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In this paper, we investigate the convergence and superconvergence properties of a local 
discontinuous Galerkin (LDG) method for nonlinear second-order two-point boundary-
value problems (BVPs) of the form u′′ = f (x, u, u′), x ∈ [a, b] subject to some suitable 
boundary conditions at the endpoints x = a and x = b. We prove optimal L2 error 
estimates for the solution and for the auxiliary variable that approximates the first-
order derivative. The order of convergence is proved to be p + 1, when piecewise 
polynomials of degree at most p are used. We further prove that the derivatives of the 
LDG solutions are superconvergent with order p + 1 toward the derivatives of Gauss-
Radau projections of the exact solutions. Moreover, we prove that the LDG solutions are 
superconvergent with order p + 2 toward Gauss-Radau projections of the exact solutions. 
Finally, we prove, for any polynomial degree p, the (2p + 1)th superconvergence rate of 
the LDG approximations at the upwind or downwind points and for the domain average 
under quasi-uniform meshes. Our numerical experiments demonstrate optimal rates of 
convergence and superconvergence. Our proofs are valid for arbitrary regular meshes using 
piecewise polynomials of degree p ≥ 1 and for the classical sets of boundary conditions. 
Several computational examples are provided to validate the theoretical results.

© 2019 The Author(s). Published by Elsevier B.V. on behalf of IMACS. This is an open 
access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The purpose of this paper is to study the convergence and superconvergence properties of the local discontinuous 
Galerkin (LDG) method for the nonlinear two-point second-order boundary-value problems (BVPs)

u′′ = f (x, u, u′), x ∈ [a,b], (1.1a)

where u : [a, b] →R and f : D →R is a given smooth function on the set D = [a, b] ×R2. In this paper, we consider one 
of the following set of boundary conditions, which are commonly encountered in practice:

u(a) = α1, u′(b) = β1, (1.1b)

u(a) = α1, u(b) = β1, (1.1c)

u(a) = u(b), u′(a) = u′(b), (1.1d)
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where α1, β2 are given constants. In our analysis, we assume that the BVP (1.1) has one and only one solution. The 
conditions on f for the existence and uniqueness of the solution to the general BVP (1.1) are given in [22]. The nonlinear 
two-point BVP (1.1) arises in applied mathematics, theoretical physics, engineering, control and optimization theory; see 
e.g., [3,28]. Since the analytic solution to (1.1) is difficult to obtain for general f , numerical techniques are often needed to 
approximate its solution. Many authors have designed numerical schemes to solve second-order BVPs. We refer to [30,17,
22,3,25,20,5,19,11,23,27,2,30,21] for some numerical methods including the shooting method, the finite difference method, 
the collocation method, the monotone iterative method, and the quasilinearization method.

Superconvergent numerical methods of BVPs are necessary in many important scientific and engineering applications 
such as boundary layer theory, the study of stellar interiors, control and optimization theory, and flow networks in biol-
ogy. A knowledge of superconvergence properties can be used to (i) construct simple and asymptotically exact a posteriori
estimates of discretization errors and (ii) help detect discontinuities to find elements needing limiting, stabilization and/or 
refinement. Typically, a posteriori error estimators employ the known numerical solution to derive estimates of the actual 
solution errors. They are also used to steer adaptive schemes where either the mesh is locally refined (h-refinement) or 
the polynomial degree is raised (p-refinement). In the past several decades, there also has been considerable interest in 
studying superconvergence properties of numerical methods. In this paper, we present new superconvergence results of the 
LDG method for solving (1.1). Discontinuous Galerkin (DG) methods form a class of high order numerical methods for solv-
ing ordinary differential equations (ODEs) and partial differential equations (PDEs). They combine many attractive features 
of the finite element and finite volume methods. DG schemes have been successfully applied to many problems arising 
from a wide range of applications. The DG method is a finite element method using a completely discontinuous piecewise 
polynomial space for the numerical solution and the test functions. DG methods are becoming important techniques for 
the computational solution of many real-world problems. They are known to have good stability properties when applied 
to hyperbolic PDEs. Furthermore, DG methods have been successfully applied to hyperbolic, elliptic, and parabolic problems 
arising from a wide range of applications. DG methods are highly accurate numerical methods with the advantage that 
they can handle problems having discontinuities such as those that arise in hyperbolic problems, can handle problems with 
complex geometries, simplify adaptive h−, p−, and r− refinement, and produce efficient parallel solution procedures. DG 
method was initially introduced by Reed and Hill in 1973 as a technique to solve neutron transport problems [29].

The local DG (LDG) methods are natural extension of the DG methods aimed at solving higher-order PDEs. The LDG 
method was first proposed by Cockburn and Shu in [16] for solving convection-diffusion problems. The LDG method con-
sists of rewriting a higher order differential equation into a system of first-order equations and then discretizing it by the 
standard DG method. The success of LDG methods is due to the following properties: (i) they are robust and high order 
accurate, (ii) they can achieve stability without slope limiters, and (iii) they are element-wise conservative. This last feature 
is very important in the area of computational fluid dynamics, especially in situations where there are steep gradients or 
boundary layers or shocks. Moreover, LDG schemes are extremely flexible in the mesh-design. Thus, they can easily handle 
meshes with hanging nodes, elements of various types and shapes, and local spaces of different orders. Furthermore, they 
exhibit useful superconvergence properties that can be used to estimate the actual discretization errors. We refer the reader 
to e.g., [8,15,13,7,14] and references therein for a more complete survey of several LDG methods.

Several authors designed and analyzed the LDG method for BVPs of the form (1.1), see e.g., [9,24,33,36,32,31,37,4]. In [4], 
we proposed and analyzed a superconvergent and high order accurate LDG method for nonlinear two-point second-order 
BVPs of the form u′′ = f (x, u) subject to some suitable boundary conditions. We proved optimal L2 error estimates for the 
solution and for the auxiliary variable that approximates its first-order derivative. The order of convergence is proved to be 
p +1, when piecewise polynomials of degree at most p ≥ 1 are employed. We further proved that the derivatives of the LDG 
solutions are superconvergent with order p + 1 toward the derivatives of Gauss-Radau projections of the exact solutions. 
Finally, we showed that the LDG solutions are superconvergent with order p + 3/2 toward Gauss-Radau projections of 
the exact solutions, while computational results show higher O(hp+2) convergence rate. However, a theoretical proof of 
this property remains open. The main purpose of our current work is to use a different approach to prove the (p + 2)th 
superconvergence rate and also the (2p + 1)th superconvergence rate at upwind and downwind points and for the domain 
average. To the best of our knowledge, these results are original.

In this paper, we design a superconvergent LDG method for nonlinear BVPs of the form (1.1). We prove several optimal L2

error estimates for the LDG solutions. In particular, we prove that the LDG solutions to approximate u and u′ are (p + 1)th 
order convergent in the L2-norm, when the space of piecewise polynomials of degree p ≥ 1 is used. We further show that 
the derivatives of the LDG solutions are superconvergent with order p + 1 toward the derivatives of Gauss-Radau projec-
tions of the exact solutions. Moreover, we prove (p + 2)th order superconvergence of the LDG solutions toward Gauss-Radau 
projections of the exact solutions. Finally, we show that the errors between the LDG solutions and the exact solutions are 
(2p + 1)th order superconvergent at either the upwind point or downwind point in each element on regular meshes. Nu-
merical experiments demonstrate that the theoretical orders of convergence and superconvergence are optimal. Our global 
error analysis is valid for any regular meshes and using piecewise polynomials of degree p ≥ 1 and for the classical set of 
boundary conditions. We would like to mention that the proposed LDG method has several advantages over the standard 
methods due to the following nice features: (i) it achieves arbitrary high order accuracy, (ii) it exhibits optimal convergence 
properties for the solution and for the auxiliary variables that approximate the derivatives, (iii) it can easily handle meshes 
using local spaces of different orders, and (iv) achieves superconvergence results that can be used to construct asymptot-
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ically exact a posteriori error estimates by solving a local problem on each element. This will be discussed in a separate 
paper.

The rest of the paper is organized as follows: In section 2, we describe the LDG method for nonlinear second-order BVPs. 
We also present some preliminary results, which will be used in our error analysis. In section 3, we present a detailed 
proof of the optimal a priori error estimates of the LDG method. We state and prove our main superconvergence results in 
section 4. In section 5, we present several numerical examples to validate our theoretical results. Finally, we provide some 
concluding remarks in section 6.

