulus–response relationships (e.g., bist-
ability) and consider the higher-level relationships between multi-
ple stimuli and the corresponding global responses. This is the
essence of the systems approach.

The results clearly show that the network clustered the vast
majority of inputs into a small number of biologically appropriate
responses. This nonfuzzy partitioning of a space of random, noisy,
chaotic inputs into a small number of equivalence classes is a
hallmark of a pattern recognition machine and is strong evidence
that signal transduction networks are decision-making systems that
process information obtained at the membrane rather than simply
passing unmodified signals downstream.

Designing systems to perform sophisticated pattern recognition
is not a trivial task. Handwriting and face recognition are examples
of real-world, sophisticated pattern recognition where noisy inputs

must be correctly placed into a nonfuzzy, sharply defined equiva-
lence class (e.g., individual handwriting classified as a particular
character or an individual face recognized as an acquaintance); a
major goal of artificial intelligence research is to develop machines
that are capable of such tasks (30, 31). It should not be surprising
that cells would require a similar ability to perform sophisticated
pattern recognition. An individual cell is faced with any number of
stimuli in the form of chemical ligands binding to their cell-surface
receptors. These receptors are varied in type and number and form
a sensory system that enables a cell to sense and respond to its
environment. Given that any physical environment is chaotic, noisy,
and, at times, contradictory, it is clear that cells need the ability to
make decisions based on these types of inputs and that their survival
depends on that ability.

Finally, the results presented here use literature-based, Boolean
modeling of a large-scale biochemical system. All modeling meth-
ods have their downsides, and in the case of Boolean models it is
that the logic of each node must be expressed in terms of ON/OFF.
This seems counterintuitive to many biologists because it is known
that many signal transduction components do not have such simple
regulation. In reality, this is not a major obstacle to Boolean
modeling because proteins that exhibit more complex regulation
can be represented by multiple nodes, each representing a separate
activation state of the protein of interest (e.g., Raf in our network).
The only real downside to Boolean modeling of biochemical
systems is that, for any node with a large number of inputs (N), there
are 2N combinations of those inputs that must be accounted for in
each logic table. For most input combinations the ON/OFF state of
the protein can be derived from the literature in a straightforward
way. However, some combinations are not explicitly dealt with in
the literature and must be deduced indirectly. For this reason, we
do not consider the current network to be perfect. However, this
problem is not unsolvable; it only requires laboratory researchers to
test qualitatively the input combinations that are unknown. This can
be done exactly as the known combinations were determined, thus
requiring only an awareness for the need for this information rather
than entirely new laboratory methods. Additionally, our develop-
ment of tools that are able to input and retrieve continuous data to
and from the Boolean model means that the only aspect of the
model that is actually ON/OFF is the logic tables for each individual
node; once the logic is set, the model is used in the same way as
continuous models.

Continuous modeling, on the other hand, has the significant
problem of parameter estimation. Although there are also ways of
dealing with this problem, determination of the large number of
parameters of a large-scale network in vivo is a much more
complicated technical hurdle. All modeling methods also have
upsides, and the parameter-free nature of Boolean modeling is a
significant advantage, making it complementary to continuous
models used for exploring higher-order functions and emergent
properties of biological signal transduction networks.

Materials and Methods
The Boolean Model of Signal Transduction. To create a Boolean network, a set of
nodes must be identified and a logic table created for each node. The current
Boolean model of signal transduction was created by determining the complete
logic of the classical EGFR3 Erk pathway. More detail on how the logic tables
were created for each node (as well as how it is possible to use Boolean modeling
for proteins that have more complex activation than simple ON/OFF) can be
found in SI Text. As guided by the literature, connections to other classical
pathways were included in the EGFR3 Erk pathway until a relatively autono-
mous network of 130 nodes was created that included the RTK, GPCR, and
Integrin pathways. Given the highly interconnected nature of cytoplasmic pro-
tein networks, stopping at even 130 nodes meant that some interactions with
proteins outside these three families had to be ignored. However, these were
relatively minor compared with the interactions of the three incorporated path-
ways; these pathways are so intimately connected that they represent a func-
tioning set of nodes that would be impossible to reduce further without ignoring
important interactions. Although the model is a nonspecific network in that it
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does not represent any one specific cell type, nodes were not included in the
network unless they were generally expressed in a wide range of cell types.
However, once a node was included in the network, the best information on the
logic was used without regard to the cell type.

