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In this paper, we investigate the convergence and superconvergence properties of a local
discontinuous Galerkin (LDG) method for nonlinear second-order two-point boundary-
value problems (BVPs) of the form u” = f(x,u,u’), x € [a,b] subject to some suitable
boundary conditions at the endpoints x =a and x = b. We prove optimal L2 error
estimates for the solution and for the auxiliary variable that approximates the first-
order derivative. The order of convergence is proved to be p + 1, when piecewise
polynomials of degree at most p are used. We further prove that the derivatives of the
LDG solutions are superconvergent with order p + 1 toward the derivatives of Gauss-
Radau projections of the exact solutions. Moreover, we prove that the LDG solutions are
superconvergent with order p 4+ 2 toward Gauss-Radau projections of the exact solutions.
Finally, we prove, for any polynomial degree p, the (2p + 1)th superconvergence rate of
the LDG approximations at the upwind or downwind points and for the domain average
under quasi-uniform meshes. Our numerical experiments demonstrate optimal rates of
convergence and superconvergence. Our proofs are valid for arbitrary regular meshes using
piecewise polynomials of degree p > 1 and for the classical sets of boundary conditions.
Several computational examples are provided to validate the theoretical results.
© 2019 The Author(s). Published by Elsevier B.V. on behalf of IMACS. This is an open
access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The purpose of this paper is to study the convergence and superconvergence properties of the local discontinuous
Galerkin (LDG) method for the nonlinear two-point second-order boundary-value problems (BVPs)

u" = fx,u,u’), xela,bl,

(1.1a)

where u: [a,b]— R and f:D — R is a given smooth function on the set D = [a, b] x RZ. In this paper, we consider one
of the following set of boundary conditions, which are commonly encountered in practice:

u(@=ay, u'(b)=pi, (1.1b)
u(@=o1, ub)=p, (1.1c)
u@ =u(b), u'(a)=u'(b), (1.1d)
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where o1, B, are given constants. In our analysis, we assume that the BVP (1.1) has one and only one solution. The
conditions on f for the existence and uniqueness of the solution to the general BVP (1.1) are given in [22]. The nonlinear
two-point BVP (1.1) arises in applied mathematics, theoretical physics, engineering, control and optimization theory; see
e.g., [3,28]. Since the analytic solution to (1.1) is difficult to obtain for general f, numerical techniques are often needed to
approximate its solution. Many authors have designed numerical schemes to solve second-order BVPs. We refer to [30,17,
22,3,25,20,5,19,11,23,27,2,30,21] for some numerical methods including the shooting method, the finite difference method,
the collocation method, the monotone iterative method, and the quasilinearization method.

Superconvergent numerical methods of BVPs are necessary in many important scientific and engineering applications
such as boundary layer theory, the study of stellar interiors, control and optimization theory, and flow networks in biol-
ogy. A knowledge of superconvergence properties can be used to (i) construct simple and asymptotically exact a posteriori
estimates of discretization errors and (ii) help detect discontinuities to find elements needing limiting, stabilization and/or
refinement. Typically, a posteriori error estimators employ the known numerical solution to derive estimates of the actual
solution errors. They are also used to steer adaptive schemes where either the mesh is locally refined (h-refinement) or
the polynomial degree is raised (p-refinement). In the past several decades, there also has been considerable interest in
studying superconvergence properties of numerical methods. In this paper, we present new superconvergence results of the
LDG method for solving (1.1). Discontinuous Galerkin (DG) methods form a class of high order numerical methods for solv-
ing ordinary differential equations (ODEs) and partial differential equations (PDEs). They combine many attractive features
of the finite element and finite volume methods. DG schemes have been successfully applied to many problems arising
from a wide range of applications. The DG method is a finite element method using a completely discontinuous piecewise
polynomial space for the numerical solution and the test functions. DG methods are becoming important techniques for
the computational solution of many real-world problems. They are known to have good stability properties when applied
to hyperbolic PDEs. Furthermore, DG methods have been successfully applied to hyperbolic, elliptic, and parabolic problems
arising from a wide range of applications. DG methods are highly accurate numerical methods with the advantage that
they can handle problems having discontinuities such as those that arise in hyperbolic problems, can handle problems with
complex geometries, simplify adaptive h—, p—, and r— refinement, and produce efficient parallel solution procedures. DG
method was initially introduced by Reed and Hill in 1973 as a technique to solve neutron transport problems [29].

The local DG (LDG) methods are natural extension of the DG methods aimed at solving higher-order PDEs. The LDG
method was first proposed by Cockburn and Shu in [16] for solving convection-diffusion problems. The LDG method con-
sists of rewriting a higher order differential equation into a system of first-order equations and then discretizing it by the
standard DG method. The success of LDG methods is due to the following properties: (i) they are robust and high order
accurate, (ii) they can achieve stability without slope limiters, and (iii) they are element-wise conservative. This last feature
is very important in the area of computational fluid dynamics, especially in situations where there are steep gradients or
boundary layers or shocks. Moreover, LDG schemes are extremely flexible in the mesh-design. Thus, they can easily handle
meshes with hanging nodes, elements of various types and shapes, and local spaces of different orders. Furthermore, they
exhibit useful superconvergence properties that can be used to estimate the actual discretization errors. We refer the reader
to e.g, [8,15,13,7,14] and references therein for a more complete survey of several LDG methods.

Several authors designed and analyzed the LDG method for BVPs of the form (1.1), see e.g., [9,24,33,36,32,31,37,4]. In [4],
we proposed and analyzed a superconvergent and high order accurate LDG method for nonlinear two-point second-order
BVPs of the form u” = f(x, u) subject to some suitable boundary conditions. We proved optimal L? error estimates for the
solution and for the auxiliary variable that approximates its first-order derivative. The order of convergence is proved to be
p-+1, when piecewise polynomials of degree at most p > 1 are employed. We further proved that the derivatives of the LDG
solutions are superconvergent with order p 4+ 1 toward the derivatives of Gauss-Radau projections of the exact solutions.
Finally, we showed that the LDG solutions are superconvergent with order p 4+ 3/2 toward Gauss-Radau projections of
the exact solutions, while computational results show higher @(h?*2) convergence rate. However, a theoretical proof of
this property remains open. The main purpose of our current work is to use a different approach to prove the (p + 2)th
superconvergence rate and also the (2p + 1)th superconvergence rate at upwind and downwind points and for the domain
average. To the best of our knowledge, these results are original.