2. The LDG scheme for nonlinear second-order BVPs

In order to define the LDG method, we introduce a new auxiliary variable q = u′ and convert (1.1a) into a first-order 
system of ODEs

q′ = f (x, u,q), u′ = q. (2.1)

To obtain the LDG weak formulation, we partition the computational domain � = [a, b] into a collection of non-overlapping 
elements Ii = [xi−1, xi], i = 1, . . . , N , where x0 = a and xN = b. We denote the length of each interval Ii by hi = xi − xi−1. 
We also define h = max

1≤i≤N
hi and hmin = min

1≤i≤N
hi to be the lengths of the largest and smallest cells, respectively. We assume 

that the mesh is regular in the sense that there exists a constant K ≥ 1 independent of h such that h ≤ Khi, i = 1, . . . , N .
For simplicity, we use v(x−

i ) = lim
s→0− v(xi + s) and v(x+

i ) = lim
s→0+ v(xi + s) to denote the left limit and the right limit of v

at the discontinuity point xi . We also use [v](xi) = v(x+
i ) − v(x−

i ) to denote the jump of v at xi .
Multiplying the two equations in (2.1) by arbitrary test functions v1 and v2, integrating over the interval Ii , and using 

integration by parts, we get

−
∫
Ii

qv ′
1dx + q(xi)v1(xi) − q(xi−1)v1(xi−1) =

∫
Ii

f (x, u,q)v1dx, (2.2a)

−
∫
Ii

uv ′
2dx + u(xi)v2(xi) − u(xi−1)v2(xi−1) =

∫
Ii

qv2dx. (2.2b)

Next, we introduce the following discontinuous finite element approximation space

V p
h = {v : v|Ii ∈ P p(Ii), i = 1, . . . , N},

where P p(Ii) denotes the space of polynomials of degree at most p on Ii . We would like to emphasize that polynomials in 
the finite element space V p

h are allowed to be completely discontinuous at the mesh points.
To obtain the LDG scheme, we replace the exact solutions u and q by piecewise polynomials of degree at most p

and denote them by uh ∈ V p
h and qh ∈ V p

h . We also choose the test functions v1 and v2 to be piecewise polynomials of 
degree at most p. The LDG scheme can now be defined as: find approximations uh, qh ∈ V p

h such that ∀ v1, v2 ∈ V p
h and 

∀ i = 1, . . . , N ,

−
∫
Ii

qh v ′
1dx + q̂h(xi)v1(x−

i ) − q̂h(xi−1)v1(x+
i−1) =

∫
Ii

f (x, uh,qh)v1dx, (2.3a)

−
∫
Ii

uh v ′
2dx + ûh(xi)v2(x−

i ) − ûh(xi−1)v2(x+
i−1) =

∫
Ii

qh v2dx, (2.3b)

where ûh and ̂qh are the so-called numerical fluxes, which are, respectively, the discrete approximations to u and q at the 
nodes. These numerical fluxes must be designed based on different guiding principles for different differential equations 
to ensure stability and optimal error estimates. To complete the definition of the LDG scheme, we only need to define ûh

and q̂h on the boundaries of Ii . It turns out that the following simple choices would guarantee the optimal convergence 
and superconvergence of our LDG scheme: For the mixed boundary conditions (1.1b), we take the following alternating 
numerical fluxes; see e.g., [4]

ûh(xi) =
{

α1, i = 0,

uh(x−
i ), i = 1,2, . . . , N,

q̂h(xi) =
{

qh(x+
i ), i = 0,1, . . . , N − 1,

β1, i = N.
(2.4a)

If other boundary conditions are chosen, the numerical fluxes can be easily designed. For instance the numerical fluxes 
associated with the boundary conditions (1.1c) can be taken as
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ûh(xi) =
⎧⎨⎩

α1, i = 0,

uh(x−
i ), i = 1,2, . . . , N − 1,

β1, i = N,

q̂h(xi) =
{

qh(x+
i ), i = 0,1, . . . , N − 1,

qh(x−
i ) − δ1(uh(x−

i ) − β1), i = N,
(2.4b)

where the stabilization parameter δ1 for the LDG method is given by δ1 = p
hp

N
.

For the periodic boundary conditions (1.1d), we choose the following alternating fluxes

ûh(xi) =
{

uh(x−
N ), i = 0,

uh(x−
i ), i = 1,2, . . . , N,

q̂h(xi) =
{

qh(x+
i ), i = 0,1, . . . , N − 1,

qh(x+
0 ), i = N.

(2.4c)

Implementation: The LDG solution (uh, qh) can be obtained using the following steps:

(1) For x ∈ Ii , we choose {φk,i(x)}k=p
k=0 to be a local basis of P p(Ii) and we express uh , qh as

uh(x) =
p∑

k=0

ck,iφk,i(x), qh(x) =
p∑

k=0

ck+p+1,iφk,i(x).

In practice, we may choose φk,i = Lk,i , where Lk,i is the kth-degree Legendre polynomial on Ii .
(2) We choose the test functions v1 = v2 = φ j,i(x), j = 0, . . . , p to obtain 2N(p + 1) × 2N(p + 1) system of nonlinear 

algebraic equations.
(3) We solve the nonlinear system for the unknown coefficients c0,i, c1,i . . . , c2p+1,i, i = 1, . . . , N using e.g., Newton’s 

method for nonlinear systems. Once we solve for the unknown coefficients, we get the LDG solutions uh and qh , which 
are piecewise discontinuous polynomials of degree ≤ p.

Norms: We present some norms that will be used throughout the paper. Denote ‖u‖0,Ii
=

(∫
Ii

u2(x)dx
)1/2

to be the stan-

dard L2-norm of the function u on Ii . For any natural integer s, the Sobolev space H s(Ii) consists of functions that have 
generalized derivatives of order s in the space L2(Ii). It is defined by

Hs(Ii) =
{

u ∈ L2(Ii) : Dku ∈ L2(Ii), ∀ 0 ≤ k ≤ s
}

.

The norm of Hs(Ii) is defined by ‖u‖s,Ii
=

(∑s
k=0

∥∥Dku
∥∥2

0,Ii

)1/2
. We shall also use the following notation for the semi-norm 

|u|s,Ii
= ∥∥Dsu

∥∥
0,Ii

. Finally, we define the norms on the whole computational domain � as follows:

|u|s,� =
(

N∑
i=1

|u|2s,Ii

)1/2

, ‖u‖s,� =
(

N∑
i=1

‖u‖2
s,Ii

)1/2

.

For convenience, we use ‖u‖, ‖u‖s , and |u|s to denote ‖u‖0,� , ‖u‖s,� , and |u|s,� , respectively. We would like to mention 
that if u ∈ Hs(�), s = 1, 2, . . ., then the Sobolev norm ‖u‖s,� on the whole computational domain � is the standard Sobolev 

norm defined by ‖u‖s,� =
(∑s

k=0

∥∥Dku
∥∥2

0,�

)1/2
.

Legendre polynomial: In our analysis we need the pth-degree Legendre polynomial defined by Rodrigues formula [1]

L̃ p(ξ) = 1

2p p!
dp

dξ p

(
(ξ2 − 1)p

)
, −1 ≤ ξ ≤ 1,

which satisfies the following properties: L̃ p(1) = 1, L̃ p(−1) = (−1)p , and the orthogonality relation

1∫
−1

L̃ p(ξ)L̃q(ξ)dξ = 2

2p + 1
δpq, where δpq is the Kronecker symbol. (2.5)

Mapping the physical element Ii = [xi−1, xi] into a reference element [−1, 1] by the standard affine mapping

x(ξ,hi) = xi + xi−1

2
+ hi

2
ξ, (2.6)

we obtain the k-degree shifted Legendre polynomial, Lk,i(x) = L̃k

(
2x−xi−xi−1

hi

)
, on Ii .
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Using the mapping (2.6) and the orthogonality relation (2.5), we obtain

∥∥Lp,i
∥∥2

0,Ii
=

∫
Ii

L2
p,i(x)dx = hi

2

1∫
−1

L̃2
p(ξ)dξ = hi

2

2

2p + 1
= hi

2p + 1
≤ hi . (2.7)

