
University of Nebraska at Omaha University of Nebraska at Omaha 

DigitalCommons@UNO DigitalCommons@UNO 

Computer Science Faculty Proceedings & 
Presentations Department of Computer Science 

7-30-2019 

Using the SOLO Taxonomy to Understand Subgoal Labels Effect in Using the SOLO Taxonomy to Understand Subgoal Labels Effect in 

CS1 CS1 

Adrienne Decker 
University of Buffalo 

Lauren E. Margulieux 
Georgia State University 

Briana B. Morrison 
University of Nebraska at Omaha, bbmorrison@unomaha.edu 

Follow this and additional works at: https://digitalcommons.unomaha.edu/compsicfacproc 

 Part of the Computer Sciences Commons 

Please take our feedback survey at: https://unomaha.az1.qualtrics.com/jfe/form/

SV_8cchtFmpDyGfBLE 

Recommended Citation Recommended Citation 
Decker, Adrienne; Margulieux, Lauren E.; and Morrison, Briana B., "Using the SOLO Taxonomy to 
Understand Subgoal Labels Effect in CS1" (2019). Computer Science Faculty Proceedings & 
Presentations. 64. 
https://digitalcommons.unomaha.edu/compsicfacproc/64 

This Article is brought to you for free and open access by 
the Department of Computer Science at 
DigitalCommons@UNO. It has been accepted for 
inclusion in Computer Science Faculty Proceedings & 
Presentations by an authorized administrator of 
DigitalCommons@UNO. For more information, please 
contact unodigitalcommons@unomaha.edu. 

http://www.unomaha.edu/
http://www.unomaha.edu/
https://digitalcommons.unomaha.edu/
https://digitalcommons.unomaha.edu/compsicfacproc
https://digitalcommons.unomaha.edu/compsicfacproc
https://digitalcommons.unomaha.edu/compsci
https://digitalcommons.unomaha.edu/compsicfacproc?utm_source=digitalcommons.unomaha.edu%2Fcompsicfacproc%2F64&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unomaha.edu%2Fcompsicfacproc%2F64&utm_medium=PDF&utm_campaign=PDFCoverPages
https://unomaha.az1.qualtrics.com/jfe/form/SV_8cchtFmpDyGfBLE
https://unomaha.az1.qualtrics.com/jfe/form/SV_8cchtFmpDyGfBLE
https://digitalcommons.unomaha.edu/compsicfacproc/64?utm_source=digitalcommons.unomaha.edu%2Fcompsicfacproc%2F64&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:unodigitalcommons@unomaha.edu
http://library.unomaha.edu/
http://library.unomaha.edu/


Using the SOLO Taxonomy to Understand 

Subgoal Labels Effect in CS1 

 Adrienne Decker Engineering Education University at Buffalo Buffalo, NY USA 

adrienne@buffalo.edu  

Lauren E. Margulieux Learning Sciences Georgia State University Atlanta, GA USA 

lmargulieux@gsu.edu  

Briana B. Morrison Computer Science University of Nebraska Omaha Omaha, NE USA 

bbmorrison@unomaha.edu  

ABSTRACT  

This work extends previous research on subgoal labeled instructions by examining their 

effect across a semester-long, Java-based CS1 course. Across four quizzes, students 

were asked to explain in plain English the process that they would use to solve a 

programming problem. In this mixed methods study, we used the SOLO taxonomy to 

categorize student responses about problem-solving processes and compare students 

who learned with subgoal labels to those who did not. The use of the SOLO taxonomy 

classification allows us to look deeper than the mere correctness of answers to focus on 

the quality of the answers produced in terms of completeness of relevant concepts and 

explanation of relationships among concepts. Students who learned with subgoals 

produced higher-rated answers in terms of complexity and quality on three of four 

quizzes. Also, they were three times more likely to discuss issues of data type on a 

question about assignments and expressions than students who did not learn with 

subgoal labeling. This suggests that the use of subgoal labeling enabled students to 

gain a deeper and more complex understanding of the material presented in the course.  

CCS CONCEPTS 

 • Social and professional topics → Computing education → Computer science 

education → CS1  

KEYWORDS  

CS1, subgoal labeling, SOLO taxonomy, introductory programming  

ACM Reference format:  

Adrienne Decker, Lauren E. Margulieux, Briana B. Morrison. 2019. Using the SOLO 

Taxonomy to Understand Subgoal Labels Effect in CS1. In Proceedings of the Fifteenth 

Annual Conference on International Computing Education Research. ICER ’19, August 

12–14, 2019, Toronto, Ontario, Canada. ACM, New York, NY, USA, 9 pages. 

http://dx.doi.org/10.1145/3291279.3339405  

mailto:adrienne@buffalo.edu
mailto:lmargulieux@gsu.edu
mailto:bbmorrison@unomaha.edu
http://dx.doi.org/10.1145/3291279.3339405


1 Introduction  

Subgoal-labeled worked examples (SLWE) have shown promise in tackling the 

persistent problems of low retention and success in introductory programming courses 

at the college level [13–15]. However, these previous studies have exposed students to 

subgoals for only one to two hours of instructional time. The current project extends this 

work by exploring the use of subgoal labeled worked examples throughout an entire 

introductory Java programming course [12]. The materials were pilot tested from August 

to December 2018 to examine their effect on student performance. This paper 

discusses the analysis of the data collected on quiz questions that instructed students to 

explain in plain English the process that they would use to solve a programming 

problem. Student answers were scored using the SOLO taxonomy, which represents 

answer complexity and completeness. The guiding research question for this work was: 

If students learn procedures using SLWE, do they create more complex and complete 

answers to explain in plain English questions than students who learn using non-

subgoal-oriented materials?  