In this paper, we design a superconvergent LDG method for nonlinear BVPs of the form (1.1). We prove several optimal L?
error estimates for the LDG solutions. In particular, we prove that the LDG solutions to approximate u and u’ are (p + 1)th
order convergent in the L2-norm, when the space of piecewise polynomials of degree p > 1 is used. We further show that
the derivatives of the LDG solutions are superconvergent with order p + 1 toward the derivatives of Gauss-Radau projec-
tions of the exact solutions. Moreover, we prove (p + 2)th order superconvergence of the LDG solutions toward Gauss-Radau
projections of the exact solutions. Finally, we show that the errors between the LDG solutions and the exact solutions are
(2p + 1)th order superconvergent at either the upwind point or downwind point in each element on regular meshes. Nu-
merical experiments demonstrate that the theoretical orders of convergence and superconvergence are optimal. Our global
error analysis is valid for any regular meshes and using piecewise polynomials of degree p > 1 and for the classical set of
boundary conditions. We would like to mention that the proposed LDG method has several advantages over the standard
methods due to the following nice features: (i) it achieves arbitrary high order accuracy, (ii) it exhibits optimal convergence
properties for the solution and for the auxiliary variables that approximate the derivatives, (iii) it can easily handle meshes
using local spaces of different orders, and (iv) achieves superconvergence results that can be used to construct asymptot-

Please cite this article in press as: M. Baccouch, Analysis of optimal superconvergence of a local discontinuous Galerkin method for nonlinear
second-order two-point boundary-value problems, Appl. Numer. Math. (2019), https://doi.org/10.1016/j.apnum.2019.05.003




APNUM:3552

M. Baccouch / Applied Numerical Mathematics eee (eeee) see—oee 3

ically exact a posteriori error estimates by solving a local problem on each element. This will be discussed in a separate
paper.

The rest of the paper is organized as follows: In section 2, we describe the LDG method for nonlinear second-order BVPs.
We also present some preliminary results, which will be used in our error analysis. In section 3, we present a detailed
proof of the optimal a priori error estimates of the LDG method. We state and prove our main superconvergence results in
section 4. In section 5, we present several numerical examples to validate our theoretical results. Finally, we provide some
concluding remarks in section 6.

2. The LDG scheme for nonlinear second-order BVPs

In order to define the LDG method, we introduce a new auxiliary variable ¢ = u’ and convert (1.1a) into a first-order
system of ODEs

¢=fxuq, u=q (2.1)

To obtain the LDG weak formulation, we partition the computational domain € = [a, b] into a collection of non-overlapping
elements I; =[x;_1,%i], i=1,...,N, where xo =a and xy = b. We denote the length of each interval I; by hj = x; — x;j_1.

We also define h = max h; and hpj, = lmin h; to be the lengths of the largest and smallest cells, respectively. We assume
1<i<N <i<N

that the mesh is regular in the sense that there exists a constant K > 1 independent of h such that h < Kh;, i=1,...,N.
For simplicity, we use v(x; ) = lim v(x; +s) and v(xf) = lim+ v(x; + 5) to denote the left limit and the right limit of v
s—0~ s—0

at the discontinuity point x;. We also use [v](x;) = v(xl.*) — v(x;) to denote the jump of v at x;.
Multiplying the two equations in (2.1) by arbitrary test functions v and v,, integrating over the interval I;, and using
integration by parts, we get

_/qv/]dx‘i‘Q(Xi)Vl(Xi)_Q(Xi—l)Vl(Xi—l):/.f()@u’Q)VldX’ (2.2a)
I; Ij

—/uv’zdx+u(xi)vz(xi)—U(Xi—1)V2(Xi—1)=/qV2dX- (2.2b)
I; Ii

Next, we introduce the following discontinuous finite element approximation space

Vi={v:v|, e PPy, i=1,...,N},

where PP (I;) denotes the space of polynomials of degree at most p on I;. We would like to emphasize that polynomials in
the finite element space V,f are allowed to be completely discontinuous at the mesh points.

To obtain the LDG scheme, we replace the exact solutions u and q by piecewise polynomials of degree at most p
and denote them by uy € V,f and qp € Vﬁ. We also choose the test functions vi and vy to be piecewise polynomials of
degree at most p. The LDG scheme can now be defined as: find approximations uy, qj € V,f such that V vy, vp € V,f and
Vi=1,...,N,

_/thadx‘i‘ah(xi)vl(xi_)_@1(Xi—1)vl(xft1):/f(X, Up, qr)V1dx, (2.3a)
I; Ij

—/uhV'ZdX-I—ﬁh(Xi)Vz(X,-_)—ah(xi—1)V2(XiJ’_1)Z/thzdx, (2.3b)
I; Ii

where U, and Gy, are the so-called numerical fluxes, which are, respectively, the discrete approximations to u and q at the
nodes. These numerical fluxes must be designed based on different guiding principles for different differential equations
to ensure stability and optimal error estimates. To complete the definition of the LDG scheme, we only need to define iy
and G, on the boundaries of I;. It turns out that the following simple choices would guarantee the optimal convergence
and superconvergence of our LDG scheme: For the mixed boundary conditions (1.1b), we take the following alternating
numerical fluxes; see e.g., [4]

~ o Jon, i=0, ~ o Ja&xH, i=0,1,...,N—1,
%@J_{Maﬁ,i:Llqu, %“”_{m,izw. (242)

If other boundary conditions are chosen, the numerical fluxes can be easily designed. For instance the numerical fluxes
associated with the boundary conditions (1.1c) can be taken as

Please cite this article in press as: M. Baccouch, Analysis of optimal superconvergence of a local discontinuous Galerkin method for nonlinear
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A, i= 0, + .
—~ . —~ qn(x;"),i=0,1,...,N—1,
up(xi) =3 up(x;),i=1,2,...,N—1, Xj) = L = . 2.4b
nO = ) 0 {qh(xi)—zsl(uh(xi)—ﬁ]), i=N. (240)
B1, i=N,
where the stabilization parameter §; for the LDG method is given by §; = h%.
N
For the periodic boundary conditions (1.1d), we choose the following alternating fluxes
~ up(xy), i=0, ~ qn(xH), i=0,1,...,N—1,
i) = - . i) = . 2.4
Un (i) {uh(xi ), i=1,2,...,N, G (Xi) qn(xg), i=N. (2.4c)

Implementation: The LDG solution (up, gy) can be obtained using the following steps:

(1) For x € I;, we choose {qbk,i(x)}’;zg to be a local basis of PP(I;) and we express up, q, as

p p
U () =) Clithi®),  Gn(O =) Ckppr1.idhi(X).

k=0 k=0

In practice, we may choose ¢y ; = Li ;, where Ly ; is the kth-degree Legendre polynomial on I;.