Gauss-Radau Projections: For p ≥ 1, we introduce two special Gauss-Radau projections P±
h . These projections are defined 

element-by-element as follows: For any integrable function u on �, P±
h u ∈ V p

h and the restrictions of P±
h u to Ii are polyno-

mials in P p(Ii) satisfying the conditions, see e.g [10]∫
Ii

(u − P−
h u)vdx = 0, ∀ v ∈ P p−1(Ii), and (u − P−

h u)(x−
i ) = 0, (2.8)

∫
Ii

(u − P+
h u)vdx = 0, ∀ v ∈ P p−1(Ii), and (u − P+

h u)(x+
i−1) = 0. (2.9)

By the scaling argument, we obtain the following projection results [12]: For any function u ∈ H p+1(�), there exists a 
positive constant C independent of the mesh size h, such that∥∥u − P±

h u
∥∥ + h

∥∥(u − P±
h u)′

∥∥ ≤ Chp+1 |u|p+1 . (2.10)

Moreover, we recall the inverse properties of the finite element space V p
h that will be used in our error analysis [26]: For 

any v ∈ V p
h , there exists a positive constant C independent of v and h, such that

‖v ′‖ ≤ Ch−1 ‖v‖ ,

(
N∑

i=1

v2(x+
i−1) + v2(x−

i )

)1/2

≤ Ch−1/2 ‖v‖ . (2.11)

In the rest of the paper, we will not differentiate between various constants, and instead will use a generic constant C (or 
accompanied by lower indices) to represent a positive constant independent of the mesh size h, but which may depend 
upon the exact smooth solution of the BVP (1.1). They also may have different values at different places.

3. A priori error estimates

In this section, we derive optimal L2 error estimates for the LDG method. For convenience, we use eu and eq to denote 
the errors between the exact solutions of (2.1) and the LDG solutions defined in (2.3), i.e.,

eu = u − uh, eq = q − qh.

As the usual treatment in finite element analysis, we divide the errors into the form

eu = εu + ēu, eq = εq + ēq, (3.1)

where the projection errors are defined by

εu = u − P−
h u, εq = q − P+

h q,

and the errors between the numerical solutions and the projection of the exact solutions are defined by

ēu = P−
h u − uh, ēq = P+

h q − qh.

In our error analysis, we assume that the function f appearing in the right-hand side of (1.1a) is sufficiently differentiable 
function. More precisely, we assume that the f satisfies the following conditions:

Assumption A1. The functions f , fu , and fq are continuous on the set D = {(x, u, q) | x ∈ [a, b], u ∈R, q ∈R}.

Assumption A2. For all (x, u, q) ∈ D there exist constants Ki, i = 1, 2 such that

0 < fu(x, u,q) ≤ K1,
∣∣ fq(x, u,q)

∣∣ ≤ K2. (3.2)

Remark 3.1. The proofs of our theorems require that the function f is smooth, fu and fq are bounded on the set D . These 
assumptions are usually the hypotheses of the existence and uniqueness theorem of (1.1).
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In the next theorem, we prove a priori error estimates for eu and eq in the L2-norm.

Theorem 3.1. Let (u, q) be the exact solution of (2.1). We assume that f satisfies Assumption A1 and Assumption A2. Let p ≥ 1 and 
(uh, qh) be the LDG solution of (2.3), then there exists a positive constant C independent of h such that

‖eu‖ ≤ Chp+1. (3.3)∥∥eq
∥∥ ≤ Chp+1. (3.4)

Proof. First, we derive some error equations which will be used repeatedly throughout this paper. Subtracting (2.3) from 
(2.2) with vk ∈ V p

h , k = 1, 2 and using the numerical fluxes (2.4a), we obtain the error equations on Ii : ∀ v1, v2 ∈ V p
h ,

−
∫
Ii

eq v ′
1dx + eq(x+

i )v1(x−
i ) − eq(x+

i−1)v1(x+
i−1) =

∫
Ii

( f (x, u,q) − f (x, uh,qh)) v1dx, (3.5a)

−
∫
Ii

eu v ′
2dx + eu(x−

i )v2(x−
i ) − eu(x−

i−1)v2(x+
i−1) =

∫
Ii

eq v2dx. (3.5b)

Applying Taylor’s Theorem with integral remainder and using (3.1), we write

f (x, u,q) − f (x, uh,qh) = Rueu + Rqeq, (3.6)

where

Ru = Ru(x) =
1∫

0

fu
(
x, u(x) − teu(x),q(x) − teq(x)

)
dt,

Rq = Rq(x) =
1∫

0

fq
(
x, u(x) − teu(x),q(x) − teq(x)

)
dt.

Under Assumption A2, we have

0 < Ru(x) ≤ K1,
∣∣Rq(x)

∣∣ ≤ K2, ∀ x ∈ [a,b]. (3.7)

Using (3.6), we rewrite (3.5) as

A(i)
1 (v1) = A(i)

2 (v2) = 0, ∀ v1, v2 ∈ V p
h , (3.8)

where the operators A(i)
k : H p+1(�) →R, k = 1 − 2 are defined by

A(i)
1 (V 1) =

∫
Ii

eq V ′
1dx − eq(x+

i )V 1(x−
i ) + eq(x+

i−1)V 1(x+
i−1) +

∫
Ii

(
Rueu + Rqeq

)
V 1dx, (3.9a)

A(i)
2 (V 2) =

∫
Ii

eu V ′
2dx − eu(x−

i )V 2(x−
i ) + eu(x−

i−1)V 2(x+
i−1) +

∫
Ii

eq V 2dx. (3.9b)

Adding the above equations, we get

A(i)
1 (V 1) +A(i)

2 (V 2) =
∫
Ii

eq
(

V ′
1 + Rq V 1 + V 2

)
dx +

∫
Ii

eu
(

V ′
2 + Ru V 1

)
dx

− eq(x+
i )V 1(x−

i ) + eq(x+
i−1)V 1(x+

i−1) − eu(x−
i )V 2(x−

i ) + eu(x−
i−1)V 2(x+

i−1). (3.10)

Summing over all elements gives

N∑
i=1

(
A(i)

1 (V 1) +A(i)
2 (V 2)

)
=

∫
�

eq
(

V ′
1 + Rq V 1 + V 2

)
dx +

∫
�

eu
(

V ′
2 + Ru V 1

)
dx

− eq(x+
N )V 1(x−

N ) + eq(x+
0 )V 1(x+

0 ) − eu(x−
N )V 2(x−

N ) + eu(x−
0 )V 2(x+

0 ).

If the boundary conditions (1.1b) are used then eu(x−
0 ) = eq(x+

N ) = 0. Thus, we have
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N∑
i=1

(
A(i)

1 (V 1) +A(i)
2 (V 2)

)
=

∫
�

eq
(

V ′
1 + Rq V 1 + V 2

)
dx +

∫
�

eu
(

V ′
2 + Ru V 1

)
dx + eq(x+

0 )V 1(x+
0 ) − eu(x−

N )V 2(x−
N ).

(3.11)

On the other hand, performing integration by parts, we write (3.9) as

A(i)
1 (V 1) =

∫
Ii

(−e′
q + Rueu + Rqeq

)
V 1dx − [eq](xi)V 1(x−

i ), (3.12a)

A(i)
2 (V 2) =

∫
Ii

(−e′
u + eq

)
V 2dx − [eu](xi−1)V 2(x+

i−1). (3.12b)

We note that, with the numerical fluxes (2.4a), the jumps of eu and eq at an interior point xi are defined as

[eu](xi) = eu(x+
i ) − eu(x−

i ), [eq](xi) = eq(x+
i ) − eq(x−

i ).

Since eu(x−
0 ) = eq(x+

N ) = 0, the jumps at the endpoints of the computational domain are given by

[eu](x0) = eu(x+
0 ), [eq](xN ) = −eq(x−

N ).

