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Small-world networks permeate modern society. In this paper we pre-
sent a methodology for creating and analyzing a practically limitless
number of networks exhibiting small-world network properties. More
precisely, we analyze networks whose nodes are Facebook groups shar-
ing a common word in the group name and whose links are mutual
members in any two groups. By analyzing several numerical characteris-
tics of single networks and network aggregations, we investigate how
the small-world properties scale with a coarsening of the network. We
show that Facebook group networks have small average path lengths
and large clustering coefficients that do not vanish with increased net-
work size, thus exhibiting small-world features. The degree distribu-
tions cannot be characterized completely by a power law, and the clus-
tering coefficients are significantly larger than what would be expected
for random networks, while the average shortest paths have consis-
tently small values characteristic of random graphs. At the same time,
the average connectivity increases as a power of the network size, while
the average clustering coefficients and average path lengths do not ex-
hibit a clear scaling with the size of the network. Our results are some-
what similar to what has been found in previous studies of the net-
works of individual Facebook users.

| 1. Introduction

In the past few years there has been a great interest in studying the ba-
sic topology of a variety of networks such as the World Wide Web
[1], signal transduction networks [2], subway systems [3], railway net-
works [4], and more recently, Facebook [5, 6]. These efforts have
seen the emergence of a very specific type of network, the small-world
network, in which most nodes are not neighbors of one another but
can be reached in a small number of steps. The concept of a small
world made its way into the realm of academia via the work of the so-
cial psychologist Stanley Milgram [7, 8]. Physicists entered the fray
with the development of the aptly named Watts—Strogatz network

Complex Systems, 23 © 2014 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.23.3.197



198 J. Woblgemuth and M. T. Matache

model [9], which replaced the previously uncontested random graph
model of Erdés and Rényi [10]. In the Erd6s—Rényi model, the links
between nodes are generated independently with the same probabil-
ity. The Watts—Strogatz model starts with a ring lattice, and each link
is rewired with a given probability p. If p = 1, the Erd6s—Rényi model
is obtained, while p = 0 yields the ring lattice. Watts and Strogatz con-
sidered two numerical characteristics associated with the network: the
characteristic path length and the clustering coefficient [9]. They
showed that for very small values of p and for large enough values of
p, the two numerical characteristics tend to have similar magnitudes.
However, for intermediate values of p, the two numerical characteris-
tics tend to be at opposite ends of their range, [0, 1], namely small
characteristic path length and large clustering coefficient. That behav-
ior corresponds to small-world networks. More recently, Serra et al.
[11] introduced the equal number of links algorithm to generate small-
world networks starting from a regular lattice, by randomly rewiring
some connections. That study aimed at analyzing the dynamics of in-
teracting oscillators or automata. It was found that key dynamical
properties (i.e., number of attractors, size of basins of attraction) are
modified by rewiring; for example, there is a decrease in the number
of attractors that are reached. On the other hand, Aguirre et al. [12]
described an algorithm for generating a small-world graph with a
higher number of biconnected components than lattices have, which
is useful for modeling hierarchical multi-agent networks or the inter-
net. It was shown that these kinds of networks present a slower
descent in their characteristic path length; however, no significant dif-
ference was observed in the clustering coefficient behavior in compari-
son to a ring-lattice approach.

The applications of these models are all around us: the neural net-
works in our brains, the ecosystems of rain forests, the future of the
stock market, the dynamics of epidemics, and the internet, to name a
few. For example, in a study by Barabasi, Albert, and Hawoong [1], it
was found that the World Wide Web is in fact a scale-free network;
that is, the connectivity has a power-law distribution with a heavy
tail. Later studies would find that several small-world networks have
scale-free topologies. In [13] Albert and Barabdsi provide a compre-
hensive treatment of networks and include the parameters of many
small-world networks of a diverse variety. Small-world networks have
become quite mainstream with books such as Watts’ Six Degrees
[14], and Barabési’s Bursts [15] and Linked [16]. Latora and Mar-
chiori [3] made the leap from theory to experiment by considering a
complex network where the nodes are train stations and the edges are
stations connected by track. In their own terminology, they found the
Boston subway to be locally and globally efficient, tantamount to be-
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ing a small-world network. The Indian railway network was also
found to exhibit small-world properties by Sen et al. [4].