2 Background  

2.1 Subgoal Learning  

Subgoal learning explicitly teaches students the subgoals, or functional pieces, of a 

problem-solving procedure. For example, to solve a problem with a while loop, students 

must determine a stopping case for the loop, so defining a termination condition is a 

subgoal of solving a problem with a while loop. The specific steps taken to achieve this 

subgoal varies from problem to problem, but the function remains the same. Novices 

solve programming problems better when they explicitly learn the subgoals of a 

procedure because they often do not recognize these functional pieces on their own [3, 

4, 8, 13-15].  

Students typically learn subgoal through subgoal labeled worked examples. Worked 

examples are commonly used to teach well-structured problem-solving procedures 

because they demonstrate how to apply an abstract procedure to a concrete problem 

before the learner can solve problems independently [1, 19, 23]. The drawback of 

worked examples, however, is that they must include details specific to a problem. For 

example, to demonstrate how to solve a problem using a for loop, the worked example 

also includes a context, such as “write a loop that calculates the average age of the first 

100 people to take a survey.” Learners tend to organize information about the 

procedure using these easy-to-grasp details, like age, rather than around the hard to-

conceptualize abstract procedure that they are learning, leading to difficulty transferring 

knowledge to new problems [1, 18]. Subgoal learning addresses this problem by 

pointing out shared functional features in worked examples, helping learners to organize 

information so that it can transfer more easily [4, 13].  

2.2 SOLO Taxonomy  



The Structure of the Observed Learning Outcome (SOLO) taxonomy was introduced by 

Biggs and Collis [2] to provide a framework for more consistent, qualitative evaluation of 

student responses to open-ended questions. The taxonomy was designed based on 

student responses to open-ended questions in multiple disciplines. The taxonomy has 

three dimensions:  

1. Capacity: the pieces of information used to produce the response, ranging 

 from low (i.e., only the information in the question and one relevant piece 

 of information) to high (i.e., the question, multiple pieces of relevant 

 information, interrelations among information, and abstract principles)  

2. Relating operations: the relationship between the question and response, 

 ranging from illogical (e.g., tautologies), to question-specific information 

 only (i.e., answers the question without relating to principles or concepts), 

  to information that generalizes beyond the specific question (i.e., 

 relating response to abstract principles and concepts)  

3. Consistency and closure: the consistency between information provided and 

 the conclusion that the student comes to, ranging from not answering the 

 question, providing inconsistent evidence or jumping to conclusions, to 

 consistent evidence and multiple conclusions based on relevant possible 

 alternatives  

Using the three dimensions, Biggs and Collis defined five levels of structural complexity, 

which can be used to determine how well students learned an objective. Students 

demonstrate their knowledge of the subject at one of the five levels of complexity:  

•  Prestructural: little to no understanding of the topic  

•  Unistructural: understanding of a single aspect of the topic  

•  Multistructural: understanding of several aspects of the task but each aspect is         

 represented independently  

•  Relational: understanding of several aspects of the task and how they are related  

•  Extended Abstract: understanding of the aspects can be generalized beyond the 

 context of the question  

Based on their analysis of student responses, complexity is typically at the same level 

across the three dimensions. For example, a prestructural response will typically match 

the prestructural criteria in 1) capacity, 2) relating operations, and 3) consistency and 

closure. Occasionally, a transitional answer will exist between two levels of dimensions.  

2.3.1 SOLO in Computing Education Research. The SOLO taxonomy has been used 

extensively in computing education research. A 2004 ITiCSE Working Group (the Leeds 

Group) [10] provided the first attempt at mapping the SOLO taxonomy to computing. 



Table 1 summarizes this initial mapping, which is most used by other studies, including 

ours.  

Category Definition 

Prestructural Significant misconception or preconception irrelevant to 
programming 

Unistructural Correct grasp of some but not all aspects of the problem (i.e., 
educated guess) 

Multistructural Understands all parts of the problem but does not exhibit an 
awareness of the relationships between the parts; the answer 
may be correct or not 

Relational Parts of the problem are integrated into a structure; the answer 
may be correct or not 

Extended The response goes beyond the immediate problem and links to 
a broader context 

Table 1. Mapping of SOLO taxonomy to computing [10]. 

The SOLO taxonomy, along with the explain in plain English (EiPE) questions, have 

been used many times within computing education research, especially for CS1. The 

BRACElet project studied the relationship between novice programmers' code writing 

ability and their explanations of code [11, 24]. In 2011, Corney et al. [5] explored student 

EiPE responses for swapping variables, code that represents the simplest case in which 

a programming student can manifest a SOLO relational response. Sheard et al. [21] 

studied exams for CS1 students. They found that reading tasks correlated positively 

with performance on writing tasks and that undergraduate students had a lower SOLO 

score than postgraduate students.  

Others have modified the SOLO taxonomy to better map to the concepts they were 

measuring. In Sudol-DeLyser [22], a modification was done to the SOLO classification 

scheme to capture the number and types of abstraction statements made by students 

during a think-aloud protocol. Results indicate that students with greater proficiency at 

writing code were more likely to use multiple levels of abstraction when describing the 

code they were writing and moved between levels of abstraction with higher frequency. 

Izu et al. [7] used an adjusted SOLO taxonomy to classify programming questions' by 

using a "building block" as the granular structure in the taxonomy to overcome the 

variability in problem difficulty. A building block was defined as a code pattern or 

template that students had seen, allowing for differentiation between recall and 

synthesis in problem difficulty. Murphy et al. [16, 17] replicated the Leeds Working 

Group results while using Table 1's categories but without the Extended classification. 

Their results support a relationship between explaining and writing code. Beyond CS1, 

Corney et al. [6] used SOLO for CS2 Data Structures questions (again with no 

Extended Abstract category). The results found a strong correlation between students' 

ability to explain code at an abstract level and performance on code writing and code 

reading test problems at this level.  