(2) We choose the test functions vi = vz =¢;i(x), j=0,...,p to obtain 2N(p + 1) x 2N(p 4+ 1) system of nonlinear
algebraic equations.

(3) We solve the nonlinear system for the unknown coefficients cqi,c1i...,C2p41,i» i =1,...,N using eg., Newton's
method for nonlinear systems. Once we solve for the unknown coefficients, we get the LDG solutions uj and qp, which
are piecewise discontinuous polynomials of degree < p.

1/2
Norms: We present some norms that will be used throughout the paper. Denote ||ullg j, = ( f,l_ uz(x)dx) to be the stan-

dard L%-norm of the function u on I;. For any natural integer s, the Sobolev space H*(I;) consists of functions that have
generalized derivatives of order s in the space L2(I;). It is defined by

HS(I;) = {u e 12(I;) : Dru e L2(I), VO§l<§s].

172
The norm of H(I;) is defined by ||ulls j, = (Zi:o I DkuH?J 11) . We shall also use the following notation for the semi-norm

|uls,;, = | D*u, , - Finally, we define the norms on the whole computational domain € as follows:

1/2

N 1/2 N
_ 2 _ 2
luls.q = (Z |u|s,,,.> ,lulse = (Z ||u||s,,,.>
i=1 i=1

For convenience, we use ||ull, |lulls, and |ul to denote |ullg.q, lltllsq, and |uls o, respectively. We would like to mention
that if u € H(Q), s=1,2, ..., then the Sobolev norm ||u||s o on the whole computational domain €2 is the standard Sobolev

2 \1/2
norm defined by [ullsq = <Zi:0 | Dku ”0,9) )
Legendre polynomial: In our analysis we need the pth-degree Legendre polynomial defined by Rodrigues formula [1]

dpP

Lp®) = 3571 7ep

(€-1p), —1=e<1,

which satisfies the following properties: Zp(l) =1, ip(—l) = (—1)P, and the orthogonality relation

1

- ~ 2
/Lp(g)Lq (6)dt = mqu, where &g is the Kronecker symbol. (2.5)
-1

Mapping the physical element I; = [xj_1, X;] into a reference element [—1, 1] by the standard affine mapping

itxic1  hi
X ) =" 26)

we obtain the k-degree shifted Legendre polynomial, Ly ;(x) = L (M%) on Ij.

Please cite this article in press as: M. Baccouch, Analysis of optimal superconvergence of a local discontinuous Galerkin method for nonlinear
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Using the mapping (2.6) and the orthogonality relation (2.5), we obtain

hi 2 hi
2

2p+1 2p+1

1
hi -
Itrallss, = [ 1a0mx=3 [ Tcerte =
-1

Ii

Gauss-Radau Projections: For p > 1, we introduce two special Gauss-Radau projections P,f. These projections are defined
element-by-element as follows: For any integrable function u on €, P}fu € V}f and the restrictions of Phiu to I; are polyno-
mials in PP (I;) satisfying the conditions, see e.g [10]
/(u — P u)vdx=0, Vve pP~1(1p), and (u-— P u)(x;) =0, (2.8)
I
/(u —Pfuyvdx=0, Vve PP~1(1), and (u— Pfuy(xf ) =0. (2.9)
I

By the scaling argument, we obtain the following projection results [12]: For any function u € HP*1(Q), there exists a
positive constant C independent of the mesh size h, such that

|lu—Pjful| +h|@—P;u)| < ChP* jul ;. (2.10)

Moreover, we recall the inverse properties of the finite element space V,f that will be used in our error analysis [26]: For
any v € VP, there exists a positive constant C independent of v and h, such that

N 1/2
VIl <ch v, (Z vt )+ v2<x,-)> <Ch™'2v]. (2.11)
i=1

In the rest of the paper, we will not differentiate between various constants, and instead will use a generic constant C (or
accompanied by lower indices) to represent a positive constant independent of the mesh size h, but which may depend
upon the exact smooth solution of the BVP (1.1). They also may have different values at different places.

3. A priori error estimates

In this section, we derive optimal L? error estimates for the LDG method. For convenience, we use e, and eq to denote
the errors between the exact solutions of (2.1) and the LDG solutions defined in (2.3), i.e.,

ey=U~—1Up, eg=q—(p.
As the usual treatment in finite element analysis, we divide the errors into the form
ey =¢€y+ey, eg=¢g+eq, (3.1)
where the projection errors are defined by
€u=u—P, u, 6q=q—P,Tq,
and the errors between the numerical solutions and the projection of the exact solutions are defined by
eu=P u—uy, eq=Plq—qp.

In our error analysis, we assume that the function f appearing in the right-hand side of (1.1a) is sufficiently differentiable
function. More precisely, we assume that the f satisfies the following conditions:

Assumption Al. The functions f, f,, and f; are continuous on the set D ={(x,u,q) | xe[a,b], ueR, qgeR}.

Assumption A2. For all (x,u, q) € D there exist constants K;, i =1, 2 such that
0< fulx,u,q) <Ki, |fox,u,q)|=<K>. (32)

Remark 3.1. The proofs of our theorems require that the function f is smooth, f, and f; are bounded on the set D. These
assumptions are usually the hypotheses of the existence and uniqueness theorem of (1.1).

Please cite this article in press as: M. Baccouch, Analysis of optimal superconvergence of a local discontinuous Galerkin method for nonlinear
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In the next theorem, we prove a priori error estimates for e, and eq in the L%-norm.

