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Browser fingerprinting has become a prevalent technique employed by websites for advertising and analytics. 
It utilizes JavaScript objects and APIs to gather traditional and non-traditional browser attributes and creates 
unique identifiers for online user tracking. While previous research has examined the invocation of the browser’s 
built-in JavaScript objects and APIs to retrieve browser attribute values, it overlooks the use and flow of those 
values within scripts. 
In this paper, we define browser fingerprinting behavior as the aggregation of different types of browser 
attributes, and reduce the detection of browser fingerprinting to a joint analysis of the data flows of browser 
attribute values in JavaScript code. FProbe, our proposed framework for the flow-centric detection of browser 
fingerprinting, performs context-sensitive static data flow analysis on JavaScript code. Given the complexity 
and dynamic features of the JavaScript language, achieving soundness in static analysis of JavaScript code is 
extremely challenging or even impossible. Consequently, FProbe aims to be a practical and accurate tool for 
detecting browser fingerprinting. We implemented FProbe in Java and evaluated its performance using 4,296 
fingerprinting scripts from recent work and 2,335,317 pieces of JavaScript code on 988,220 websites. FProbe 
achieved F-measures of 97.81% and 96.31% on these datasets, respectively. It identified browser fingerprinting 
behavior on 0.78% of the 988,220 websites, with the use of the toDataURL method observed in 4.26% of 
the fingerprinting scripts. Notably, only 72 fingerprinting scripts and 10 fingerprinting providers identified 
by FProbe were reported in previous work. These results highlight the effectiveness of FProbe in detecting 
browser fingerprinting and its complementarity to existing detection tools. Additionally, our comprehensive 
study demonstrates that fingerprinting with traditional browser attributes can achieve a 96.6% F-measure. 

1. Introduction 

Browser fingerprinting has become increasingly prevalent among 
websites for advertising and analytics over the last decade (Acar et al., 
2014, 2013; Englehardt and Narayanan, 2016; Libert, 2015; Iqbal et 
al., 2021; Nikiforakis et al., 2013). It gathers the attributes of browsers, 
operating systems, and hardware (Schwarz et al., 2019) using the 
browser’s built-in JavaScript objects and APIs such as those within win-
dow.navigator and window.screen, and then creates unique identifiers 
for browser instances to correlate browsing sessions across time and 
web domains. Studies have demonstrated that browser fingerprinting 
could identify over 80% of browser instances (Cao et al., 2017; Fifield 
and Egelman, 2015; Laperdrix et al., 2016; Mayer and Mitchell, 2012). 
Remarkably, even as the values of browser attributes evolve over time 
due to system upgrade, browser instances can still be accurately finger-
printed (Vastel et al., 2018). 

E-mail address: ruizhao@unomaha.edu. 

To gain insights into the behavior of browser fingerprinting, we 
manually examined 100 unique browser fingerprinting scripts as re-
ported in recent work (Iqbal et al., 2021) and 100 non-fingerprinting 
scripts. Fingerprinting scripts were found to collect and concatenate tra-
ditional and non-traditional browser attributes, utilizing objects such as 
navigator and screen, as well as employing techniques like canvas-based 
and audio-based fingerprinting. These attributes are then used to gener-
ate unique browser fingerprints, which are subsequently transmitted to 
the network or stored locally. This behavior is distinctly different from 
that observed in non-fingerprinting scripts, e.g., browser attributes rel-
evant to the window’s dimension are commonly used for adjusting the 
position and size of HTML DOM elements. 

Inspired by these observations, we define browser fingerprinting be-
havior as the aggregation of different types of browser attributes, and 
reduce the detection of browser fingerprinting to a joint analysis of the 
data flows of browser attribute values in JavaScript code. Correspond-
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ingly, we introduce FProbe, a framework for the flow-centric detection 
of browser fingerprinting, since the flows of browser attribute values 
play the pivotal role in browser fingerprinting detection, as emphasized 
in Lerner et al. (2016). When provided with JavaScript code, FProbe 
identifies browser attributes as sources, meticulously examines the data 
flows originating from these sources, and computes the intersections of 
these data flows. It detects browser fingerprinting behavior by classify-
ing the joint data flows associated with browser attribute values. FProbe 
adopts a context-sensitive static approach, maximizing its capability to 
detect browser fingerprinting in JavaScript code compared to dynamic 
approaches. 