3 Present Study  

We tested the SLWE in introductory programming courses at a medium-sized 

Midwestern university in the United States. The university offered five sections of a 

Java-based CS1 course from August to December 2018. Students were free to enroll in 

any lecture or lab section. The lecture sections were taught by three full-time faculty, 

and all had more than 15 years of experience teaching introductory programming. Two 

sections were taught by one of the authors and incorporated SLWEs in place of the 

conventional worked examples used in the other three sections. All sections were 

coordinated and used the same textbook, slides, peer instruction questions, pace of 

topics, quizzes, tests, labs, and Learning Management System (LMS) instance. The 

only difference between the sections was the examples used for in-class practice and 

the introduction of the subgoals. The subgoals used in class are given in [12]. The 

intervention sections used the developed SLWE and practice problems while the other 

sections used instructor developed examples.  

The present study compares student responses to four EiPE questions between the 

sections that used SLWE (i.e., subgoal group) and those that used the conventional 

examples (i.e., control group). One of the three control sections was taught online and 

initially treated as a separate group in case students who chose to enroll in the online 

course were different than the other students in some way. After analyzing the data, 

however, the online section was indistinguishable from the other control sections. Thus, 

the three sections are treated as one control group in the analysis.  

3.1 Previous Results  

In a previous paper [12], we presented the analysis that compares quiz and exam 

grades by group, which we summarize here to contextualize the EiPE responses that 

are the focus of the present paper. We had 120 students in the subgoal group and 145 

students in the control group. Several learner and demographic characteristics of the 

students were collected, but none of them correlated with group or grades. We 

examined student grades on the five quizzes given after SLWE were used (out of 15 

weekly quizzes) and all four exams, each of which included multiple choice and short 

answer questions that were automatically graded. The exams also included long answer 

questions, which were graded by the same person across all sections.  

The quiz and exam grades were analyzed in a few ways to gain a complete 

understanding of the data. First, an average score was calculated for each student. This 

score represents the average grade on quizzes or exams that the student submitted. 

Any missing grade was not included in the average score. Second, a total score was 

calculated for each student. This score included all available points for quizzes or 

exams, and if a student did not turn in a quiz or exam, it was treated as a zero. The total 

score was paired with the number of quizzes and exams completed to help us to 

consider the role of the SLWE on the dropout rate.  



On the five quizzes, students in the subgoal group performed better than students in the 

control group with a medium effect size, d = 0.42 for the average score and d = 0.44 for 

the total score. In addition, students in the subgoal group completed more quizzes that 

students in the control group. An interesting result from the analysis was that the 

subgoal group has a significantly lower variance in scores than the control group. Given 

that the subgoal group also performed better than the control group, it could be the case 

that the subgoals particularly improved the grades of students who would have 

performed poorly on the quizzes. In [12], we argued that this pattern of results suggests 

that at-risk students were less likely to drop out of the subgoal sections than control 

sections of the course.  

On the four exams, students in the subgoal group performed better than students in the 

control group only on the total score (i.e., including zeros for missing exams). On the 

average exam score, the groups performed equivalently, but the subgoal group again 

had a lower variance in scores than the control group. Based on the number of exams 

taken in each group, the difference between groups in the total score is likely due to the 

zeros from missing exams. In [12], we argued this pattern of results again suggests that 

students in the subgoal section were less likely to drop out of the course. For students 

who persisted through the course, SLWE did not improve the average score on exams, 

though it did reduce variance, which again may point to helping at-risk students.  

SLWE improving quiz scores, but not exam scores, aligns with the subgoal learning 

framework, which is designed to help novices understand the structure of problem-

solving procedures before they are able to recognize it for themselves. By the time a 

student has studied for an exam, they are likely to be able to recognize problem-solving 

structures. Therefore, it is expected the SLWE have a stronger effect on the quiz 

grades, which represent initial knowledge, than exam grades, which represent 

well developed knowledge. For the present study, we explore how SLWE affect 

students’ initial conceptions of problem-solving procedures through EiPE questions 

given on the quizzes.  

4 Methods  

The total number of students across all sections was 307 based on enrollment at the 

beginning of the semester. Students were excluded from analysis if they did not 

complete at least one exam or one quiz, effectively withdrawing from the course. The 

final sample size was N = 265, 145 in the control group and 120 in the subgoal group--

the same sample as used in the analysis for [12].  

4.1 Data Collection Sources  

Student performance on four quizzes was collected. Below are the characteristics of the 

student performance items:  



•  The quiz questions were short answer, specifically questions that instructed 

 students to explain in plain English about code. See Figure 1 for two example 

 questions.  

•  Each quiz question analyzed here was worth only one point on a 5- to 15-point 

 quiz and, even cumulatively, had almost no effect on students’ course grades.  

•  Questions of this type were included on 4 of 15 weekly quizzes. (Administered 

 during weeks 4, 8, 10, and 12 of the term.) Explanations of the topical coverage 

 of the questions are presented by quiz in Section 5.  

•  Neither the subgoal group nor the control group practiced this type of question 

 during class.  

•  Quizzes were assigned from Friday morning until midnight Monday at midnight 

 with a 20-minute time limit and completed online through the LMS.  

•  The EiPE quiz questions were graded so that any reasonable answer was given 

 full credit.  

•  Students were not given feedback on their responses to the quiz questions 

 analyzed here.  

 

Figure 1. Sample EiPE questions from quizzes.  