This paper is concerned with characterizing real-world examples of
the small-world network phenomenon, starting with features such as
clustering, degree distribution, or average path length for one of the
most expansive networks: Facebook. Previous analysis of Facebook
has focused on individuals [5, 6]. The work in [5] confirms “six de-
grees of separation” to be present in the Facebook graph, along with
high local clustering. That is, Facebook, at the level of individual
users, seems to be a small-world network, and the degrees of separa-
tion would later be reduced to four [6]. We supplement the previous
research by focusing on groups rather than individuals. There is much
to be learned about networks by studying expansive social networks
such as Facebook, but small-world properties have been seen and ana-
lyzed in networks with as few as 43 nodes [17]. We are interested in
understanding the impact of aggregation of individuals into groups on
the main statistics of the network. It has been noted that the nature of
small-world graphs makes it difficult for many coarsening approaches
to retain the relevant properties of the original graph [18]. In order to
be able to perform a comparison with the previous results in the litera-
ture, we use similar topology statistics [13, 19] and information on
connectivity or degree distribution, clustering coefficients, average
shortest paths, and network density. We use the average shortest
paths and clustering coefficients to characterize small-world net-
works, as is done in [9, 17]. In this regard, we create several networks
composed of Facebook groups with a common keyword in their titles
and compare the parameters of each to find common characteristics
and observe how they change with other parameters such as, but not
limited to, the number of nodes, graph density, and degree distribu-
tion. We compare our results to the corresponding ones for random
networks or other Facebook studies. We show that an aggregation of
Facebook users into groups and of groups into further smaller cate-
gories of groups does not change the basic small-world features. Thus
Facebook exhibits a scaling invariance of properties. At the same
time, we note some differences between networks representing differ-
ent interests, such as politics versus sports.

Basically, in this paper we generate a coarsening of the Facebook
network by classes of personal interests of Facebook users based on a
number of keywords for each area of interest under consideration.
The links are generated by individuals common to different keyword
groups. This type of coarsening is shown to preserve small-world fea-
tures that have been noted in [5, 6] at the Facebook user level. Simi-
larly to [5], we show that a strict power law may not be the best fit
for the degree distribution of the Facebook network. Thus, this prop-
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erty is also preserved by the coarsening of the network. We show that
the average connectivity increases as a power of the network size with
approximation, while the average clustering coefficients and average
path lengths do not exhibit a clear scaling with the number of nodes
of the network.

There are two complementary elements to this paper: the descrip-
tion of the social network under consideration and the mathematical
network analysis. Although the first element will be described in suffi-
cient detail, the main focus is the mathematical analysis.

The organization of this paper is as follows. Section 2 lays the foun-
dation for the mathematics needed for analysis. Section 3 describes in
detail how we create our networks from the data pulled from Face-
book. We present the results of our analysis, including visualizations
and statistical approaches, in Section 4 and end with conclusions and
ideas for future work in Section 5.

I 2. Mathematical Background

In this section we provide a brief overview of the mathematical tools
needed to analyze the networks in this paper. We also review the nu-
merical characteristics of random and small-world networks.

2.1 The Facebook Group Network and Significant
Numerical Measures
Let us denote by G = {x, x5, ..., xN} a network with N nodes. Each

node x; is assumed to be linked to k; € {0, 1, ... N — 1} other nodes in
the network, called its inputs or neighbors. The parameter k; is called
the connectivity or degree of node x;. If k; = 0, then the node is iso-
lated. Here we deal with undirected networks; that is, if node x; is an
input to node x;, then x; is an input to x;. G can be viewed as a graph
with vertices x1, x,, ..., x)y and edges (x,—, x,—), i,j=1,2,...N.

The actual Facebook network considered in this study is described
as follows.

Definition 1. Let F,, be the set of (public) Facebook groups with the
word w in the group’s title. These groups represent the nodes of the
network, and consequently each node x; is basically the set of people
belonging to that group. Then we can define the set of links/edges be-
tween the nodes of this network as

Ly = {(xj» xj) € FuxFy | x; N x; # 0,4, j = 1,2, ..., N, i # j}.
Furthermore, two nodes x; and x; are said to be adjacent nodes if
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(xl-, x/) € L,,. Thus, we construct G,,, a network with nodes F,, and

edges L, as defined.