Adding and subtracting P−
h V 1 to V 1 and P+

h V 2 to V 2 and using (3.8) with v1 = P−
h V 1 ∈ P p(Ii) and v2 = P+

h V 2 ∈ P p(Ii), we 
get

A(i)
1 (V 1) = A(i)

1 (V 1 − P−
h V 1) +A(i)

1 (P−
h V 1) = A(i)

1 (V 1 − P−
h V 1), (3.13a)

A(i)
2 (V 2) = A(i)

2 (V 2 − P+
h V 2) +A(i)

2 (P+
h V 2) = A(i)

2 (V 2 − P+
h V 2). (3.13b)

Combining (3.13) and (3.12) and using the properties of the projections P±
h , i.e., (V − P−

h V )(x−
i ) = (V − P+

h V )(x+
i−1) = 0, we 

obtain

A(i)
1 (V 1) =

∫
Ii

(−e′
q + Rueu + Rqeq

)
(V 1 − P−

h V 1)dx, A(i)
2 (V 2) =

∫
Ii

(−e′
u + eq

)
(V 2 − P+

h V 2)dx. (3.14)

By the property of the projection P±
h , we have∫

Ii

w ′(V − P±
h V )dx = 0, ∀ w ∈ P p(Ii), (3.15)

since w is a polynomial of degree at most p and thus w ′ is a polynomial of degree at most p − 1.
Substituting (3.1) into (3.14) and using (3.15) with w = ēu, ēq ∈ P p(Ii), we get

A(i)
1 (V 1) =

∫
Ii

(−ε′
q + Rueu + Rqeq

)
(V 1 − P−

h V 1)dx, A(i)
2 (V 2) =

∫
Ii

(−ε′
u + eq

)
(V 2 − P+

h V 2)dx.

Adding these two equations, we obtain

A(i)
1 (V 1) +A(i)

2 (V 2) =
∫
Ii

(−ε′
q + Rueu + Rqeq

)
(V 1 − P−

h V 1)dx +
∫
Ii

(−ε′
u + eq

)
(V 2 − P+

h V 2)dx. (3.16)

Summing over all elements, we arrive at

N∑
i=1

(
A(i)

1 (V 1) +A(i)
2 (V 2)

)
=

∫
�

(−ε′
q + Rueu + Rqeq

)
(V 1 − P−

h V 1)dx +
∫
�

(−ε′
u + eq

)
(V 2 − P+

h V 2)dx. (3.17)

Combining (3.11) and (3.17) yields∫
�

eq
(

V ′
1 + Rq V 1 + V 2

)
dx +

∫
�

eu
(

V ′
2 + Ru V 1

)
dx + eq(x+

0 )V 1(x+
0 ) − eu(x−

N )V 2(x−
N )

=
∫
�

(−ε′
q + Rueu + Rqeq

)
(V 1 − P−

h V 1)dx +
∫
�

(−ε′
u + eq

)
(V 2 − P+

h V 2)dx. (3.18)
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The main idea behind the proof of the theorem is to construct the following adjoint problem: find W1 and W2 such that

W ′
1 + W2 + Rq W1 = eq, W ′

2 + Ru W1 = eu, for x ∈ (a,b) subject to W1(a) = W2(b) = 0. (3.19)

The BVP (3.19) can be converted into the system of equations

W′ + A(x)W = b(x), x ∈ � subject to B1W(a) + B2W(b) = 0, (3.20)

where

W =
[

W1
W2

]
, A =

[
Rq 1
Ru 0

]
, b =

[
eq

eu

]
, B1 =

[
1 0
0 0

]
, B2 =

[
0 0
0 1

]
.

The solution to (3.20) can be expressed in terms of its fundamental matrix

W(x) = M(x)W(a) + M(x)

x∫
a

M−1(t)b(t)dt, (3.21)

where the 2 × 2 fundamental matrix M(x) satisfies the following initial-value problem

M ′(x) = −A(x)M(x), M(a) = I, (3.22)

with I the 2 × 2 identity matrix. It is possible theoretically to solve (3.20) directly by (3.21). This requires integrating (3.22)
to obtain M(x) and M−1(x) over the interval [a, b]. An equation for (3.21) is evaluated at x = b and solved for the missing 
initial condition.

Under Assumption A1 and Assumption A2, the entries of the 2 × 2 matrix A(x) are bounded on [a, b]. Using (3.20), we 
can deduce that there exists a constant C such that (see [18, Lemma 4.2])

‖W‖2
1 = ‖W1‖2

1 + ‖W2‖2
1 ≤ C ‖b‖2 = C

(
‖eu‖2 + ∥∥eq

∥∥2
)

,

which gives

‖Wk‖1 ≤ C
(‖eu‖ + ∥∥eq

∥∥)
, k = 1,2. (3.23)

Now, we are ready to prove (3.3)–(3.4). Taking V 1 = W1 and V 2 = W2 in (3.18) and using (3.19) gives∥∥eq
∥∥2 + ‖eu‖2 =

∫
�

(−ε′
q + Rueu + Rqeq

)
(W1 − P−

h W1)dx +
∫
�

(−ε′
u + eq

)
(W2 − P+

h W2)dx.

Using (3.7) and applying the Cauchy-Schwarz inequality yields∥∥eq
∥∥2 + ‖eu‖2 ≤ (∥∥ε′

q

∥∥ + K1 ‖eu‖ + K2
∥∥eq

∥∥)∥∥W1 − P−
h W1

∥∥ + (∥∥ε′
u

∥∥ + ∥∥eq
∥∥)∥∥W1 − P+

h W1
∥∥ .

Applying the standard interpolation error estimate (2.10), we get∥∥eq
∥∥2 + ‖eu‖2 ≤ (

Chp + K1 ‖eu‖ + K2
∥∥eq

∥∥)
Ch |W1|1 + (

Chp + ∥∥eq
∥∥)

Ch |W2|1 .

Applying the regularity estimate (3.23), we get∥∥eq
∥∥2 + ‖eu‖2 ≤ C1hp+1 (∥∥eq

∥∥ + ‖eu‖) + C2h
(∥∥eq

∥∥2 + ‖eu‖2
)

.

Thus, for sufficiently small h, e.g., 1
2 ≤ 1 − C2h, or equivalently, h ≤ 1

2C2
, we deduce∥∥eq

∥∥2 + ‖eu‖2 ≤ 2C1hp+1 (∥∥eq
∥∥ + ‖eu‖) .

Invoking Young’s inequality ab ≤ a2

2 + 1
2 b2, we obtain∥∥eq

∥∥2 + ‖eu‖2 ≤ Ch2p+2,

which completes the proof of (3.3)–(3.4). �
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4. Superconvergence error analysis

In this section, we investigate the superconvergence properties of the proposed LDG method. We prove that the deriva-
tives of the LDG solutions are superconvergent with order p + 1 toward the derivatives of Gauss-Radau projections of the 
exact solutions. We further prove pointwise superconvergence results at the upwind and downwind points of each element. 
More precisely, we will prove that, for i = 1, 2, . . . , N , 

∣∣eu(x−
i )

∣∣ = O(h2p+1) and 
∣∣eq(x+

i−1)
∣∣ = O(h2p+1). We will use these 

results to show that the p-degree LDG solutions uh and qh , respectively, converge in the L2-norm to P−
h u and P+

h q at 
O(hp+2).

4.1. Superconvergence for the derivative approximations

In the next theorem, we prove that the derivatives of the LDG solutions u′
h and q′

h are O(hp+1) super close to (P−
h u)′

and (P+
h q)′ , respectively.

Theorem 4.1. Suppose that the assumptions of Theorem 3.1 are satisfied. Then there exists a positive constant C independent of h such 
that ∥∥ē′

u

∥∥ ≤ Chp+1,
∥∥ē′

q

∥∥ ≤ Chp+1. (4.1)

Proof. By the property of P±
h , we have

εu(x−
i ) = εq(x+

i ) = 0,

∫
Ii

εq v ′
1dx =

∫
Ii

εu v ′
2dx = 0, ∀ v1, v2 ∈ P p(Ii), i = 1, . . . , N. (4.2)

Using (3.1) and applying (4.2), we rewrite (3.5) as

−
∫
Ii

ēq v ′
1dx + ēq(x+

i )v1(x−
i ) − ēq(x+

i−1)v1(x+
i−1) =

∫
Ii

(
Rueu + Rqeq

)
v1dx, (4.3a)

−
∫
Ii

ēu v ′
2dx + ēu(x−

i )v2(x−
i ) − ēu(x−

i−1)v2(x+
i−1) =

∫
Ii

eq v2dx. (4.3b)

Using integration by parts, we write (4.3) as∫
Ii

ē′
q v1dx + [ēq](xi)v1(x−

i ) =
∫
Ii

(
Rueu + Rqeq

)
v1dx, (4.4a)

∫
Ii

ē′
u v2dx + [ēu](xi−1)v2(x+

i−1) =
∫
Ii

eq v2dx. (4.4b)

Next we follow the idea in [34,35]. Choosing v1(x) = ē′
q(x) − ē′

q(x−
i )Lp,i(x) ∈ P p(Ii) in (4.4a), v2(x) = ē′

u(x) −
(−1)pē′

u(x+
i−1)Lp,i(x) ∈ P p(Ii) in (4.4b), and applying (2.5) gives∥∥ē′
q

∥∥2
0,Ii

=
∫
Ii

(
Rueu + Rqeq

) (
ē′

q − ē′
q(x−

i )Lp,i
)

dx,

∥∥ē′
u

∥∥2
0,Ii

=
∫
Ii

eq
(
ē′

u − (−1)pē′
u(x+

i−1)Lp,i
)

dx,

since v1(x−
i ) = v2(x+

i−1) = 0 and 
∫

Ii
ē′

u Lp,idx = ∫
Ii

ē′
q Lp,idx = 0.