4.2 Classifying Responses Using SOLO  

For each quiz, anonymized student responses were coded based on the SOLO 

taxonomy categories: prestructural, unistructural, multistructural, relational, or extended 

abstract. The anonymous student responses were graded as one set, with no indication 

of whether they were in the subgoal or control group. The process for coding the 

responses involved three coders working concurrently on the coding process. To start 

the process, the first several responses (about 10) for each question were coded 

cooperatively by all three coders discussing where each response fell into the taxonomy 

and why each believed that categorization to be correct. Discrepancies were discussed 

until agreement was reached on the code and a general understanding of what was 

expected in each response for each category was reached.  

Each of the quiz questions had specific concepts, relationships, and principles that we 

used to distinguish between levels of the SOLO taxonomy. The coding rubrics were 

related to the information included in the responses rather than to subgoal labels. For 

example, for the first quiz, whether students discussed matching data types between 

the right and left sides of an expression statement could be the distinction between a 

three or a four rating. The question-specific distinctions are included in the results 

section to help contextualize the findings.  

After the initial 10 responses, the three coders worked independently on an additional 

set of 10 responses and compared answers after they had scored the set and resolved 

differences. This process continued until 20% of the responses were coded by all three 

raters. If an acceptable level of interrater reliability was reached, the coders divided up 

the remaining responses and coded independently. If interrater reliability was not 

acceptable, they coded an additional 20% of responses until reliability was above the 

threshold.  

To evaluate interrater reliability, we used the intraclass correlation coefficient of 

absolute agreement, ICC(A). We chose this test of reliability because it determines 

whether multiple raters give the same score to different student responses. Other more 

popular tests of reliability determine whether raters are consistent in ranking across 

responses. For example, if one rater gave consistently low scores to responses and 

another gave consistently high scores to responses, they could still achieve high 

interrater reliability with Cohen’s kappa or intraclass correlation coefficient of 

consistency. However, for the SOLO taxonomy, we need to determine how often raters 

give the same score because each score has a qualitatively unique meaning. An ICC(A) 

value of 0.75 or higher is considered good interrater reliability [9].  

5 Results  

The SOLO taxonomy categorizes students’ responses based on qualitative differences. 

Therefore, even though we have assigned numeric values to student responses, it is not 

necessarily appropriate to use those values mathematically. The SOLO categories yield 

ordinal data, which means that the categories are rank ordered (e.g., a five is better 



than a four) but the difference between values is not mathematically equal (e.g. the 

difference between a five and a four is not necessarily the same as the difference 

between a four and a three). Because we used ordinal data, the results of any 

parametric test (i.e., ANOVA) should be interpreted with extreme caution. Technically, 

using ordinal data violates the assumptions of a parametric test. We decided to present 

the results of these tests because the tests for homogeneity of variance, which helps 

determine the appropriateness of the data for parametric tests, were non-significant. 

The non significant results for Mauchley’s (for repeated measures) and Levene’s (for t-

test) tests suggest that the variance of data was normally distributed and equivalent 

between groups, which are the major concerns for analyzing ordinal data parametricly. 

We used the parametric tests to provide only a high-level view of the data before 

providing more nuanced, reliable descriptive statistics.  

To explore the quality of students’ responses across quizzes, we used a repeated 

measures analysis that links students’ scores on each quiz question. Repeated 

measures analysis requires a data point for each measurement, and due to missing 

data on some quizzes, the sample size with complete data was limited, subgoal n = 53 

(44% of the total sample) and control n = 44 (30% of the sample). Even with a limited 

sample size, the analysis found that the quiz question was a strong predictor of 

students’ scores, F = 29.9 (sphericity was not violated, p = .215, so no correction was 

used), p < .01, partial η2 = .24. This result suggests that the effect of quiz questions 

would have overshadowed any effect of learner differences (i.e., within-subjects 

variance), such as whether a student was more likely to give five or four rated 

responses. To further support this finding, we visually inspected all scores of students 

who received a five (i.e., extended abstract) on one of the quizzes. Their scores on the 

other responses follow a normal distribution with the most common score on other 

quizzes being a 3. This pattern of results suggests that students’ scores, even for 

students who received a five, were more affected by the question being asked than by 

personal characteristics.  

Because the quiz score was a large predictor of performance, the subgoal and control 

groups were compared for each quiz independently. For each quiz, we used a t-test to 

compare groups, but as stated earlier these results are of limited usefulness. To explore 

the data, we examine the mode and frequencies of each score. We use these statistics 

instead of the typical mean and standard deviation because it more accurately 

describes ordinal data. For example, the standard deviation in our data was always 

around 1.0 because most students scored a three or four, and the numerical difference 

between those values is 1.0. Thus, this value is an artifact of the data analysis method 

rather than a meaningful representation of the variance in groups.  

5.1 Quiz 1 – Expression Statements  

In the first quiz analyzed (quiz 4 for the term), we had responses from 84 students in the 

subgoal group and 75 students in the control group. The raters reached a high level of 

interrater reliability, ICC(A) = 0.85, for the first 20% of responses. Because this quiz was 



early in the semester, the amount of knowledge that students could demonstrate was 

limited. This question asked students to explain the steps needed to evaluate a complex 

arithmetic expression that included both parenthesized sub expressions and pre- and 

post- increment/decrement operators (see Figure 1). Table 3 provides the question-

specific content, relationship, and principle information required for each score, i.e. the 

rubric.  

Overall, the subgoal group had higher SOLO ratings than the control group on the first 

quiz, t(158) = 19.14, p < .01, η2 = .11. To examine the differences between groups, we 

considered the mode and frequencies of each score in the groups (see Table 2). Based 

on frequencies, 68% of the students in the subgoal group were able to write answers to 

this question at either a four or a five rating, indicating that the students explained how 

to solve the arithmetic expression and how to deal with pre/post increment operations 

and, in many cases, data type compatibility.  

In the control group, students achieved these rankings at roughly half of this rate (37%). 