Theorem 3.1. Let (u, q) be the exact solution of (2.1). We assume that f satisfies Assumption Al and Assumption A2. Let p > 1 and
(up, qn) be the LDG solution of (2.3), then there exists a positive constant C independent of h such that

lewll < CRPH!. (3.3)
leq|| < chP*. (34)

Proof. First, we derive some error equations which will be used repeatedly throughout this paper. Subtracting (2.3) from
(2.2) with v € VP, k=1,2 and using the numerical fluxes (2.4a), we obtain the error equations on I;: V vy, vy €V},

—/eqv&dx+eq<x?>vl(x;>—eq<x?_1)v1<x,-t1>=/(f(x,u,q) — f(x, up, qn)) v1dx, (3.52)
I; Ii

—/euv’zdx—l—eu(xi’)vz(xi’)—eu(xi’_l)vz(qu)=/equdx. (3.5b)
I; Ii

Applying Taylor’s Theorem with integral remainder and using (3.1), we write

fx,u,q) — f(x,up, qn) = Ruey + Rqeq, (3.6)

where

1
Ry =Ry(X) :/fu (%, u(x) — tey(x), q(x) — teq(x)) dt,
0

1
Rg=Rq(x) = / fq (x, u(x) — tey (x), q(x) — teq(x)) dt.
0

Under Assumption A2, we have

0<Ru(x) <Ky, |Rq®x)|=<Kaz, Vxela,bl. (3.7)
Using (3.6), we rewrite (3.5) as

AP = AP () =0, Vi, vy eV], (3.8)

where the operators A,(f) . HPT1(Q) - R, k=1—2 are defined by

AP (V) :[qu{dx —eq(DV1(x) +eq( Vi) + / (Rueu + Rgeq) Vadx. (3.9)
I; li

AP (V) = f euVydx — e () Va () + eu (6 V2 ) + f eqVadx. (3.9b)
Ii li

Adding the above equations, we get

Aﬁ”(v1)+A§")(v2)=/eq(v; +RqV1 +V2)dx+/eu (V3 + Ry V1) dx
I; Ii
+ — + + — — — +
—eq( Vi) +eq(X” Vi) —eu; )Valx) +eu(x_)Va (). (3.10)

Summing over all elements gives

N
Z(A§'>(v1)+A§’)(v2)) =/eq (Vi + RqV1 +V2)dx+/eu (Vh + Ry V1) dx
i=1 Q Q
—eq(x)V1(xy) +eq(XHIV1(x) — eu(xy) Va(xy) +eu(xg) Va(xg).

If the boundary conditions (1.1b) are used then ey (x;) =eq (xﬁ) = 0. Thus, we have

Please cite this article in press as: M. Baccouch, Analysis of optimal superconvergence of a local discontinuous Galerkin method for nonlinear
second-order two-point boundary-value problems, Appl. Numer. Math. (2019), https://doi.org/10.1016/j.apnum.2019.05.003
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Z(A§i>(V1)+A§>(v2)) :/eq (Vi + RqV1 +V2)dx+/eu (Vh + Ry V1) dx + eg (D) V1 (x3) — eu(xy) Va (Xy).-

i=1 Q Q
(3.11)
On the other hand, performing integration by parts, we write (3.9) as
Aﬁ”(Vl) = / (—eg + Rueu + Rgeq) Vidx — [eg](xp) V1 (x;), (3.12a)
Ii
A2 = [ (€ +eq) Vad ~ Leal o Vati ). (3:12b)

Ii

We note that, with the numerical fluxes (2.4a), the jumps of e, and eq at an interior point x; are defined as

leu](x) = eu(X") —eu (X)), [eqgl(xi) = eq(x") — eq(x;).

Since ey (xy) =¢q (xﬁ) =0, the jumps at the endpoints of the computational domain are given by

leu](X0) =eu(x]), [eqgl(xn) = —eq(xy).
Adding and subtracting P,"Vy to Vy and P; V3 to V3 and using (3.8) with vi = P, Vy € PP(I;) and v, = P,T Vo € PP(I;), we
get

AP W) = AP vy = Prvy + AP (V) = AP (Vi - PV, (3.13a)

AP V) = AP (V5 = PV + AP (P Vo) = AP (v, — PV, (3.13b)
Combining (3.13) and (3.12) and using the properties of the projections P, ie., (V — PyV)(x) =(V - P;V)(qu) =0, we
obtain

AP (V) = / (—eq + Ruew + Rqeq) (Vi — Py Viddx,  AY(V2) = / (—eu +eq) (V2 = Py Va)dx. (3.14)

I; Ii

By the property of the projection P, we have

/W/(V - P,fV)dx:O, vV w e PP(I)), (3.15)
Ii

since w is a polynomial of degree at most p and thus w’ is a polynomial of degree at most p — 1.
Substituting (3.1) into (3.14) and using (3.15) with w =&, &; € PP(l;), we get

AP vy = / (—€g + Rueu + Rqeq) (V1 — Py V)dx, AP (V) = f (=€ +eq) (Va = Py Va)dx.

Ii Ii

Adding these two equations, we obtain

AD () + AP (V) = / (—€q + Rueu + Rqeq) (V1 — P, Vi)dx + / (€, +eq) (V2 — P Vy)dx. (3.16)
I; I;

Summing over all elements, we arrive at

N
> (Aﬁ’)(vl) +A§”(v2)) — / (—€} + Ruey + Rgeq) (V1 — Py Vi)dx + / (—€, +eq) (Vo — P Vo)dx.  (317)
i=1 Q Q
Combining (3.11) and (3.17) yields

/eq (Vi+RqV4 +V2)dx+/eu (V5 + Ry V1) dx +eq(xg)V1(x3) — eu(xy) Va(xy)
Q Q

= / (—€q + Rueu + Rgeq) (V1 — P, Vi)dx + / (=€, +eq) (V2 — P V2)dx. (318)
Q Q
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The main idea behind the proof of the theorem is to construct the following adjoint problem: find W1 and W5 such that
Wi+ Wy +RWi=eq, W)+R,Wi=ey,, forxe(a,b) subjecttoW;(a)=W,(b)=0. (3.19)
The BVP (3.19) can be converted into the system of equations
W +AX)W=Db(x), x€Q subjectto B;W(a)+ B,W(b) =0, (3.20)
where
| wy | Rqg 1 | eq |10 {0 o0
W—[wz]’ A—[R,, 0},13_[6” Bi=lg o B2=]0 1|

The solution to (3.20) can be expressed in terms of its fundamental matrix
X
W(x) = M(x)W(a) + M(x)/M_l(t)b(t)dt, (3.21)
a

where the 2 x 2 fundamental matrix M(x) satisfies the following initial-value problem

M'(x) =—AX)M(K), M) =1, (3.22)
with [ the 2 x 2 identity matrix. It is possible theoretically to solve (3.20) directly by (3.21). This requires integrating (3.22)
to obtain M(x) and M~'(x) over the interval [a, b]. An equation for (3.21) is evaluated at x=b and solved for the missing
initial condition.