Applying the estimate (3.7), the Cauchy-Schwarz inequality, the inverse inequality, and the estimate (2.7) yields∥∥ē′
q

∥∥2
0,Ii

≤
(

K1 ‖eu‖0,Ii
+ K2

∥∥eq
∥∥

0,Ii

)(∥∥ē′
q

∥∥
0,Ii

+ ∣∣ē′
q(x−

i )
∣∣ ∥∥Lp,i

∥∥
0,Ii

)
≤

(
K1 ‖eu‖0,Ii

+ K2
∥∥eq

∥∥
0,Ii

)(∥∥ē′
q

∥∥
0,Ii

+ Ch−1/2
i

∥∥ē′
q

∥∥
0,Ii

h1/2
i

)
≤ C1

(
‖eu‖0,Ii

+ ∥∥eq
∥∥

0,Ii

)∥∥ē′
q

∥∥
0,Ii

,∥∥ē′
u

∥∥2
0,Ii

≤ ∥∥eq
∥∥

0,Ii

(∥∥ē′
u

∥∥
0,Ii

+ ∣∣ē′
u(x+

i−1)
∣∣ ∥∥Lp,i

∥∥
0,Ii

)
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≤ ∥∥eq
∥∥

0,Ii

(∥∥ē′
u

∥∥
0,Ii

+ Ch−1/2
i

∥∥ē′
u

∥∥
0,Ii

h1/2
i

)
≤ C2

∥∥eq
∥∥

0,Ii

∥∥ē′
u

∥∥
0,Ii

.

Consequently, we deduce∥∥ē′
q

∥∥
0,Ii

≤ C1

(
‖eu‖0,Ii

+ ∥∥eq
∥∥

0,Ii

)
,

∥∥ē′
u

∥∥
0,Ii

≤ C2
∥∥eq

∥∥
0,Ii

.

Squaring both sides, using the inequality (a1 + a2)
2 ≤ 2(a2

1 + a2
2), summing over all elements, and using the estimates (3.3)

and (3.4), we obtain∥∥ē′
q

∥∥2 ≤ 2C2
1

(
‖eu‖2 + ∥∥eq

∥∥2
)

≤ Ch2p+2,
∥∥ē′

u

∥∥2 ≤ C2
2

∥∥eq
∥∥2 ≤ Ch2p+2,

which completes the proof of (4.1). �
4.2. Pointwise superconvergence

First, we prove superconvergence results at the endpoints of the computational domain �. We state them in the following 
theorem.

Theorem 4.2. Suppose that the assumptions of Theorem 3.1 are satisfied. We assume that the function f ∈ C p
b (D), where Cm

b (D) is the 
set of real m-times continuously differentiable functions which are bounded together with their derivatives up to the mth order on the 
set D = [a, b] ×R2 . Let p ≥ 1 and (uh, qh) be the LDG solutions of (2.3), then there exists a positive constant C independent of h such 
that ∣∣eu(x−

N )
∣∣ ≤ Ch2p+1. (4.5)∣∣eq(x+

0 )
∣∣ ≤ Ch2p+1. (4.6)

Proof. We construct the following adjoint problem: find U1 and U2 such that

U ′
1 + U2 + RqU1 = 0, U ′

2 + Ru U1 = 0, for x ∈ (a,b) subject to U1(a) = 0, U2(b) = −1. (4.7)

The BVP (4.7) can be transformed into the system of equations

U′ + A(x)U = 0, x ∈ (a,b), B1U(a) + B2U(b) = U0, (4.8)

where

U =
[

U1
U2

]
, A =

[
Rq 1
Ru 0

]
, U0 =

[
0

−1

]
, B1 =

[
1 0
0 0

]
, B2 =

[
0 0
0 1

]
.

The solution to (4.8) can be expressed in terms of its fundamental matrix

U(x) = M(x)U(a), (4.9)

where the 2 × 2 fundamental matrix M(x) satisfies the initial-value problem

M ′(x) = −A(x)M(x), M(a) = I. (4.10)

If f ∈ C p
b (D) then the entries of A(x) are in H p(�). Differentiate (4.8) p times to express U(p+1) in terms of U, then replace 

U using (4.9). Thus, the BVP (4.7) satisfies the following regularity estimate

|Uk|p+1 ≤ C, k = 1,2. (4.11)

Taking V 1 = U1 and V 2 = U2 in (3.18) and applying (4.7), we get

eu(x−
N ) =

∫
�

(−ε′
q + Rueu + Rqeq

)
(U1 − P−

h U1)dx +
∫
�

(−ε′
u + eq

)
(U2 − P+

h U2)dx.

Using (3.7) and applying the Cauchy-Schwarz inequality yields∣∣eu(x−
N )

∣∣ ≤ (∥∥ε′
q

∥∥ + K1 ‖eu‖ + K2
∥∥eq

∥∥)∥∥U1 − P−
h U1

∥∥ + (∥∥ε′
u

∥∥ + ∥∥eq
∥∥)∥∥U2 − P+

h U2
∥∥ .

Applying (3.3), (3.4), the standard interpolation error estimate (2.10) and using the regularity estimate (4.11), we get
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N )

∣∣ ≤ (
Chp |q|p+1 + K1Chp+1 + K2Chp+1) Chp+1 |U1|p+1 + (

Chp |u|p+1 + Chp+1) Chp+1 |U2|p+1

≤ Ch2p+1,

which completes the proof of (4.5).
Next, we will prove (4.6). We construct the following adjoint problem: find Uk, k = 1 − 4 such that

U ′
1 + U2 + RqU1 = 0, U ′

2 + Ru U1 = 0, for x ∈ (a,b) subject to U1(a) = 1, U2(b) = 0. (4.12)

As before, the BVP (4.12) satisfies the regularity estimate

|Uk|p+1 ≤ C, k = 1,2. (4.13)

Taking Vk = Uk, k = 1, 2 in (3.18) and applying (4.12), we get

eq(x−
0 ) =

∫
�

(−ε′
q + Rueu + Rqeq

)
(U1 − P−

h U1)dx +
∫
�

(−ε′
u + eq

)
(U2 − P+

h U2)dx.

Following the steps used to prove (4.5), we establish (4.6). �
In the next theorem, we state and prove superconvergence results at the downwind and upwind points. More precisely, 

we prove the following theorem.

Theorem 4.3. Suppose that the assumptions of Theorem 4.2 hold. Then there exists a constant C such that

max
j=1,2,...,N

∣∣∣eu(x−
j )

∣∣∣ ≤ C h2p+1. (4.14)

max
j=1,2,...,N

∣∣∣eq(x+
j )

∣∣∣ ≤ C h2p+1. (4.15)

Proof. For j = 1, 2, . . . , N , we consider the following terminal problem: find U1, U2 ∈ H p+1[a, x j] such that

U ′
1 + U2 + RqU1 = 0, U ′

2 + Ru U1 = 0, for x ∈ � j = [a, x j] subject to U1(x j) = 0, U2(x j) = −1. (4.16)

Under the assumption of the theorem, one can easily verify that (4.16) satisfies the following regularity estimate

|Uk(a)| ≤ C, |Uk|p+1,� j
≤ C, k = 1,2. (4.17)

Taking V 1 = U1 and V 2 = U2 in (3.10), summing over the elements Ii , i = 1, 2, . . . , j, using (4.16) and the fact that eu(x−
0 ) =

0, we obtain

j∑
i=1

(
A(i)

1 (U1) +A(i)
2 (U2)

)
=

∫
� j

eq
(
U ′

1 + RqU1 + U2
)

dx +
∫
� j

eu
(
U ′

2 + Ru U1
)

dx

− eq(x+
j )U1(x−

j ) + eq(x+
0 )U1(x+

0 ) − eu(x−
j )U2(x−

j )

= eu(x−
j ) + eq(x+

0 )U1(a). (4.18)

On the other hand, taking Vk = Uk, k = 1, 2 in (3.16) and summing over the elements Ii, i = 1, 2, . . . , j, we get

j∑
i=1

(
A(i)

1 (U1) +A(i)
2 (U2)

)
=

∫
� j

(−ε′
q + Rueu + Rqeq

)
(U1 − P−

h U1)dx +
∫
� j

(−ε′
u + eq

)
(U2 − P+

h U2)dx. (4.19)

Combining the two formulas (4.18) and (4.19) yields

eu(x−
j ) = −eq(x+

0 )U1(a) +
∫
� j

(−ε′
q + Rueu + Rqeq

)
(U1 − P−

h U1)dx +
∫
� j

(−ε′
u + eq

)
(U2 − P+

h U2)dx.