Only 11% of the students in the subgoal group did not articulate the steps needed to 

solve the basic parts of the arithmetic expression (i.e., scores of one or two), while the 

control group had over twice that rate (27%). Overall, the subgoals seemed to enable 

students to articulate more information about the process of evaluating arithmetic 

expressions.  

Note that the criteria to receive a four or five explicitly involves the mention of data types 

or type compatibility. This issue is explicit in the subgoals for this part of the course. 

Specifically, one of the subgoals states, “Determine whether the data type of expression 

is compatible with the data type of variable”. As such, we undertook another analysis to 

see how often students in the two groups mentioned the issue of data types in their 

responses. The rate is almost double for the subgoal group (29%) than the control 

group (12%) for students mentioned compatibility in their answers. We expect that this 

is due to the explicit subgoal that was used in the course dealing with type compatibility 

drawing students' attention to the importance of data types.  

 1 2 3 4 5 

Subgoal 
Mode = 4 

1 (1%) 8 (10%) 18 (21%) 43 (51%) 14 (17%) 

Control 
Mode = 3 

6 (8%) 14 (19%) 27 (36%) 25 (33%) 3 (4%) 

Table 2. Quiz 1 score frequencies between subgoal and control groups. 

 

 

 

 



SOLO Description Example 

1 – 
prestructural 

Nonsensical answer or 
answer that had no more 
information than the 
question provided 

“Solve each equation.” 

2 – 
unistructural 

Described how to solve part 
of the problem, but the 
description was incomplete 

“First I would do the things within each 
set of parentheses. Second, I would do 
the multiplication. Finally I would 
subtract.” 

3 – 
multistructural 

Described how to solve the 
complete problem but 
provided no explanation 
beyond the question at 
hand 

“You need to follow the order of 
precedence for Java, so first you would 
do what is in the parentheses. In the 
parentheses you would do the ++ first 
from right to left, followed by modulus, 
then multiplication and division from 
left to right.” 

4 – relational Described how to solve the 
problem and explained in 
abstract terms either how to 
evaluate pre- and post-
increments or how to 
evaluate the 
appropriateness of data 
type between the variables 

“First I would take the values within the 
parentheses and try to solve for those 
first. Starting with the one that has 
multiplication first, then modulus, and 
last, addition. ++Alpha would need 1 
added to its value since it is a pre 
added value. Eta++ would add 1 to its 
value after solving for the result then 
take the modulus of eta++ % alpha.” 

5 – extended 
abstract 

Described how to solve the 
problem and explained how 
to evaluate data type and 
increments for expression 
statements in general 

“First thing I like to establish is what is 
an int, what is a double, and then what 
kind of answer do they want. We know 
they are looking for a decimal because 
it is a double. Next, go to the equation 
and treat it like math class using the 
orders of operation; PEMDAS. Starting 
from the beginning of that rule we have 
parenthesis, so we'll start by doing 
everything within their respected 
parenthesis. beta + gamma is pretty 
general, just add the two together. 
++alpha * delta you want to add one to 
the variable alpha and then multiply 
that with delta. eta++ %alpha you will 
start by doing eta modular alpha and 
then add 1 because the ++ comes after 
the effected variable. Now follow order 
of operations.” 

Table 3. SOLO Categories for Quiz 1, Expression Statements. 

 



5.2 Quiz 2 – Loops  

In the second quiz analyzed (quiz 8 for the term), we had responses from 98 students in 

the subgoal group and 97 students in the control group. The raters reached a moderate 

level of interrater reliability, ICC(A) = 0.72, for the first 20% of responses. Thus, the 

raters discussed the criteria and rated an additional 20% of responses together to reach 

a high level of reliability, ICC(A) = 0.82. The remaining responses were scored by one 

rater. This question asked students to explain the steps needed to write code for a 

process that involved a single loop that processed input from the user and accumulated 

a sum. Table 5 provides the question-specific information required for each score.  

Overall, the subgroup group scored higher than the control group on the second quiz, 

t(194) = 11.62, p < .01, η2 = .06. We examined the differences between groups with the 

mode and frequencies of each score in the groups (see Table 4). This question asked 

about the code that would need to be written to solve the presented problem. We see a 

high occurrence of threes in this data (50% for subgoals, 46% for control). The students 

most often explained what needed to be done to solve the problem but showed no 

evidence of abstract thinking. For students who crossed into the relational category the 

rate was higher for the subgoal group (29% vs. 17%) and the subgoal group had the 

only five for this question. Also, there is a higher proportion of proportion of students 

who were not able to give a complete explanation of an answer in the control group 

versus the subgoal group (37% vs. 18% at a rating of one or two). This pattern also 

shows that in the control group, over one-third of the students could not give all the 

pieces required for an answer that earned a three score. We expect that the reason for 

the differences in this question was that the subgoals for loops gave the students a 

place to start their explanation and a way to articulate the pieces of the answer even if it 

was not at the higher cognitive levels of relational or extended abstract. 

 1 2 3 4 5 

Subgoal 
Mode = 3 

5 (5%) 13 (13%) 49 (50%) 28 (29%) 3 (3%)  
 

Control 
Mode = 3 

11 (11%) 25 (26%) 45 (46%) 16 (17%) 0 (0%)  
 

Table 4. Quiz 2 score frequencies between subgoal and control groups. 

5.3 Quiz 4 – Writing Methods  

We discuss the fourth quiz (quiz 12 for the term) before the third quiz because the first, 

second, and fourth quizzes follow the same pattern of results, and the third quiz does 

not. In the fourth quiz, we had responses from 92 students in the subgoal group and 92 

students in the control group. The raters reached a high level of interrater reliability, 

ICC(A) = 0.87, for the first 20% of responses, and the remaining responses were scored 

by one rater. The question asked students to explain the steps needed to write a 

method header for a described method. Table 6 provides the question-specific 

information required to achieve each score. The subgoal group scored higher than the 



control group on the fourth quiz, t(183) = 25.08, p < .01, η2 = .12. We also examined 

group differences between mode and frequencies (see Table 7).  