For example, if w = food, then we consider all the groups that
have the word food in their title. Two possible group titles could be
“Food and wine” and “All about food.” These would be two nodes
in the network. If they share common members, then there is an edge
between them. The main reason for constructing such networks is to
be able to identify possible commonalities as well as differences be-
tween the structure and properties of networks that are all social, but
represent different types of personalities and interests. We would ex-
pect to see some impact of the type of common interest of the groups,
represented by the common word. For instance, we find that the
w = bieber (Justin Bieber, Canadian singer-songwriter, musician, pro-
ducer, and actor, born 1994, http://en.wikipedia.org/wiki/Justin_
Bieber) network is a lot more connected and clustered than, for exam-
ple, the v = math network, not to mention much, much larger. Often
some differences are intuitive: the graph Fy;.pe, is large and con-
nected, while the graph Fyiology is almost nonexistent. This is most

likely due to the different populations represented by the two groups,
as well as the types of personalities and personal interests of the indi-
viduals belonging to these groups: some are interested in being in a
music group related to their personal preference for music, others in a
biology group perhaps related to their professional life. The choice of
keyword affects the return drastically, and the resultant graph is sub-
ject to various factors, both intuitive and otherwise. It is our goal to
analyze the impact of these common interests on the numerical charac-
teristics of Facebook group networks in order to decide if the net-
works possess small-world characteristics and to identify differences
or similarities between groups with possibly unrelated interests, repre-
senting different segments of the population and different personali-
ties. To this end, the most common numerical characteristics to be
analyzed are the degree distribution, average clustering coefficient,
and associated path lengths of the network [4-6, 9, 13]. We now re-
call their definitions.

Definition 2. If kq, k;, ..., ky are the connectivity values of the nodes
X1, X3, ... XN, respectively, the connectivity distribution is given by
the probability distribution function f(x) = P(k; = x) for any 7, where
xefl,2,...N-1}.

Definition 3. The clustering coefficient of a node x;, denoted C;, is a
measure of transitivity. That is, it measures how connected the inputs
of a node are. More precisely, if node x; has k; inputs, then there exist
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at most 1/2k;(k; — 1) links between these k; inputs. C; is defined as
the fraction of the number of the links that actually exist in the net-
work with respect to the total number of possible links. Then the aver-
age clustering coefficient for a network with N nodes is

1 N
C= N > (1)
i=1

If k= {x € F,, | degree (x) = k}, where k € {1, 2, ..., N—1}, then the

average clustering coefficient of nodes with degree & is

1
C(k):TZCx,kzl,z,...,N—l, 2)
|R]

xek

where |/;| denotes the cardinality of set k.

Definition 4. Given two nodes x; and x;, the shortest path connecting
them, /;;, is given by the minimal number of links that lead from x; to
x; (or vice versa since we are dealing with an undirected network, so

that [;; = [;;). The average path length is

1
h=——">lj 3)

NIN-1) &

By construction, we eliminated nodes with & = 0 (isolated nodes),
which means each network is comprised of one or more subgraphs/
subnetworks where every node in each subgraph has k& = 1. In that
case, the average path length of the network is determined as the
mean of the average path lengths of each subgraph.

A small-world network is characterized by the following proper-
ties:

1. The average shortest path length scales with In N [13].

2. The network exhibits clustering higher than random networks [13, 20].

Based on previous studies [9, 20, 21], these two requirements provide
a good metric for assessing real-world networks that exist between
complete order and randomness. An ordered network is basically a
ring lattice in which the nodes are placed on a circle, and each node is
connected to its k nearest neighbors. With this idea in mind, we pro-
vide a brief review of the models for random and small-world
networks.
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1 2.2 Random Graph Models

A random network is a network in which some specific parameters,
such as the number of edges or the average connectivity, take fixed
values, but the network is random in other respects. There are several
models for generating random graphs, the most common one being to
maintain the number of nodes and edges constant while randomly as-
signing the edges [22]. Arguably the most widely studied type of
model for the construction of a random network is G(N, p), where N
is the number of nodes of the network, and p is the (fixed) probability
of constructing an edge between any two nodes. These networks have
become known as Erdés—Rényi networks [10], due to the eminent
works of the namesakes. The connectivity for G(N, p) networks fol-
lows a binomial distribution,

N-1
frand () = ( . )p’%l -pNT (4)
The average clustering coefficient is

— (k)

rand = >

N
while the average shortest path length scales as follows [13]

InN
In (k)

(6)

rand ~

Therefore, for a G(N, p) network, as N — co, we see that C,,,q van-

ishes and /4 scales as In N. Thus, property 1 of small-world net-
works is fulfilled. However, despite the fact that there is a relatively
small path length between any two nodes, the random graphs lack the
inherent nontrivial clustering of a small-world network described by
property 2.