Under Assumption A1 and Assumption A2, the entries of the 2 x 2 matrix A(x) are bounded on [a, b]. Using (3.20), we
can deduce that there exists a constant C such that (see [18, Lemma 4.2])

2
IWIE = W13 + W2l < CIbI2 = (Jlewl® + [eq])
which gives

IWilly < C (llewll + Jleq]), k=1,2. (3.23)
Now, we are ready to prove (3.3)-(3.4). Taking V1 = W7 and V, = W, in (3.18) and using (3.19) gives
2 _
leq||” + lleull* = / (—€g + Rueu + Rqeq) (W1 — Py Wy)dx + / (=€) +eq) (W2 — P W))dx.

Q Q

Using (3.7) and applying the Cauchy-Schwarz inequality yields

Jeall* + lleul® < (g | + Ku lleull + K2 g [) [ W1 = Py Wi | + (el | + leql)) [ W1 — P wi |
Applying the standard interpolation error estimate (2.10), we get

leq || + llewll® < (ChP + K lleull + K2 ||eq||) Ch W1y + (ChP + |leq|)) Ch W25 .
Applying the regularity estimate (3.23), we get

Jeqll® + lleull? = C1h"*1 (Jleq]| + lleull) + Cah (eq]* + lleul?)

1

76 We deduce

Thus, for sufficiently small h, e.g., % <1 — Cyh, or equivalently, h <
2
leq]|” + llewll® < 2C1hP ! (|leg | + llewll) -
Invoking Young's inequality ab < % + %bz, we obtain

leq | + llewll? < Ch2P+2,

which completes the proof of (3.3)-(3.4). O
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4. Superconvergence error analysis

In this section, we investigate the superconvergence properties of the proposed LDG method. We prove that the deriva-
tives of the LDG solutions are superconvergent with order p + 1 toward the derivatives of Gauss-Radau projections of the
exact solutions. We further prove pointwise superconvergence results at the upwind and downwind points of each element.
More precisely, we will prove that, for i =1,2,...,N, |ey(x;)| = Oh?P*1) and |eq(x ;)| = OM*PF1). We will use these
results to show that the p-degree LDG solutions uy and gy, respectively, converge in the L?-norm to P, u and P;fq at
OhP+2),

4.1. Superconvergence for the derivative approximations

In the next theorem, we prove that the derivatives of the LDG solutions u; and g are O(hP+1y super close to (P uy
and (P} q)’, respectively.

Theorem 4.1. Suppose that the assumptions of Theorem 3.1 are satisfied. Then there exists a positive constant C independent of h such
that

Je| =P+, Je ] < e, (a1)
Proof. By the property of Phi, we have

eu(xi_)zeq(xl*)=0, [eqvﬁdxzfeuv’zdxza Yvq, vo € PP(I), i=1,...,N. (4.2)
I; I;

Using (3.1) and applying (4.2), we rewrite (3.5) as

- / eqvidx + eq(x;Hvi(xy) — eq(xh Dvax ) = / (Ruey + Rqeq) vidx, (4.3a)
Ij Ij

—/éuv/zdx—i—éu(xi’)vz(xi’) —eu(x_ V2 ) :/equdx. (4.3b)
I I

Using integration by parts, we write (4.3) as

/é;v1dx+ legl(xi)vi(x;) :/(Rueu + Rqeq) v1dx, (4.4a)
I; Ii
/é{,vzdx+[éu](x,'_l)vz(xf_l):/equdx. (4.4b)
I; Ii

Next we follow the idea in [34,35]. Choosing vi(x) = E&(x) — E:I(xi_)Lp,i(x) € PP(I;) in (44a), va(x) = e,(x) —
(—DPe, (x?'f])Lp,,'(x) € PP(I;) in (4.4b), and applying (2.5) gives

legl = [ (Rueu + Roea) (&~ &Ly
Ii

Jeule, = [ ea 6= (~1PE (L)
Ii

since v1(x;) = va(x" ;) =0 and f,i e, Lpidx= flr eyLp.idx=0.
Applying the estimate (3.7), the Cauchy-Schwarz inequality, the inverse inequality, and the estimate (2.7) yields

[ 15,,, = (Kt leulo. + Kz leal,,) (121, + 12O [Lp.ilo, 1)
= (Killeullor, + Kz leally 1) (121, +Chi 72 121, 1i7%)
= Cr (llewllo. + llealy,) 131

€16, = leallo, (1221, + 2660 1Ll )
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< lealo,, (12l +chi 2 12, 1)

= Czleqllo , [2ulos;-
Consequently, we deduce
&0, = €1 (leulo, + ealo, ) 8]0 = C2lealy -

Squaring both sides, using the inequality (a; + a2)? < 2(a% + a%), summing over all elements, and using the estimates (3.3)
and (3.4), we obtain

e * < 2% (heul? + feal”) = C?P*2. [ < G feal* < PP,

which completes the proof of (4.1). O
4.2. Pointwise superconvergence

First, we prove superconvergence results at the endpoints of the computational domain 2. We state them in the following
theorem.