SOLO Description Example 

1 – prestructural Nonsensical answer, an 
answer that had no more 
information than the 
question provided, or 
alluded to a relevant 
principle but not in enough 
detail to apply it to the 
problem 

“You would get the score for 9 hole for each round 
then print each round out.”  
 

2 – unistructural Described 1-2 concepts 
that applied to the problem, 
but description was 
incomplete 

“Declare variables for 18 holes. Println asking for 
input for each hole, using scanner. Println the sum of 
holes 1-9. Println the sum of holes 10-18. Print ln the 
sum of all holes.” 

3 – 
Multistructural 

Described all concepts 
needed to solve the 
problem, whether they were 
correctly applied, but 
provided no explanation 
beyond the question at 
hand 

“Have the scanner along with the 18 variables 
needed to add up golf scores. After the user inputs 
all of the numbers then you can have the system add 
them all up and print it. Then if you want the sum of 
the 1st nine holes then add up the 1st nine variables 
and the same for the 2nd half.” 

4 – relational Described how to solve the 
problem and explained how 
the different pieces of the 
solution related to each 
other 

“I would make two loops that would count up to 9 
times for each side of the golf course. Then within 
the loop I would have the hole score added to the 
total score as well as add a counter for that hole. 
This would be the exact same for both sides of the 
course and at the end of each loop I would print out 
the total score for those loops then I would add the 
two scores together to get a total score for the 18 
holes.” 

5 – extended 
abstract 

Explained how to solve a 
problem like this in abstract 
terms 

“The first thing to do is to determine what kind of loop 
to use. Since the counter value or number of 
iterations is known for the program, both a while or a 
for loop will work. However, a for loop is simpler and 
more concise to use. Since you know that each half 
of the game needs to be scored, and will be scored 
the same way, the same block of code can simply be 
used twice and the sum values at the end of each 
block can be assigned to different variables to 
delineate which is the first nine and the second nine 
holes. In the for-loop the counter needs to loop 
exactly 9 times, once for each hole. Within the for 
loop the code needs gather the score for that hole 
through a user query and add it to a sum variable, to 
get the total score for the entire 9 nine holes. The 
code is then repeated to get the sum for the second 
nine holes, and then both sums are added together 
to get the total for the round of golf.” 

Table 5. SOLO Categories for Quiz 2, Loops 

 

 



SOLO Description Example 

1 – prestructural Nonsensical answer, an 
answer that had no more 
information than the question 
provided, or confused classes 
and methods 

“By determining a constructor and instance then I 
would write the code using methods to create how 
fast a swallow travels.”  
 

2 – unistructural Described 1-2 concepts that 
applied to the problem, but 
the description was 
incomplete or described a 
class instead of a method 

“Need to figure out what items are ints, doubles, 
strings. Then from what you are making and if it 
needs to accessed or created you would make it 
public or private class.”  
 

3 – 
Multistructural 

Described all concepts 
needed to solve the problem 
but provided no explanation 
beyond the question at hand 

“Write public, then void, and then in parenthesis 
create 3 variables, a string, a double, and an int in 
that order.”  
 

4 – relational Described how to solve the 
problem and explained how 
the different pieces of the 
choices made to solve this 
particular problem 

“I would start of by specifying that it's public since 
that was requested and add void since it does not 
return anything and I would call the method speed 
since that is what it is calculating and in the 
parenthesis I would add "String s, double a, int b" 
since it requested it in that order.” 

5 – extended 
abstract 

Explained how to solve a 
problem like this in abstract 
terms 

“First you would choose whether people should 
have access to this or not. Public is yes, and 
private is no. Next find if you need to return 
something or not. Since you don't, you would use 
void. If you needed to return something you would 
use the data type (int, double, etc). Then you 
choose a name that fits what you are creating. For 
this I will just use "speed". Then you would put the 
parameters in to what they will be entering. It says 
"a String and a double and an integer in that 
order". So you put that in the () of your method.”  
 

Table 6. SOLO Categories for Quiz 4, Writing Methods. 

 

 1 2 3 4 5 

Subgoal 
Mode = 4 

1 (1%) 4 (4%) 27 (29%) 53 (58%) 7 (8%)  
 

Control 
Mode = 3 

11 (12%) 17 (19%) 32 (35%) 27 (29%) 5 (5%)  
 

Table 7. Quiz 4 score frequencies between subgoal and control groups. 

For this question, 31% of the students in the control group were rated only a one or a 

two on this question, compared to the 5% of the subgoal group. On the other end of the 

scale, 66% of the subgoal group were rated a four or five on this question, with only 

34% of the control group receiving the same score. We expect that the subgoal labels 

for writing methods and evaluating methods helped students to explain how they would 

choose the various parts of the method header and, therefore, earn a higher score. 95% 

of the subgoal students were able to provide a complete answer to this problem 

compared to 69% of the control students.  



5.4 Quiz 3 – Nested Loops  

The third quiz analyzed (quiz 10 for the term) does not follow the same pattern of results 

found for the other quizzes. The third quiz had responses from 90 students in the 

subgoal group and 102 students in the control group. The raters checked interrater 

reliability after scoring each quintile of the scores, but they never achieved a sufficiently 

high reliability to warrant a single rater. Therefore, two raters discussed and reached 

agreement for each of the responses. This question asked the students to look at a 

nested loop structure and describe how they would determine its output. We believe 

that the low interrater reliability for this question was due to the numerous pieces of 

content knowledge required to answer this question. It is also interesting to note that for 

this question, the mode was two for both groups, occurring at twice or more times the 

rate of the other scores. This mode indicates that responses at the higher levels of the 

taxonomy were not as prevalent in the data set and did not allow for exemplars and 

discussion which could have also led to the interrater reliability issues. Table 6 provides 

the question-specific content, relationship, and principle information required to achieve 

each score.  