1 2.3 Small-World Network Models

In an effort to capture the transitivity of actual small-world networks
and retain average shortest paths characteristic of random graphs that
scale with In N, the Watts—Strogatz model was developed [9]. More
precisely, starting with a ring lattice, each edge is rewired with proba-
bility p, excluding self-inputs and duplicate edges. When there is no
chance of an edge’s being rewired p = 0, we obtain an ordered/regu-
lar network. It exhibits high clustering, fulfilling property 2, but has
long path lengths, so it is not a small-world network. At p =1, a
Watts—Strogatz network is exactly a random network and thus has
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short path lengths to fulfill property 1 but little to no transitivity, so it
is not a small-world network. For a significant range of values of
0 < p < 1, the networks created with the Watts—Strogatz model can
fulfill both properties 1 and 2, so they are small-world networks.
The degree distribution for the Watts—Strogatz small-world model
is Poisson with parameter k p and the clustering coefficient is
3(k-2)

C= , (7)
4k-1)+8kp+4kp?

while the average shortest path has been shown to scale with In N just
like random networks [22].

Some small-world networks have been shown to exhibit another in-
teresting property, along with high clustering and short path lengths.
Networks such as the internet, collaboration networks, ecological net-
works, cellular networks, citation networks, and the community of ac-
tors exhibit power-law degree distributions [13].

Definition 5. A scale-free network obeys a power-law connectivity distri-
bution. That is, the connectivity of a node is determined by a shape pa-
rameter and a scaling factor with the probability distribution function
kY
f(k):_akzlaza'“’Ns (8)
L)

where (y) = Z{C\Izl 1/x” is the truncated Riemann ¢ function, also
called the scaling factor. The shape parameter of the distribution is
y > 0.

For scale-free networks, the usual range is 2 <y <3, while
1<y<2 is typical for biological networks (genes, proteins,
metabolism, and ecological networks) [13].

The power-law distributions exhibit a scale invariance. That is,

k)Y

g = L
{)
where B is a constant. Because of this property, such networks have
become known as scale-free networks.

In this paper we generate many Facebook group networks and
compute their numerical measures in comparison to the values de-
scribed above for random, small-world, and scale-free networks. With
this in mind, we proceed to our discussion of network construction
and analysis.

=B flk), ©)
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| 3. Network Creation Methodology

Facebook is arguably the most influential social network in human his-
tory [23]. With approximately 900 million users and over 125 billion
friend connections, Facebook is available in more than 70 languages
(these numbers were available on Facebook in March 2012) and is
larger than any network before it, permeating every corner of the
globe and every walk of life. Naturally, massive amounts of data facili-
tate a quest for knowledge and meaning. Several authors have man-
aged to analyze Facebook as a network whose nodes are individuals
and whose links are friendships [3, 6], identifying small-world proper-
ties. Those papers focus on individual users and analyze snapshots of
the network at a certain point in time, thus focusing on the topologi-
cal aspects of the network. Our work follows a similar approach at a
Facebook group level. Other authors have focused on characteristics
of information spread and information replication through the Face-
book network [24] at the basic level of a “meme” (designating an
idea or message that spreads and evolves analogously through commu-
nication) or in an aggregate fashion, inducing a coarsening of the net-
work. In [24] the focus is on the dynamical evolution of the memes
over time and a statistical assessment of the impact of mutations on
the actual messages as they are replicated by users and friends. The au-
thors use a genetic network approach. Although our work does not
consider the dynamical aspects of Facebook, it does provide a new
way of coarsening a Facebook subnetwork generated by common
group interests. Our approach is to use “guided search” to find and
analyze networks created from the latent data of the Facebook social
graph that has interesting properties, for example, high clustering or
short average path length. The size of Facebook, combined with pri-
vacy restrictions, poses a serious hindrance for attaining interesting
data characteristic of an actual social network. In this section we de-
scribe a methodology for analyzing coherent, self-contained Facebook
subnetworks of a tractable size.