Theorem 4.2. Suppose that the assumptions of Theorem 3.1 are satisfied. We assume that the function f € C lf (D), where C}'(D) is the
set of real m-times continuously differentiable functions which are bounded together with their derivatives up to the mth order on the
set D =[a, b] x R2. Let p > 1 and (uy, qi,) be the LDG solutions of (2.3), then there exists a positive constant C independent of h such
that

leu(xy)| < Ch2PTT. (4.5)
eq(x1)| < Ch?P*1, (4.6)
a\*o

Proof. We construct the following adjoint problem: find U; and U; such that

Ui +Uz+ReU1 =0, U)+Ry,U1=0, forxe(a,b) subjecttoUi(a)=0, Uz(b)=—1. (4.7)
The BVP (4.7) can be transformed into the system of equations

U +AxU=0, xe(ab), B1U(a) + ByU(b) = Uy, (4.8)
where

i R R R R E R
The solution to (4.8) can be expressed in terms of its fundamental matrix

Ux) =Mx)U(a), (4.9)
where the 2 x 2 fundamental matrix M(x) satisfies the initial-value problem

M x)=—-AX)MEx), M@ =I. (4.10)

If fe Cf(D) then the entries of A(x) are in HP(2). Differentiate (4.8) p times to express UP*D in terms of U, then replace
U using (4.9). Thus, the BVP (4.7) satisfies the following regularity estimate

Uklp+1 <C, k=1,2. (411)
Taking V1 =Uq and V, = U, in (3.18) and applying (4.7), we get
eu(Xy) = / (—€; + Ruey + Rgeq) (Ur — Py Un)dx + f (—€, +eq) (Uz — P Up)dx.

Q Q
Using (3.7) and applying the Cauchy-Schwarz inequality yields

lea )| = (l€g + K1 llewll + K2 [leq ) [Ur = P U | + ([€n ] + eql)) [U2 — Py U2] -

Applying (3.3), (3.4), the standard interpolation error estimate (2.10) and using the regularity estimate (4.11), we get
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leu(®y)| < (ChPIglyyq + K1 ChPT! 4 KoChPT) ChPH U |y 4q + (ChP [ulpyq + CRPFY) CHPHY U 44
< CthJr]’

which completes the proof of (4.5).
Next, we will prove (4.6). We construct the following adjoint problem: find Uy, k=1 — 4 such that

Uj+Uz+RqU; =0, Uj+R,U;1=0, forxe(a,b) subjecttoUi(@)=1, Ux(b)=0. (4.12)
As before, the BVP (4.12) satisfies the regularity estimate

[Uklp41 <C, k=1,2. (4.13)

Taking Vi, = Uy, k=1,2 in (3.18) and applying (4.12), we get

eq(xy) = / (—€g + Rueu + Rqeq) (Ur — P, Undx + / (—€, +eq) (U2 — P} U3)dx.
Q Q

Following the steps used to prove (4.5), we establish (4.6). O

In the next theorem, we state and prove superconvergence results at the downwind and upwind points. More precisely,
we prove the following theorem.

Theorem 4.3. Suppose that the assumptions of Theorem 4.2 hold. Then there exists a constant C such that

max |ey (XT)) < C h?PH1, (4.14)
j=1,2,...N ]
max ‘eq(x*)) < C h?PF1, (4.15)
j=1,2,....N J
Proof. For j=1,2,..., N, we consider the following terminal problem: find Uy, U; € Hp“[a,xj] such that
Uj+Uz+RU; =0, Uj+R,U1 =0, forxeQj=I[a,x;] subjecttoUq(xj)=0, Ua(xj)=—1. (4.16)

Under the assumption of the theorem, one can easily verify that (4.16) satisfies the following regularity estimate
Uk@| <C, [Uklpsrg, <C k=12, (417)

Taking V1 = Uy and V; = U3 in (3.10), summing over the elements I;, i =1,2,..., j, using (4.16) and the fact that e, (x;) =
0, we obtain

Z(Aﬁ')(u1)+A§”(Uz)) =/eq (U] + RqUy +U2)dx+/eu (U, + RyU1) dx

= Q; Q
—eq(XU1(X)) + eq(xg)U1(xg) — eu(®))U2(x})
= eu(x;) +eq(x)U1(a). (4.18)

On the other hand, taking Vi = Uy, k=1,2 in (3.16) and summing over the elements I;, i=1,2,..., j, we get

3 (A§'>(U1> + Ag”(Uz)) = f (—€q + Rueu + Rqeq) (U1 — P, Un)dx + / (=€, +eq) (U — P, U2)dx.  (419)
i=1 Qj Qj

Combining the two formulas (4.18) and (4.19) yields
eu(x;) = —eq(x)U1(a) + [ (—€; + Ruey + Rqeq) (Uy — Py Up)dx + / (—€ +eq) (Uz — P Up)dx.
Q2 Q2

Using (3.7) and applying the Cauchy-Schwarz inequality, we get

Please cite this article in press as: M. Baccouch, Analysis of optimal superconvergence of a local discontinuous Galerkin method for nonlinear
second-order two-point boundary-value problems, Appl. Numer. Math. (2019), https://doi.org/10.1016/j.apnum.2019.05.003




APNUM:3552

12 M. Baccouch / Applied Numerical Mathematics eee (eeee) see—cee

eu(x;)‘ = ]eq(xg)] U1 ()] + (”621 ”()791. + K1 lleullo.o; + K2 ”eq Ho,szj) ”U1 =Py Us Ho,sz}-
+ (”E[l Ho,szj +leg HO.QJ~> |U2 = Py U, HO,QJ-
= lege) U1 @1 + ([[€g ]| + Kn llewll + K2 [leg[) [Ur = Py U [ g
+(leull + leql) |U2 = P Uzl g, -

Using the standard interpolation error estimates (2.10), the estimates (3.3), (3.4), (4.6), and the regularity estimate (4.17),
we obtain

eu (x;)‘ < (Ch*PTHC + (CR*PH)C + (ChP + K1 ChP ! 4+ K ChPHY) ChPHH U g,
+ (ChP + ChP*1) ChPH U 1 g
< Ch2p<‘rl7

which completes the proof of (4.14).
Next, we will show (4.15). We construct the following terminal problem: find Uy, U; € Hp“[x]-,l,b], j=1,2,...,N
such that

U} + Uz + RqU1 =0, Uj + R,Uy =0, forx € Qj = [xj_1, b] subject to U1 (xj_1) =1, Uz(xj_1) =0. (4.20)
Under the assumptions of the theorem, one can easily verify that (4.20) satisfies the following regularity estimate
Uk <C, |Uklpy16,<C k=1,2. (4.21)

Taking V1 = U; and V; = U; in (3.10), summing over the elements [;, i = j, ..., N, using (4.20) and the fact that eq(xﬁ) =0,
we obtain
N

> (AP un+ AP W) = / eq (U} + RqU1 + Ua) dx + / eu (U + RuU1) dx
= Q; Q)
— eq(XU1(XY) +eq(xT_ NDUT(XT_;) — eu(xy)U2(Xy) + eu(Xj_DU2(x]_5)
=eq(X]_y) — eu(xy)Ua(b). (4.22)