The two groups scored equivalently on the third quiz, t(191) = 1.13, p = .29, η2 = .01. 

The mode and frequencies of each score in the groups can be found in Table 8. For this 

question, the subgoal group did not produce answers at higher levels of the taxonomy 

at a greater rate than the control group. In fact, only 12% of the subgoal group received 

ratings of four or five, while 19% of the control group received those ratings. The 

students in the subgoal group had a higher proportion of ratings of two (53% vs. 38%). 

Though we cannot be certain why this question displayed such different outcomes than 

the others or what aspects of this question made the results different, we expect that the 

high level of content knowledge required for the question played a significant role. In 

addition, the use of the nested loop did not match well onto the subgoal labels, 

providing no extra benefit for students who learned with SLWE.  

 1 2 3 45  

Subgoal 
Mode = 2 

8 (9%) 48 (53%) 23 (26%) 8 (9%) 3 (3%)  
 

Control 
Mode = 2 

12 (12%) 39 (38%) 32 (31%) 17 (17%) 2 (2%)  
 

Table 8. Quiz 3 score frequencies between subgoal and control groups. 

6 Conclusion 

Overall, the subgoal label group gave more complete answers, often including relational 

and abstract information, on three of the four quiz questions. Based on the SOLO 

taxonomy, subgoal students demonstrated a higher level of cognitive understanding of 

the underlying programming principles. For the one question in which this was not the 

case, we argue that the question required more pieces of content knowledge, making it 

more difficult to achieve higher ratings on SOLO. A majority of students tended to write 



enough to earn a unistructural rating, but they did not expand upon their responses 

beyond the complex structure required for that question (nested loops). In addition, the 

subgoal labels from the SLWE did not fit the problem, which likely contributed to the 

subgoal and control students performing equivalently.  

 

SOLO Description Example  
 

1 – prestructural Nonsensical answer, an 
answer that had no 
more information than 
the question provided, or 
identified content in the 
code with no explanation 
for how they functioned 

“I would start from the first for statement and then 
continue to the next for statement using the previous 
values needed.”  
 

2 – unistructural Described 1-2 concepts 
that applied to the 
problem, but description 
was incomplete or did 
not demonstrate an 
understanding of the 
code presented to them  
 

“First see what loops are grouped together by brackets. 
The first loop is contained by the first and last brackets 
and the loops inside this one only contain the next line 
after the for loop statement. I would find the output for 
each smaller loop and then everything inside the first 
loop then display that value the number of times each 
loop specified.” 

3 – 
Multistructural 

Described all concepts 
needed to solve the 
problem but provided no 
explanation beyond the 
question at hand 

“To solve this, I would first block each for loop so I know 
what loop is connected to what action (and what actions 
also come right after a loop has concluded). Then, I 
would determine how many times each individual loop 
would run. After that it is merely a game of running 
through steps. Loop at the bottom goes a couple times, 
loop above it goes once. Repeat this until the loop 
above it is complete, then go to the initial loop. This 
repeats until the initial loop also is finished executing. 
That should give you your output.” 

4 – relational Described how to solve 
the problem and 
explained how the 
different pieces of the 
choices made to solve 
this particular problem 

“First, look at the large 'for loop'. This loop will execute 
ten times but inside this loop there are two nested loops. 
The first inner loop will execute 10 times on the first 
round of the large loop, nine times during the second 
time through the large loop and so on. The 
System.out.println( ); after the first nested loop 
separates the '*' with an empty line each time the x 
value changes. The second nested loop is similar but is 
not inside the first nested loop because the first nested 
loop does not use curly braces. It is similar to the first 
nested loop and will print ten octothorps the first round 
of the large loop, then nine the second round through.”  

5 – extended 
abstract 

Explained how to solve 
a problem like this in 
abstract terms  
 

“First, notice that in the first for loop, x counts down from 
ten to one before becoming false, meaning it will 
execute the internal code 10 times. Next, the first 
internal for loop counts to whatever x is for that specific 
loop, counting from one each time. This will produce an 
asterisk for each iteration. Because it will only loop the 
code on the line below it, after the loop is finished, it will 
create a line break and move on to the second for loop. 



The next for loop will start out at ten each time, and 
reduce until it has reached the x value of that loop. 
Once this loop is finished, another line break will occur 
and the x loop will move onto its next iteration. This will 
result in Alternating lines of stars and pounds, with the 
stars decreasing by one each time, and the pounds 
increasing by one each time.” 

Table 9. SOLO Categories for Quiz 3, Nested Loops. 

There is still much work to be explored in this area with regards to the effect subgoal 

labels have on students’ development of knowledge. Although this analysis shows 

promising results, the pilot test has significant limitations. The instructor who was 

teaching using SLWE was also part of the research team. At the phase of the 

development of the subgoal materials, this was necessary to fix any errors or 

overlooked details that would disrupt using the materials in class, but it also diminishes 

the validity of our results. The instructor is a veteran at teaching introductory 

programming and, thus, has significant prior experience, which helps to increase 

consistency of instruction and reduce bias. Some level of bias, however, is still likely to 

have been represented in the data.  

Our next steps are to test the SLWE in courses taught by instructors not directly part of 

the research team and analyze the student performance on the quizzes and exams 

from those courses. The courses will be in a wide range of universities taught by various 

instructors, and we will collect data from students with a wide range of learner 

characteristics. Based on those results, we will have a much clearer picture of the 

impact of implementing subgoal materials across an entire course.  