The idea of analyzing Facebook groups is an intuitive continuation
of the logic behind small-world networks. Groups are collections of
people connected via a common context, a set of facts and circum-
stances that surround a situation, event, or concept. Naturally, to
move beyond a set of isolated groups, it must be assumed that the
average person belongs to multiple groups. This is feasible, as not
many people would choose to define themselves by a single context.
To this end, in order to analyze Facebook groups, we must operate un-
der a small number of restrictions. First, the method for retrieving
groups of a common context is limited to a search for groups with a
single word in the group’s title. For example, if we decided to form a
network of groups with “word” in the title, we might have
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and Strogatz [9] that do not vanish with increased networks, and
small average path lengths characteristic of random graphs [13]. Thus
we conclude that the networks under consideration in this study ex-
hibit small-world features. At the same time, the average connectivity
increases as a power of the network size with approximation, while
the average clustering coefficients and average path lengths do not ex-
hibit a clear scaling with N.

In the future we plan to expand this analysis to more and larger
networks and to supplement it with a more in-depth study of the
numerical characteristics presented in this paper and other suitable
measures.

| 5. Conclusions and Future Work

In this paper we provided a study of the structure of Facebook group
networks. We generated a number of networks using keywords for
group selection, and we linked groups with common members. We fo-
cused on a number of measures that can describe the structure of
these networks. Our networks have degree distributions that cannot
be entirely characterized by a power law, clustering coefficients that
are significantly larger than what would be expected for random net-
works, and consistently small values for the average shortest paths,
characteristic of random graphs. That is to say, our analysis has
shown that Facebook group networks are small-world networks. A
unique element of this study is that we did more than analyze only
one network or a handful of networks; we analyzed an ensemble of
real-world networks and were able to find relationships that other-
wise could not have been found. Figures 18 and 22 attest to this fact
and suggest an interesting path to take in future studies.

Although our methodology for network construction is efficient, it
is not the only possibility. We chose keywords that would most likely
render interesting and mostly unambiguous results using a program-
matic approach. Our future work will expand this analysis to include
more networks with larger sizes, in order to be able to generate a
more complete statistical analysis of Facebook group networks. Fu-
ture studies should include other measures of interest such as effi-
ciency, correlations, or spectral properties, as well as more sophisti-
cated statistical analyses.

Moreover, it would be important to analyze the dynamics of the
networks over time, since Facebook groups could be added or re-
moved from the networks, based on the natural changes that occur,
and links readjusted. This would imply observing Facebook over a sig-
nificant amount of time to have sufficient data for statistical pur-
poses.
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At the same time, it would be of interest to generate a dynamical
system model of the social networks described here. More precisely,
we can define some meaningful states of the nodes and associated
rules that could help us understand the complexity of this kind of
large-scale network. For instance, by focusing on the links in the net-
works, which are created based on individuals who are common to
multiple groups, we could put a weight on the influence of one group
over another group (the target) in terms of Facebook messages that
are posted in the target group by the common members during a unit
of time. By defining a suitable threshold function, a node could be la-
beled as active or inactive, based on the aggregated influences of the
individual input nodes through the common members. This could gen-
erate a Boolean network whose dynamics could be studied to provide
some insight on the impact of multiple memberships of individuals on
the activity of groups.

I References

[1] R. Albert, H. Jeong, and A.-L. Barabdsi, “Internet: Diameter of the
World-Wide Web,” Nature, 401, 1999 pp. 130-131.
doi:10.1038/43601.

[2] T. Helikar, J. Konvalina, J. Heidel, and J. A. Rogers, “Emergent Deci-
sion-Making in Biological Signal Transduction Networks,” Proceedings
of the National Academy of Sciences, 105(6), 2008 pp. 1913-1918.
doi:10.1073/pnas.0705088105.

[3] V. Latora and M. Marchiori, “Is the Boston Subway a Small-World Net-
work?,” Physica A: Statistical Mechanics and Its Applications,
314(1-4), 2002 pp. 109-113. doi:10.1016/S0378-4371(02)01089-0.

[4] P. Sen, S. Dasgupta, A. Chatterjee, P. A. Sreeram, G. Mukherjee, and
S. S. Manna, “Small-World Properties of the Indian Railway Network,”
Physical Review E, 67(3), 2003 p. 036106.
d0i:10.1103/PhysRevE.67.036106.