Using (3.7) and applying the Cauchy-Schwarz inequality, we get
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j )

∣∣∣ ≤ ∣∣eq(x+
0 )

∣∣ |U1(a)| +
(∥∥ε′

q

∥∥
0,� j

+ K1 ‖eu‖0,� j
+ K2

∥∥eq
∥∥

0,� j

)∥∥U1 − P−
h U1

∥∥
0,� j

+
(∥∥ε′

u

∥∥
0,� j

+ ∥∥eq
∥∥

0,� j

)∥∥U2 − P+
h U2

∥∥
0,� j

≤ ∣∣eq(x+
0 )

∣∣ |U1(a)| + (∥∥ε′
q

∥∥ + K1 ‖eu‖ + K2
∥∥eq

∥∥)∥∥U1 − P−
h U1

∥∥
0,� j

+ (∥∥ε′
u

∥∥ + ∥∥eq
∥∥)∥∥U2 − P+

h U2
∥∥

0,� j
.

Using the standard interpolation error estimates (2.10), the estimates (3.3), (3.4), (4.6), and the regularity estimate (4.17), 
we obtain∣∣∣eu(x−

j )

∣∣∣ ≤ (Ch2p+1)C + (Ch2p+1)C + (
Chp + K1Chp+1 + K2Chp+1) Chp+1 |U1|p+1,� j

+ (
Chp + Chp+1) Chp+1 |U2|p+1,� j

≤ Ch2p+1,

which completes the proof of (4.14).
Next, we will show (4.15). We construct the following terminal problem: find U1, U2 ∈ H p+1[x j−1, b], j = 1, 2, . . . , N

such that

U ′
1 + U2 + RqU1 = 0, U ′

2 + Ru U1 = 0, for x ∈ �̄ j = [x j−1,b] subject to U1(x j−1) = 1, U2(x j−1) = 0. (4.20)

Under the assumptions of the theorem, one can easily verify that (4.20) satisfies the following regularity estimate

|Uk(b)| ≤ C, |Uk|p+1,�̄ j
≤ C, k = 1,2. (4.21)

Taking V 1 = U1 and V 2 = U2 in (3.10), summing over the elements Ii, i = j, . . . , N , using (4.20) and the fact that eq(x+
N ) = 0, 

we obtain
N∑

i= j

(
A(i)

1 (U1) +A(i)
2 (U2)

)
=

∫
�̄ j

eq
(
U ′

1 + RqU1 + U2
)

dx +
∫
�̄ j

eu
(
U ′

2 + Ru U1
)

dx

− eq(x+
N )U1(x−

N ) + eq(x+
j−1)U1(x+

j−1) − eu(x−
N )U2(x−

N ) + eu(x−
j−1)U2(x+

j−1)

= eq(x+
j−1) − eu(x−

N )U2(b). (4.22)

On the other hand, taking Vk = Uk, k = 1, 2 in (3.16) and summing over the elements Ii, i = j, j + 1, . . . , N , we get

j∑
i=1

(
A(i)

1 (U1) +A(i)
2 (U2)

)
=

∫
�̄ j

(−ε′
q + Rueu + Rqeq

)
(U1 − P−

h U1)dx +
∫
�̄ j

(−ε′
u + eq

)
(U2 − P+

h U2)dx. (4.23)

Combining the two formulas (4.22) and (4.23) yields

eq(x+
j−1) = eu(x−

N )U2(b) +
∫
�̄ j

(−ε′
q + Rueu + Rqeq

)
(U1 − P−

h U1)dx +
∫
�̄ j

(−ε′
u + eq

)
(U2 − P+

h U2)dx.

Using (3.7) and applying the Cauchy-Schwarz inequality, we get∣∣∣eq(x+
j−1)

∣∣∣ ≤ ∣∣eu(x−
N )

∣∣ |U2(b)| +
(∥∥ε′

q

∥∥
0,�̄ j

+ K1 ‖eu‖0,�̄ j
+ K2

∥∥eq
∥∥

0,�̄ j

)∥∥U1 − P−
h U1

∥∥
0,�̄ j

+
(∥∥ε′

u

∥∥
0,�̄ j

+ ∥∥eq
∥∥

0,�̄ j

)∥∥U2 − P+
h U2

∥∥
0,�̄ j

≤ ∣∣eu(x−
N )

∣∣ |U2(b)| + (∥∥ε′
q

∥∥ + K1 ‖eu‖ + K2
∥∥eq

∥∥)∥∥U1 − P−
h U1

∥∥
0,�̄ j

+ (∥∥ε′
u

∥∥ + ∥∥eq
∥∥)∥∥U2 − P+

h U2
∥∥

0,�̄ j
.

Using the standard interpolation error estimates (2.10), the estimates (3.3), (3.4), (4.5), and the regularity estimate (4.21), 
we obtain∣∣∣eq(x+

j−1)

∣∣∣ ≤ (Ch2p+1)C + (Ch2p+1)C + (
Chp + K1Chp+1 + K2Chp+1) Chp+1 |U1|p+1,�̄ j

+ (
Chp + Chp+1) Chp+1 |U2|p+1,�̄ j

≤ Ch2p+1,

which completes the proof of (4.15). �
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Corollary 4.1. Suppose that the assumptions of Theorem 4.2 hold. Then there exists a constant C such that

max
j=1,2,...,N

∣∣∣ēu(x−
j )

∣∣∣ ≤ C h2p+1, max
j=1,2,...,N

∣∣∣ēq(x+
j )

∣∣∣ ≤ C h2p+1. (4.24)

Proof. Using (3.1) and the properties of the projections P±
h , we have eu(x−

j ) = ēu(x−
j ) and eq(x+

j ) = ēq(x+
j ). Invoking the 

estimates (4.14) and (4.15), we establish (4.24). �
4.3. Superconvergence for average errors at downwind/upwind points

Next, we deduce the (2p + 1)th superconvergence rate for the average errors at downwind/upwind points. More specifi-
cally, we have the following superconvergence results.

Corollary 4.2. Suppose that the assumptions of Theorem 4.2 hold. Then there exists a constant C such that⎛⎝ 1

N

N∑
j=1

∣∣∣eu(x−
j )

∣∣∣2

⎞⎠1/2

≤ C h2p+1,

⎛⎝ 1

N

N∑
j=1

∣∣∣eq(x+
j )

∣∣∣2

⎞⎠1/2

≤ C h2p+1. (4.25)

Proof. These results follow immediately from (4.14) and (4.15). �
4.4. Superconvergence toward Gauss-Radau projections

Next, we prove that the LDG solutions are superconvergent with order p +2 toward Gauss-Radau projections of the exact 
solutions.

Theorem 4.4. Suppose that the assumptions of Theorem 3.1 are satisfied. We further assume that the function f ∈ C2
b (D), where 

Cm
b (D) is the set of real m-times continuously differentiable functions which are bounded together with their derivatives up to the 

mth order on the set D = [a, b] × R2 . Let p ≥ 1 and (uh, qh) be the LDG solutions of (2.3), then there exists a positive constant C
independent of h such that

‖ēu‖ ≤ Chp+2,
∥∥ēq

∥∥ ≤ Chp+2. (4.26)

Proof. Using the Fundamental Theorem of Calculus, we write

|ēu(x)| =
∣∣∣∣∣∣ēu(x−

i ) +
x∫

xi

ē′
u(s)ds

∣∣∣∣∣∣ ≤ ∣∣ēu(x−
i )

∣∣ +
∫
Ii

∣∣ē′
u(s)

∣∣ds, ∀ x ∈ Ii,

∣∣ēq(x)
∣∣ =

∣∣∣∣∣∣∣ēq(x+
i−1) +

x∫
xi−1

ē′
q(s)ds

∣∣∣∣∣∣∣ ≤ ∣∣ēq(x+
i−1)

∣∣ +
∫
Ii

∣∣ē′
q(s)

∣∣ds, ∀ x ∈ Ii .