ACKNOWLEDGMENTS  

This work is funded in part by the National Science Foundation under grants 1712025, 

1712231 and 1927906. Any opinions, findings, and conclusions or recommendations 

expressed in this material are those of the authors and do not necessarily reflect the 

views of the NSF.  

REFERENCES  

[1] Atkinson, R.K. et al. 2000. Learning from examples: Instructional principles from 

 the worked examples research. Review of educational research. 70, 2 (2000), 

 181–214.  

[2] Biggs, J.B. and Collis, K.F. 2014. Evaluating the quality of learning: The SOLO 

 taxonomy (Structure of the Observed Learning Outcome). Academic Press.  

[3]  Brown, N.C. and Wilson, G. 2018. Ten quick tips for teaching programming. 

 PLoS computational biology. 14, 4 (2018).  



[4]  Catrambone, R. 1998. The subgoal learning model: Creating better examples so 

 that students can solve novel problems. Journal of Experimental Psychology: 

 General. 127, 4 (1998), 355.  

[5]  Corney, M. et al. 2011. Early Relational Reasoning and the Novice Programmer: 

 Swapping as the “Hello World” of Relational Reasoning. 114, (2011), 10.  

[6]  Corney, M. et al. 2014. “Explain in Plain English” questions revisited: data 

 structures problems. Proceedings of the 45th ACM technical symposium on 

 Computer science education - SIGCSE ’14 (Atlanta, Georgia, USA, 2014), 591– 

 596.  

[7]  Izu, C. et al. 2016. A Study of Code Design Skills in Novice Programmers using 

 the SOLO taxonomy. Proceedings of the 2016 ACM Conference on International 

 Computing Education Research - ICER ’16 (Melbourne, VIC, Australia, 2016), 

 251–259.  

[8]  Joentausta, J. and Hellas, A. 2018. Subgoal Labeled Worked Examples in K-3 

 Education. Proceedings of the 49th ACM Technical Symposium on Computer 

 Science Education (2018), 616–621. 

[9]  Koo, T.K. and Li, M.Y. 2016. A guideline of selecting and reporting intraclass 

 correlation coefficients for reliability research. Journal of chiropractic medicine. 

 15, 2 (2016), 155–163.  

[10]  Lister, R. et al. 2004. A multi-national study of reading and tracing skills in novice 

 programmers. ACM SIGCSE Bulletin (2004), 119–150.  

[11]  Lister, R. et al. 2006. Not Seeing the Forest for the Trees: Novice Programmers 

 and the SOLO Taxonomy. ACM SIGCSE Bulletin (2006), 118– 122.  

[12]  Margulieux, L.E. et al. 2019. Design and Pilot Testing of Subgoal Labeled 

 Worked Examples for Five Core Concepts in CS1. ITICSE’19: Innovation and 

 Technology in Computer Science Education Proceedings (Aberdeen, Scotland, 

 Jul. 2019), 7.  

[13]  Margulieux, L.E. et al. 2012. Subgoal-labeled instructional material improves 

 performance and transfer in learning to develop mobile applications. Proceedings 

 of the ninth annual international conference on International computing education 

 research (2012), 71–78.  

[14]  Morrison, B.B. et al. 2016. Learning Loops: A Replication Study Illuminates 

 Impact of HS Courses. Proceedings of the 2016 ACM Conference on 

 International Computing Education Research (New York, NY, USA, 2016), 221–

 230.  

[15]  Morrison, B.B. et al. 2015. Subgoals, Context, and Worked Examples in Learning 

 Computing Problem Solving. Proceedings of the Eleventh Annual International 



 Conference on International Computing Education Research (New York, NY, 

 USA, 2015), 21–29.  

[16]  Murphy, L. et al. 2012. Ability to “explain in plain English” linked to proficiency in 

 computer-based programming. Proceedings of the ninth annual international 

 conference on International computing education research - ICER ’12 (Auckland, 

 New Zealand, 2012), 111.  

[17]  Murphy, L. 2012. “Explain in plain English” questions: implications for teaching. 

 Proceedings of the 43rd ACM technical symposium on Computer Science 

 Education. (2012), 6.  

[18]  Renkl, A. 1997. Learning from worked-out examples: A study on individual 

 differences. Cognitive science. 21, 1 (1997), 1–29.  

[19]  Schwonke, R. et al. 2009. The worked-example effect: Not an artefact of lousy 

 control conditions. Computers in Human Behavior. 25, 2 (2009), 258– 266.  

[20]  Seiter, L. 2015. Using SOLO to Classify the Programming Responses of Primary 

 Grade Students. Proceedings of the 46th ACM Technical Symposium on 

 Computer Science Education - SIGCSE ’15 (Kansas City, Missouri, USA, 2015), 

 540–545.  

[21]  Sheard, J. et al. 2008. Going SOLO to Assess Novice Programmers. ACM 

 SIGCSE Bulletin. 40, 3 (2008), 5.  

[22]  Sudol-DeLyser, L.A. 2015. Expression of Abstraction: Self Explanation in Code 

 Production. Proceedings of the 46th ACM Technical Symposium on Computer 

 Science Education - SIGCSE ’15 (Kansas City, Missouri, USA, 2015), 272–277.  

[23]  Sweller, J. 2006. The worked example effect and human cognition. Learning and 

 instruction. (2006).  

[24]  Whalley, J.L. et al. 2006. An Australasian Study of Reading and Comprehension 

 Skills in Novice Programmers, using the Bloom and SOLO Taxonomies. 

 Australiasian computer science communications. (2006), 10. 


	Using the SOLO Taxonomy to Understand Subgoal Labels Effect in CS1
	Recommended Citation

	tmp.1648759184.pdf.BjVxy