On the other hand, taking Vi, = Uy, k=1,2 in (3.16) and summing over the elements I;, i=j,j+1,..., N, we get
i A
(A?)(Ul) + Ag”(Uz)) = / (—€g + Rueu + Rqeq) (U1 — P Un)dx + / (=€, +eq) (U — PfU2)dx.  (4.23)

i=1

Qj Qj
Combining the two formulas (4.22) and (4.23) yields
eq(xjr_l) =eu(xy)U2(b) + / (—€q + Rueu + Rqeq) (U1 — P, Un)dx + / (—€, +eq) (U2 — P} Uz)dx.
Q) Q
Using (3.7) and applying the Cauchy-Schwarz inequality, we get

leat-)| < lewti] 10201 + (gl 5, + Kt leulo.g, + K2 leal s, ) [U1 = Pr Ut g 6,
+(letloa, + leals,) U2 = PF Ul g,
= Jeu )| 1U20)1 + ([l€g | + Kq llewll + K2 [[eq[[) [ U1 = Py U1l 6,
+(leull + lleqll) [U2 = P U2l g, -

Using the standard interpolation error estimates (2.10), the estimates (3.3), (3.4), (4.5), and the regularity estimate (4.21),
we obtain

‘eq (x}_l)‘ < (CHZPHN)C + (CHPPH)C + (CRP + Ky ChP*T 4 KoChPHT) ChPH U, g
+(ChP +ChP*T) ChP* U, 5,
< Ch2p+1’

which completes the proof of (4.15). O

Please cite this article in press as: M. Baccouch, Analysis of optimal superconvergence of a local discontinuous Galerkin method for nonlinear
second-order two-point boundary-value problems, Appl. Numer. Math. (2019), https://doi.org/10.1016/j.apnum.2019.05.003




APNUM:3552

M. Baccouch / Applied Numerical Mathematics eee (eeee) see—eee 13

Corollary 4.1. Suppose that the assumptions of Theorem 4.2 hold. Then there exists a constant C such that

max
j=1,2,...N

éu(x;)) <CHPL max ‘éq(xj)‘ < C R, (4.24)

Proof. Using (3.1) and the properties of the projections P, we have e, (xj’) =ey (x]T) and eq(x;“) = éq(x;“). Invoking the
estimates (4.14) and (4.15), we establish (4.24). O

4.3. Superconvergence for average errors at downwind/upwind points

Next, we deduce the (2p + 1)th superconvergence rate for the average errors at downwind/upwind points. More specifi-
cally, we have the following superconvergence results.

Corollary 4.2. Suppose that the assumptions of Theorem 4.2 hold. Then there exists a constant C such that
/2

172 1
e 2p+1 1 - + 2 2p+1
eu(xj)’ < C R, NZ’eq(xj)‘ < C R (4.25)
j=1

1N
N

j=1

Proof. These results follow immediately from (4.14) and (4.15). O

4.4. Superconvergence toward Gauss-Radau projections

Next, we prove that the LDG solutions are superconvergent with order p +2 toward Gauss-Radau projections of the exact
solutions.

Theorem 4.4. Suppose that the assumptions of Theorem 3.1 are satisfied. We further assume that the function f € Ci(D), where
Cp(D) is the set of real m-times continuously differentiable functions which are bounded together with their derivatives up to the
mth order on the set D = [a, b] x R2. Let p > 1 and (up, q) be the LDG solutions of (2.3), then there exists a positive constant C
independent of h such that

leull < ChPT2, |gq| < ChP*2. (4.26)

Proof. Using the Fundamental Theorem of Calculus, we write
X
[y (x)| = éu(xi’)+/é{,(s)ds < Iéu(xi’)|+/|é;(5)|ds, vxel,
Xi I;
X
|6g()| = |eq(x;" )~|—/é’(s)ds < |eq(x )|+/|é/(s)}ds vxel
q q\ti—q q I AN | q s i+

Xi—1 I,'

Taking the square of both sides, applying the inequality (a + b)? < 2a% + 2b? and applying the Cauchy-Schwartz inequality,
we get

2
B0l <2 o +2 [ [ I lds | <2l +2n g7,
Ii
2
80> <2[8g (6 )| +2 f g lds | <2[eg0 I +2mi |25,
Ii
Integrating these inequalities with respect to x, using the estimates in (4.24), and the fact that h; < h, we get

12ul3, < 2hi [eue)|* +2h2 [, o, < 2Ch*P*+ 4 2h2 |8, o, .

[2allg;, =2 legGe )+ 207 g g, < 2Ch**3 420 g
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Summing over all elements and using the estimates in (4.1), we obtain

I8y ll> < CNR*P+3 421 &) |* < C1h%P+2 4 2C,h2PH = O(h?P+4), (4.27a)
Héq ”2 < CNh4p+3 4 2h2 Hé; HZ < C1h4p+2 + 2C2h2p+4 — O(h2p+4)7 (427]3)
where we used 4p + 2 > 2p + 4 for p > 1. This completes the proof of (4.26). O

Remark 4.1. The proof of the previous theorem is valid for any regular meshes and using piecewise polynomials of degree
p > 1. When p =0, the estimate (4.27) gives ||&,|| = O(h) and |e4|| = O(h), which converge at the same rate as the errors

lley]l and || eq || (See Theorem 3.1). Thus, our superconvergence results towards Gauss-Radau projections are not valid for
p=0.