Taking the square of both sides, applying the inequality (a + b)2 ≤ 2a2 + 2b2 and applying the Cauchy-Schwartz inequality, 
we get

|ēu(x)|2 ≤ 2
∣∣ēu(x−

i )
∣∣2 + 2

⎛⎜⎝∫
Ii

∣∣ē′
u(s)

∣∣ds

⎞⎟⎠
2

≤ 2
∣∣ēu(x−

i )
∣∣2 + 2hi

∥∥ē′
u

∥∥2
0,Ii

,

∣∣ēq(x)
∣∣2 ≤ 2

∣∣ēq(x+
i−1)

∣∣2 + 2

⎛⎜⎝∫
Ii

∣∣ē′
q(s)

∣∣ds

⎞⎟⎠
2

≤ 2
∣∣ēq(x+

i−1)
∣∣2 + 2hi

∥∥ē′
q

∥∥2
0,Ii

.

Integrating these inequalities with respect to x, using the estimates in (4.24), and the fact that hi ≤ h, we get

‖ēu‖2
0,Ii

≤ 2hi
∣∣ēu(x−

i )
∣∣2 + 2h2

i

∥∥ē′
u

∥∥2
0,Ii

≤ 2Ch4p+3 + 2h2
∥∥ē′

u

∥∥2
0,Ii

,∥∥ēq
∥∥2

0,Ii
≤ 2hi

∣∣ēq(x+
i−1)

∣∣2 + 2h2
i

∥∥ē′
q

∥∥2
0,Ii

≤ 2Ch4p+3 + 2h2
∥∥ē′

q

∥∥2
0,Ii

.



JID:APNUM AID:3552 /FLA [m3G; v1.260; Prn:13/05/2019; 8:44] P.14 (1-23)

14 M. Baccouch / Applied Numerical Mathematics ••• (••••) •••–•••

Summing over all elements and using the estimates in (4.1), we obtain

‖ēu‖2 ≤ C Nh4p+3 + 2h2
∥∥ē′

u

∥∥2 ≤ C1h4p+2 + 2C2h2p+4 = O(h2p+4), (4.27a)∥∥ēq
∥∥2 ≤ C Nh4p+3 + 2h2

∥∥ē′
q

∥∥2 ≤ C1h4p+2 + 2C2h2p+4 = O(h2p+4), (4.27b)

where we used 4p + 2 ≥ 2p + 4 for p ≥ 1. This completes the proof of (4.26). �
Remark 4.1. The proof of the previous theorem is valid for any regular meshes and using piecewise polynomials of degree 
p ≥ 1. When p = 0, the estimate (4.27) gives ‖ēu‖ = O(h) and 

∥∥ēq
∥∥ = O(h), which converge at the same rate as the errors 

‖eu‖ and 
∥∥eq

∥∥ (See Theorem 3.1). Thus, our superconvergence results towards Gauss-Radau projections are not valid for 
p = 0.

5. Numerical examples

In this section, we present numerical examples to verify our theoretical findings.

Example 5.1. We consider the following nonlinear second-order BVP

u′′ = 1

2

(
1 − (u′)2 − u sin(x)

)
, x ∈ [0,2π ], (5.1a)

subject to the periodic boundary conditions

u(0) = u(2π), u′(0) = u′(2π). (5.1b)

The exact solution of (5.1) is u = 2 + sin(x). We solve (5.1) using the proposed LDG method on uniform meshes obtained by 
partitioning the computational domain [0, 2π ] into N subintervals with N = 10, 15, 20, 25, 30, 35 and using the spaces P p

with p = 1 − 4. The L2-norm of the errors and their orders of convergence are shown in Fig. 1 on the log-log scale. These 
results suggest that the LDG method lead to optimal convergence orders as expected by the theory; see Theorem 3.1. The 
L2-norm of the errors ‖ēu‖ and 

∥∥ēq
∥∥ presented in Fig. 2 indicate that the LDG solutions uh and qh , respectively, converge 

to the projections P−
h u and P+

h q with order p + 2. These computational results indicate that the observed numerical super-
convergence order is in full agreement with the theoretical convergence order. We observe from Fig. 3 a convergence rate 
p + 1 for 

∥∥ē′
u

∥∥ and 
∥∥ē′

q

∥∥. Finally, we present the maximum errors at downwind and upwind points in Fig. 4. We observe 

that the convergence rate of max
j=1,2,...,N

∣∣∣eu(x−
j )

∣∣∣ and max
j=1,2,...,N

∣∣∣eq(x+
j )

∣∣∣ is 2p + 1. These results confirm our theoretical findings 

in Theorem 4.2.
We repeat the previous experiment with all parameters kept unchanged except for the boundary conditions where we 

use (1.1b). To be more precise, we consider

u′′ = 1

2

(
1 − (u′)2 − u sin(x)

)
, x ∈ [0,3], (5.2a)

subject to the mixed boundary conditions

u(0) = 2, u′(3) = cos(3). (5.2b)

We display the all errors in Figures 5–8. These results suggest optimal convergence and superconvergence rates. Again these 
results are in full agreement with the theoretical results.

Finally, we solve the following BVP subject to the Dirichlet boundary conditions

u′′ = 1

2

(
1 − (u′)2 − u sin(x)

)
, x ∈ [0,3], (5.3a)

u(0) = 2, u(3) = 2 + sin(3). (5.3b)

We present the errors in Figures 9–12. Again, these results suggest optimal convergence and superconvergence rates when 
the Dirichlet boundary conditions are used.

Example 5.2. Consider the second-order nonlinear boundary-value problem [6]

u′′ = 1

8

(
32 + 2x3 − uu′) , x ∈ [1,2], (5.4a)

u(1) = 17, u′(2) = 0. (5.4b)

The exact solution of (5.4) is given by u(x) = x2 + 16/x. We solve (5.4) using the proposed LDG method with p = 1 − 4. We 
use uniform meshes obtained by subdividing [1, 2] into N intervals with N = 4, 6, 8, 10, 12, 14. In Fig. 13 we display the 
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Fig. 1. Log-log plots of ‖eu‖ (left) and 
∥∥eq

∥∥ (right) versus N for the BVP (5.1) on uniform meshes having N = 10, 15, 20, 25, 30, 35 elements using P p , 
p = 1 to 4.

Fig. 2. Log-log plots of ‖ēu‖ (left) and 
∥∥ēq

∥∥ (right) versus mesh sizes N for the BVP (5.1) on uniform meshes having N = 10, 15, 20, 25, 30, 35 elements 
using P p , p = 1 to 4.

Fig. 3. Log-log plots of 
∥∥ē′

u

∥∥ (left) and 
∥∥ē′

q

∥∥ (right) versus N for the BVP (5.1) on uniform meshes having N = 10, 15, 20, 25, 30, 35 elements using P p , 
p = 1 to 4.
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Fig. 4. Log-log plots of max
j=1,2,...,N

∣∣∣eu(x−
j )

∣∣∣ (left) and max
j=1,2,...,N

∣∣∣eq(x+
j )

∣∣∣ (right) versus N for the BVP (5.1) on uniform meshes having N = 10, 15, 20, 25, 30, 
35 elements using P p , p = 1 to 4.

Fig. 5. Log-log plots of ‖eu‖ (left) and 
∥∥eq

∥∥ (right) versus N for the BVP (5.2) on uniform meshes having N = 8, 10, 12, 14, 16, 18, 20 elements using P p , 
p = 1 to 4.

Fig. 6. Log-log plots of ‖ēu‖ (left) and 
∥∥ēq

∥∥ (right) versus N for the BVP (5.2) on uniform meshes having N = 8, 10, 12, 14, 16, 18, 20 elements using P p , 
p = 1 to 4.
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Fig. 7. Log-log plots of 
∥∥ē′

u

∥∥ (left) and 
∥∥ē′

q

∥∥ (right) versus N for the BVP (5.2) on uniform meshes having N = 8, 10, 12, 14, 16, 18, 20 elements using P p , 
p = 1 to 4.