Inputs to the network are mostly the ligands of surface receptor nodes of
which there are seven; epidermal growth factor (EGF), the GPCR stimulators
(�q�lig, �i�lig, �s�lig, �i12/13�lig), extracellular matrix (ECM), tumor necrosis fac-
tor/interleukin 1 (TNF/IL-1) an idealized hybrid receptor. In addition to those
ligands, ‘‘Stress’’ is an input representing environmental stress factors such as UV
light or reactive oxygen species (33, 34), and there is a nonregulated calcium
pump (external calcium pump). Calcium pumps are regulated mostly by calcium
and hormonal factors that are not included in the current network (35). The logic
for calcium regulation in the network inherently includes the calcium regulation
of the pump, but the other regulators cannot be accounted for. Therefore, the
calcium pump is considered to be an input and is set at multiple constant levels of
activity. Outputs of the network are nodes in the network whose outputs go out
to regulators of major cellular functions. These are (i) Akt, a major regulator of
apoptotic systems (24), (ii) the mitogen-activated protein kinase (MAPK) Erk, a
major regulator of cell division (34), and (iii) Rac and Cdc42, two important
regulatorsofcytoskeletal systems(28).TheMAPK’sSAPKandp38arealsooutputs
of the network, but they respond to stress and TNF/IL-1 (33, 34), as documented
in SI Text. The experiments in the present work involve ‘‘stress-limited’’ inputs,
meaning that stress and TNF/IL-1 are at low, background levels. Other nodes can
be considered to be outputs of the network, and experiments with up to seven
different outputs were performed with very similar results.

Methods of Simulation. Although the logic of each node and input to the
network is binary, it is possible to interpret intermediate activity by looking at the
average ON value of each node when the system has reached a cycle, as all
Boolean models must do. Similarly, inputs can be set to a specific average ON by
putting the input on an appropriate cycle (for further details on this, see SI Text).

The actual simulations are performed by a Boolean simulation program de-

veloped by this group called ChemChains. ChemChains is a general Boolean
networksimulator that isableto incorporateanynumberofnodesandtheir logic
tables as well as any initial condition or input conditions and iterate the network
any desired number of times. The ChemChains program can be freely obtained
from J.A.R.

Adding Noise to the Inputs. Experiments are performed at different noise levels
by introducing a random noise component to the input that forces the input to
vary chaotically within a window around the set input level. The window sizes
vary from 2% to 20%, representing background noise to highly noisy inputs. In
these studies, all noise levels are tested and 2% noise is considered the standard
background levels. Noise was added to the inputs by adding or subtracting from
each input set point a percentage of the desired range. The percentage varied
randomlywithinthespecifiedrangebyusingarandomnumbergeneratorwithin
the ChemChains program.

Principal Component Analysis (PCA). PCA was done on all seven inputs and
projected onto three dimensions (accounting for 45% of variance of the system)
as shown in SI Fig. 5, where a more detailed explanation of PCA and the statistical
analysis of the results can be found. To capture more of the variance, various
numbers of inputs were tested and it was found that most of the pattern
recognition function could be observed by performing PCA on ECM, EGFR, and
the external calcium pump inputs and projecting onto three dimensions. This
accounts for 100% of the variance and makes the clustering of inputs the most
clearly visible. These results are shown in Fig. 3; however, they are not funda-
mentally different from the original seven-input PCA shown in SI Fig. 5.
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