Several works for browser fingerprinting detection have been pro-
posed (Acar et al., 2013; Nikiforakis et al., 2013; Englehardt and 
Narayanan, 2016; Lerner et al., 2016; Iqbal et al., 2021; Rizzo et 
al., 2021; Bahrami et al., 2022). They focus on the invocation of the 
browser’s built-in JavaScript objects (e.g., canvas and audio) and APIs 
(e.g., navigator.appName and screen.width) to retrieve browser at-
tribute values but overlook the use and flow of those values within 
scripts. Anther tool, EssentialFP (Sjösten et al., 2021), performs dy-
namic data flow analysis of browser attribute values but faces chal-
lenges such as incomplete coverage of code execution paths (Sabelfeld 
and Myers, 2003; Vogt et al., 2007), non-negligible performance over-
head (Bandhakavi et al., 2010; Sjösten et al., 2021), and the require-
ment for software-specific instrumentation (Dhawan and Ganapathy, 
2009). Su and Kapravelos (2023) also  suffers from the limitations of 
dynamic analysis. To the best of our knowledge, this is the first work 
performing static data flow analysis to detect browser fingerprinting, 
complementary to existing browser fingerprinting detection methods. 
However, due to the complexity and dynamic features of the JavaScript 
language (e.g., runtime code generation and variadic functions), achiev-
ing soundness in static analysis of JavaScript code is extremely chal-
lenging or even impossible (Guarnieri and Livshits Gatekeeper, 2009; 
Madsen et al., 2013). Therefore, FProbe aims to be a practical and ac-
curate tool. 

To prevent browser fingerprinting, researchers have proposed three 
types of techniques that isolate or disable the execution of JavaScript, 
manipulate browser attributes, or fabricate browser fingerprints (Niki-
forakis et al., 2015; Torres et al., 2015). However, browser fingerprint-
ing prevention is not the focus of our work. 

We implemented FProbe in Java and evaluated its performance 
using 4,296 fingerprinting scripts reported in recent work (Iqbal et 
al., 2021) and 2,335,317 pieces of JavaScript code collected from 
988,220 websites. FProbe achieved a 97.81% F-measure on scripts 
from Iqbal et al. (2021), showing comparable performance to Iqbal et 
al. (2021). FProbe detected browser fingerprinting behavior in 10,570 
scripts from 2,851 providers on 7,737 (0.78%) of the 988,220 websites, 
and achieved a 96.31% F-measure on 1,500 randomly sampled scripts. 
Among the 10,570 fingerprinting scripts, only 22.55% and 32.21% were 
recognized by EasyList Easylist (2021) and  EasyPrivacy Easyprivacy 
(2021), respectively. Furthermore, only 72 fingerprinting scripts and 
10 fingerprinting providers identified by FProbe were reported in Iqbal 
et al. (2021). Our findings also suggest that non-traditional browser fin-
gerprinting techniques may not be widely used, consistent with findings 
in Nikiforakis et al. (2013); Englehardt and Narayanan (2016); Rizzo et 
al. (2021). The evaluation results highlight the effectiveness of FProbe 
in detecting browser fingerprinting. 

To understand the capability of fingerprinting with traditional 
browser attributes, we conducted a comprehensive study in two phases. 
In the first phase, we designed a scheme for collecting traditional 
browser attributes and deployed it on a public website. We collected 
3,073 unique traditional browser attributes during 3,814 visits from 
1,790 visitors. In the second phase, we fingerprinted all the visitors us-
ing the collected browser attributes and our fingerprinting achieved a 
96.6% F-measure. 

The main contributions of this work include: (1) FProbe, a frame-
work performing static data flow analysis to automatically detect 

1 function  u ( )  {  
2  sn  =  window  .  screen  ;  
3 return  { 
4 s i z e : { 
5 height : sn . height , width : sn . width 
6 } , 
7  colorDepth  :  sn  .  colorDepth  ,  
8 p ixe lRa t io : ( t = 1 , sn . systemXDPI > sn . log i ca lXD P I ? t = sn 

. systemXDPI  /  sn  .  log ica lXDPI  :  t  =  window  .  
devicePixe lRat io  ,  t )  

9 } ; var t ;  
10 } 
11 function  a ( )  {  
12 return  ( 
13 Object ( function  ( )  {  
14 return  −1  !==  na  vigator  .  userAgent  .  indexOf  ("Chrome") 
15 }) ( ) ? t = "Chrome" :  Object  (  function  ( )  {  
16 return  −1  !==  na  vigator  .  userAgent  .  indexOf  ("Firefox" ) 
17 }) ( ) ? t = "Firefox" :  t  =  navigator  .  appName  ,  t ) ;  var t ;  
18 } 
19 function  get fp  ( )  {  
20 return  { 
21  screen  :  u ( )  ,  
22 browser : { 
23 browser : a ( ) , 
24 mobile : / Mobile | Android | iP ( ad | od | hone ) / . t e s t ( n avi gat o r . 

appVersion  )  ,  
25 } , . . . 
26 } 
27 } 

Fig. 1. Code excerpt from a real browser fingerprinting script. 

browser fingerprinting in JavaScript code, (2) a comprehensive eval-
uation of FProbe with a comparison to existing work, (3) a large-scale 
measurement of browser fingerprinting on Alexa top one million web-
sites, and (4) a comprehensive assessment of the capability of finger-
printing with traditional browser attributes. 

The rest of this paper is organized as follows. Section 2 introduces 
FProbe and its design rationale. Section 3 provides implementation 
details. Sections 4 and 5 evaluate FProbe and measure browser finger-
printing in the wild. Section 6 explores the capability of fingerprinting 
with traditional browser attributes. Section 7 discusses the limitations 
and future work. Section 8 examines the related work. Section 9 con-
cludes the paper. 