Fig. 8. Log-log plots of max
j=1,2,...,N

∣∣∣eu(x−
j )

∣∣∣ (left) and max
j=1,2,...,N

∣∣∣eq(x+
j )

∣∣∣ (right) versus N for the BVP (5.2) on uniform meshes having N = 8, 10, 12, 14, 16, 18, 
20 elements using P p , p = 1 to 4.

L2-norm of the errors ‖eu‖ and 
∥∥eq

∥∥ with log-log scale. We also show their orders of convergence. These results indicate 
that ‖eu‖ and 

∥∥eq
∥∥ converge at O(hp+1). Thus, the error estimates proved in this paper are optimal in the exponent of the 

parameter h. In Fig. 14, we report the L2-norm of the errors ‖ēu‖ and 
∥∥ēq

∥∥ and their orders of convergence. We observe 
that ‖ēu‖ = O(hp+2) and 

∥∥ēq
∥∥ = O(hp+2). Thus, the LDG solutions uh and qh are, respectively, superconvergent with order 

p + 2 to the particular projections P−
h u and P+

h q. Finally, we report the maximum errors at downwind and upwind points 
in Fig. 15. We observe that the convergence rate of max

j=1,2,...,N

∣∣∣eu(x−
j )

∣∣∣ and max
j=1,2,...,N

∣∣∣eq(x+
j )

∣∣∣ is 2p + 1. These results confirm 

our theoretical findings in Theorem 4.2.

Example 5.3. We consider a two-point boundary-value problem subject to the mixed boundary conditions

u′′ = (u′)2

x3
− 9

u2

x5 + 4x, x ∈ [1,2], u(1) = 0, u′(2) = 4 + 12 ln(2), (5.5)

which admits the unique solution u = x3 ln(x) [6]. We solve this problem using the LDG method on uniform meshes having 
N = 5, 10, 15, 20, 25, 30, 35, 40 elements and using the spaces P p with p = 1, 2, 3, and 4. The L2 errors as well as their 
order of convergence are shown in Fig. 16. These results indicate that the LDG method yields O(hp+1) convergent solutions. 
The rate of convergence is clearly optimal. The L2-norm of the errors ||ēu|| and ||ēq|| shown in Fig. 17 indicate that the 
LDG solutions uh and qh are O(hp+2) super close to the projections P−

h u and P+
h q, respectively. Finally, we present the 
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Fig. 9. Log-log plots of ‖eu‖ (left) and 
∥∥eq

∥∥ (right) versus N for the BVP (5.3) on uniform meshes having N = 8, 10, 12, 14, 16, 18, 20 elements using P p , 
p = 1 to 4.

Fig. 10. Log-log plots of ‖ēu‖ (left) and 
∥∥ēq

∥∥ (right) versus N for the BVP (5.3) on uniform meshes having N = 8, 10, 12, 14, 16, 18, 20 elements using P p , 
p = 1 to 4.

Fig. 11. Log-log plots of 
∥∥ē′

u

∥∥ (left) and 
∥∥ē′

q

∥∥ (right) versus N for the BVP (5.3) on uniform meshes having N = 8, 10, 12, 14, 16, 18, 20 elements using P p , 
p = 1 to 4.
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Fig. 12. Log-log plots of max
j=1,2,...,N

∣∣∣eu(x−
j )

∣∣∣ (left) and max
j=1,2,...,N

∣∣∣eq(x+
j )

∣∣∣ (right) versus N for the BVP (5.3) on uniform meshes having N = 8, 10, 12, 14, 16, 
18, 20 elements using P p , p = 1 to 4.

Fig. 13. Log-log plots of ‖eu‖ (left) and 
∥∥eq

∥∥ (right) versus N for Example 5.2 on uniform meshes having N = 4, 6, 8, 10, 12, 14 elements using P p , p = 1
to 4.

Fig. 14. Log-log plots of ‖ēu‖ (left) and 
∥∥ēq

∥∥ (right) versus N for Example 5.2 on uniform meshes having N = 4, 6, 8, 10, 12, 14 elements using P p , p = 1
to 4.
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Fig. 15. Log-log plots of max
j=1,2,...,N

∣∣∣eu(x−
j )

∣∣∣ (left) and max
j=1,2,...,N

∣∣∣eq(x+
j )

∣∣∣ (right) versus N for Example 5.2 on uniform meshes having N = 8, 10, 12, 14, 16, 18, 
20 elements using P p , p = 1 to 4.

Fig. 16. Log-log plots of ‖eu‖ (left) and 
∥∥eq

∥∥ (right) versus N for Example 5.3 on uniform meshes having N = 5, 10, 15, 20, 25, 30, 35, 40 elements using 
P p , p = 1 to 4.

Fig. 17. Log-log plots of ‖ēu‖ (left) and 
∥∥ēq

∥∥ (right) versus N for Example 5.3 on uniform meshes having N = 5, 10, 15, 20, 25, 30, 35, 40 elements using 
P p , p = 1 to 4.
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Fig. 18. Log-log plots of max
j=1,2,...,N

∣∣∣eu(x−
j )

∣∣∣ (left) and max
j=1,2,...,N

∣∣∣eq(x+
j )

∣∣∣ (right) versus N for Example 5.3 on uniform meshes having N = 5, 10, 15, 20, 25, 30, 
35, 40 elements using P p , p = 1 to 3.

Fig. 19. Log-log plots of ‖eu‖ (left) and 
∥∥eq

∥∥ (right) versus N for Example 5.4 on uniform meshes having N = 10, 20, 30, 40, 50 elements using P p , p = 1
to 4.

maximum errors at downwind and upwind points in Fig. 18. We observe that the convergence rate of max
j=1,2,...,N

∣∣∣eu(x−
j )

∣∣∣ and 

max
j=1,2,...,N

∣∣∣eq(x+
j )

∣∣∣ is again 2p + 1. These results confirm our theoretical findings in Theorem 4.2.

Example 5.4. Consider the second-order nonlinear Bratu problem

u′′ − 2eu = 0, x ∈ [0,1], u(0) = 0, u(1) = −2 ln(cos(1)), (5.6)

where the exact solution is u(x) = −2 ln(cos(x)). We use uniform meshes obtained by subdividing the computational do-
main [0, 1] into N intervals with N = 10, 20, 30, 40, 50. Fig. 19 shows the L2 errors ‖eu‖ and 

∥∥eq
∥∥ and their orders of 

convergence. These results indicate that ‖eu‖ and 
∥∥eq

∥∥ are both O(hp+1). In Fig. 20, we report the L2-norm of the er-
rors ‖ēu‖ and 

∥∥ēq
∥∥ and their orders of convergence. We observe that ‖ēu‖ = O(hp+2) and 

∥∥ēq
∥∥ = O(hp+2). Thus, the LDG 

solutions uh and qh are, respectively, superconvergent with order p + 2 to the particular projections P−
h u and P+

h q.

6. Concluding remarks

In this paper, we investigated the convergence and superconvergence of a local discontinuous Galerkin (LDG) finite 
element method for nonlinear second-order boundary-value problems (BVPs) for ordinary differential equations. We proved 
several L2 error estimates, and superconvergence results toward special projections. To be more precise, we proved that the 
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Fig. 20. Log-log plots of ‖ēu‖ (left) and 
∥∥ēq

∥∥ (right) versus N for Example 5.4 on uniform meshes having N = 10, 20, 30, 40, 50 elements using P p , p = 1
to 4.

LDG solutions converge to the true solutions with order p + 1, when the space of piecewise polynomials of degree p ≥ 1
is used. Moreover, we showed that the derivatives of the LDG solutions converge with order p + 1 toward the derivatives 
of Gauss-Radau projections of the exact solutions. In addition, we also proved that the LDG solutions are superconvergent 
with order p + 2 to the Gauss-Radau projections of the exact solutions. Finally, we established superconvergence rate of 
order 2p + 1 for the maximum errors at the upwind or downwind points. Numerical experiments demonstrate that the 
error bounds are sharp. Our current and future works include two-dimensional elliptic, parabolic, and hyperbolic problems, 
which would be more challenging and interesting.
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