5. Numerical examples

In this section, we present numerical examples to verify our theoretical findings.
Example 5.1. We consider the following nonlinear second-order BVP

= % (1 —wW?—u sin(x)) . xel0,27], (5.1a)

subject to the periodic boundary conditions

u(0) =u@n), u'(0)=u'Qn). (5.1b)

The exact solution of (5.1) is u = 2 + sin(x). We solve (5.1) using the proposed LDG method on uniform meshes obtained by
partitioning the computational domain [0, 277] into N subintervals with N = 10, 15, 20, 25, 30, 35 and using the spaces PP
with p =1 — 4. The L%-norm of the errors and their orders of convergence are shown in Fig. 1 on the log-log scale. These
results suggest that the LDG method lead to optimal convergence orders as expected by the theory; see Theorem 3.1. The
L%-norm of the errors ||é,|| and Héq || presented in Fig. 2 indicate that the LDG solutions up and g, respectively, converge
to the projections P, u and Ph+q with order p + 2. These computational results indicate that the observed numerical super-
convergence order is in full agreement with the theoretical convergence order. We observe from Fig. 3 a convergence rate
p+1 for |e,| and |&]|. Finally, we present the maximum errors at downwind and upwind points in Fig. 4. We observe

that the convergence rate of max
j=12,...,

eu(xj’)‘ and {nzax N ‘eq(x;r)‘ is 2p + 1. These results confirm our theoretical findings
j=1.2,...,

in Theorem 4.2.
We repeat the previous experiment with all parameters kept unchanged except for the boundary conditions where we
use (1.1b). To be more precise, we consider

= % (1 — W —u sin(x)) . xel0,3], (5.2a)

subject to the mixed boundary conditions
u(0)=2, u'(3)=-cos(3). (5.2b)
We display the all errors in Figures 5-8. These results suggest optimal convergence and superconvergence rates. Again these
results are in full agreement with the theoretical results.
Finally, we solve the following BVP subject to the Dirichlet boundary conditions
1 .

u'=3 (1 —W)? - usm(x)) . xel0,3], (5.3a)

u(0)=2, u(3)=2+sin(3). (5.3b)
We present the errors in Figures 9-12. Again, these results suggest optimal convergence and superconvergence rates when
the Dirichlet boundary conditions are used.

Example 5.2. Consider the second-order nonlinear boundary-value problem [6]

//_1 3 _ !
u _8<32+2x uu), xell,2], (5.4a)
u)=17, u'(2)=0. (5.4b)

The exact solution of (5.4) is given by u(x) = x% + 16/x. We solve (5.4) using the proposed LDG method with p =1 — 4. We
use uniform meshes obtained by subdividing [1,2] into N intervals with N = 4, 6, 8, 10, 12, 14. In Fig. 13 we display the
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L2-norm of the errors |ey|| and || eq || with log-log scale. We also show their orders of convergence. These results indicate
that |ley| and H eqH converge at @O(hP*1). Thus, the error estimates proved in this paper are optimal in the exponent of the
parameter h. In Fig. 14, we report the L?-norm of the errors [|é,]| and ||é4| and their orders of convergence. We observe
that [|ey || = O(hP*2) and ||eq| = O(hP*2). Thus, the LDG solutions up and gy, are, respectively, superconvergent with order
p + 2 to the particular projections P, u and Ph+q. Finally, we report the maximum errors at downwind and upwind points

in Fig. 15. We observe that the convergence rate of max
j=1,2,...N

eu(xj’)‘ and max ‘eq (x}’)‘ is 2p + 1. These results confirm
j=1,2,...N

our theoretical findings in Theorem 4.2.

Example 5.3. We consider a two-point boundary-value problem subject to the mixed boundary conditions

B (u/)Z
u = —3 -
X

2

92—5 +4x, xe[1,2], u(l)=0, u'(2)=4+12In(Q2), (5.5)
which admits the unique solution u = x> In(x) [6]. We solve this problem using the LDG method on uniform meshes having
N = 5, 10, 15, 20, 25, 30, 35, 40 elements and using the spaces PP with p = 1, 2, 3, and 4. The L2 errors as well as their
order of convergence are shown in Fig. 16. These results indicate that the LDG method yields @(hP*!) convergent solutions.
The rate of convergence is clearly optimal. The L?-norm of the errors ||é,|| and [leqll shown in Fig. 17 indicate that the
LDG solutions up and g, are O(hP+2) super close to the projections P, u and P,Tq, respectively. Finally, we present the

Please cite this article in press as: M. Baccouch, Analysis of optimal superconvergence of a local discontinuous Galerkin method for nonlinear
second-order two-point boundary-value problems, Appl. Numer. Math. (2019), https://doi.org/10.1016/j.apnum.2019.05.003
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maximum errors at downwind and upwind points in Fig. 18. We observe that the convergence rate of gnza N
j=1,2,...,

ey (xj’)‘ and

max |eq (x]*)‘ is again 2p + 1. These results confirm our theoretical findings in Theorem 4.2.

j=1,2,...N ‘
Example 5.4. Consider the second-order nonlinear Bratu problem

u’ —2e"=0, xe[0,1], u(0)=0, u(1)=—2In(cos(1)), (5.6)
where the exact solution is u(x) = —2In(cos(x)). We use uniform meshes obtained by subdividing the computational do-
main [0, 1] into N intervals with N = 10, 20, 30, 40, 50. Fig. 19 shows the L? errors |le,|| and |eq| and their orders of
convergence. These results indicate that [ley|| and [eq| are both O(hP*1). In Fig. 20, we report the L?-norm of the er-
rors [|é,]| and |[éq| and their orders of convergence. We observe that [le,|| = O(h?*?) and |eq|| = O(hP*2). Thus, the LDG
solutions uy and gy are, respectively, superconvergent with order p + 2 to the particular projections P, u and P,Tq.

6. Concluding remarks

In this paper, we investigated the convergence and superconvergence of a local discontinuous Galerkin (LDG) finite
element method for nonlinear second-order boundary-value problems (BVPs) for ordinary differential equations. We proved
several L2 error estimates, and superconvergence results toward special projections. To be more precise, we proved that the

Please cite this article in press as: M. Baccouch, Analysis of optimal superconvergence of a local discontinuous Galerkin method for nonlinear
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Fig. 20. Log-log plots of [|&, | (left) and |é,| (right) versus N for Example 5.4 on uniform meshes having N = 10, 20, 30, 40, 50 elements using PP, p =1
to 4.

LDG solutions converge to the true solutions with order p + 1, when the space of piecewise polynomials of degree p > 1
is used. Moreover, we showed that the derivatives of the LDG solutions converge with order p + 1 toward the derivatives
of Gauss-Radau projections of the exact solutions. In addition, we also proved that the LDG solutions are superconvergent
with order p + 2 to the Gauss-Radau projections of the exact solutions. Finally, we established superconvergence rate of
order 2p 4+ 1 for the maximum errors at the upwind or downwind points. Numerical experiments demonstrate that the
error bounds are sharp. Our current and future works include two-dimensional elliptic, parabolic, and hyperbolic problems,
which would be more challenging and interesting.
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