[5] J. Ugander, B. Karrer, L. Backstrom, and C. Marlow, “The Anatomy of
the Facebook Social Graph.” arxiv.org/abs/1111.4503.

[6] L. Backstrom, P. Boldi, M. Rosa, J. Ugander, and S. Vigna, “Four De-
grees of Separation.” arxiv.org/abs/1111.4570.

[7] S. Milgram, “The Small World Problem,” Psychology Today, 2, 1967
pp. 60-67.

[8] J. Travers and S. Milgram, “An Experimental Study of the Small World
Problem,” Sociometry, 32(4), 1969 pp. 425-443.

[9] D.J. Watts and S. H. Strogatz, “Collective Dynamics of ‘Small-World’
Networks,” Nature, 393, 1998 pp. 440-442. d0i:10.1038/30918.

[10] P. Erd6s and A. Rényi, “On Random Graphs,” Publicationes Mathemati-
cae Debrecen, 6, 1959 pp. 290-297.

Complex Systems, 23 © 2014 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.23.3.197



Small-World Properties of Facebook Group Networks 225

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

(20]

[21]

[22]

(23]
(24]

[25]

[26]

R. Serra, M. Villani, and L. Agostini, “A Small-World Network Where
All Nodes Have the Same Connectivity, with Application to the Dynam-
ics of Boolean Interacting Automata,” Complex Systems, 15(2), 2004
pp. 137-155. http://www.complex-systems.com/pdf/15-2-3.pdf.

C. Aguirre, F. Corbacho, and R. Huerta, “Static and Dynamic Proper-
ties of Small-World Connection Topologies Based on Transit-Stub Net-
works,” Complex Systems, 14(1), 2003 pp. 1-28.
http://www.complex-systems.com/pdf/14-1-1.pdf.

R. Albert and A.-L. Barabdsi, “Statistical Mechanics of Complex Net-
works,” Reviews of Modern Physics, 74(1), 2002 pp. 47-97.
doi:10.1103/RevModPhys.74.47.

D. J. Watts, Six Degrees: The Science of a Connected Age, New York:
W. W. Norton & Company, 2003.

A.-L. Barabasi, Bursts: The Hidden Pattern behind Everything We Do,
New York: Dutton, 2010.

A.-L. Barabési, Linked: How Everything Is Connected to Everything
Else and What It Means, New York: Plume, 2003.

L. A. N. Amaral, A. Scala, M. Barthélémy, and H. E. Stanley, “Classes
of Small-World Networks,” Proceedings of the National Academy of Sci-
ences, 97(21), 2000 pp. 11149-11152. doi:10.1073/pnas.200327197.

H. De Sterck, V. E. Henson, and G. Sanders, “Multilevel Aggregation
Methods for Small-World Graphs with Application to Random-Walk
Ranking,” Computing and Informatics, 30(2), 2011 pp. 225-246.

M. E. J. Newman, “The Mathematics of Networks,” in The New Pal-
grave Dictionary of Economics, 2nd ed. (L. E. Blume and S. N. Durlauf,
eds.), Basingstoke, UK: Palgrave Macmillan, 2008 pp. 1-12.

R. Cont and E. Tanimura, “Small-World Graphs: Characterization and
Alternative Constructions,” Advances in Applied Probability, 40, 2008
pp. 939-965. d0i:10.1239/aap/1231340159.

D. J. Watts, “Networks, Dynamics, and the Small-World Phenomenon,”
The American Journal of Sociology, 105(2), 1999 pp. 493-527.

M. E. J. Newman, Networks: An Introduction, New York: Oxford Uni-
versity Press, 2010.

P. Adams, Grouped, Berkeley: New Riders, 2012.
L. A. Adamic, T. M. Lento, E. Adar, and P. C. Ng, “Information Evolu-
tion in Social Networks.” arxiv.org/abs/1402.6792.

T. M. J. Fruchterman and E. M. Reingold, “Graph Drawing by Force-
Directed Placement,” Software—Practice and Experience, 21, 1991
pp- 1129-1164.

MATLAB, Release Version 7.10.0 (R2010a), Natick, MA: The Math-
Works Inc., 2010.

Complex Systems, 23 © 2014 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.23.3.197