2. Design of FProbe 

In this section, we conduct a manual analysis of browser finger-
printing scripts reported in previous work and subsequently introduce 
FProbe along with its design rationale. 

2.1. Manual analysis of browser fingerprinting scripts 

We manually examined 100 unique browser fingerprinting scripts 
reported in recent work (Iqbal et al., 2021). Of these, 98 scripts 
collect and concatenate traditional browser attributes for generating 
fingerprints. These browser attributes are directly obtained from the 
browser’s built-in JavaScript objects and APIs. They describe the prop-
erties of the browser (e.g., screen.width, navigator.appVersion, and 
navigator.language) and the machine (e.g., navigator.cpuClass and nav-
igator.deviceMemory), as well as other information (e.g., Date.getTime-
zoneOffset). Meanwhile, all 100 fingerprinting scripts employ non-
traditional browser fingerprinting techniques, such as canvas, font, We-
bRTC, performance, and audio-based methods. 

We also examined 100 non-fingerprinting scripts. They often utilize 
individual browser attributes or similar types of attributes for render-
ing purposes. For instance, these scripts use browser attributes related 
to window.screen to adjust the size of HTML DOM elements, without 
incorporating attributes like navigator.cookieEnabled. 

The code excerpt extracted from a real fingerprinting script, as 
shown in Fig. 1, illustrates browser fingerprinting behavior. Several 
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Fig. 2. The overall workflow of the browser fingerprinting detection framework, FProbe. 

traditional browser attributes are combined in a returned JavaScript 
object within the entry function getfp(). Seven of them, obtained in the 
function u(), describe the properties of browser window; two of them, 
obtained in the function a(), describe the browser type; and others ob-
tained in the function getfp() describe the browser version. 

2.2. Design overview and rationale 

Inspired by these observations, we define browser fingerprinting be-
havior as the aggregation of different types of browser attributes, and 
reduce the detection of browser fingerprinting to a joint analysis of the 
data flows of browser attribute values in JavaScript code. Correspond-
ingly, we introduce FProbe for the flow-centric detection of browser 
fingerprinting. It comprises four phases, as illustrated in Fig. 2. 

In the initial phase, variable dependency analysis, when provided with 
JavaScript code, the call graph builder and the SSA IR builder components 
statically construct a call graph and SSA IR,1 respectively. Leveraging 
the SSA IR, the variable dependency analysis component then generates 
variable dependency graphs for all functions, illustrating value depen-
dencies among variables. These dependencies capture the value flows 
among variables and operations during the flow (e.g., string, array, and 
arithmetic ones). 

In the next phase, prototype propagation, based on the variable de-
pendency graphs and the call graph, the function-level propagation and 
program-level propagation components iteratively propagate JavaScript 
values and prototypes over all variables within and across functions, re-
spectively. This propagation process terminates once the possible values 
and prototypes of all variables are no longer subject to updates. 

In the third phase, flow analysis, based on the propagated values 
and prototypes, the source variable identification component identifies 
source variables that receive browser attribute values obtained from 
fingerprinting-related JavaScript objects and APIs. Subsequently, the 
flow analysis component conducts a context-sensitive data flow analy-
sis starting from the source variables and computes the intersections of 
these data flows throughout the entire program. 

In the final phase, classification, based on the data flow joints of 
browser attribute values, FProbe generates a report when browser fin-
gerprinting is detected. The report lists all the attributes involved in 
browser fingerprinting and details their flow paths in the JavaScript 
code. 

FProbe adpots a pure static approach, maximizing its capability 
to detect browser fingerprinting in JavaScript code compared to dy-
namic approaches. It captures both explicit and implicit data flows2 in 
a context-sensitive way. While many existing browser fingerprinting de-
tectors concentrate on which browser attributes are referenced (Acar et 
al., 2013; Nikiforakis et al., 2013; Englehardt and Narayanan, 2016; 
Lerner et al., 2016; Iqbal et al., 2021; Rizzo et al., 2021), FProbe em-
phasizes the flows of browser attribute values within the code, which is 

1 Static Single Assignment form Intermediate Representation (Cytron et al., 
1991). 
2 Implicit data flows often occur in conditional statements, JavaScript reflec-
tion, event/message handlers, and asynchronous function calls. 

essential for the reliable detection of browser fingerprinting (Lerner et 
al., 2016). Please refer to Section 8 for detailed discussions. 

Due to the complexity and dynamic features of the JavaScript lan-
guage (e.g., runtime code generation and variadic functions), achieving 
soundness in static analysis of JavaScript code is extremely difficult or 
even impossible (Guarnieri and Livshits Gatekeeper, 2009; Madsen et 
al., 2013), unlike most static analysis tools for typed programming lan-
guages (e.g., C and Java) choosing to be sound. Consequently, FProbe is 
designed to be a practical and accurate tool, complementary to existing 
browser fingerprinting detection methods (Acar et al., 2013; Nikiforakis 
et al., 2013; Englehardt and Narayanan, 2016; Lerner et al., 2016; Iqbal 
et al., 2021; Rizzo et al., 2021; Sjösten et al., 2021; Bahrami et al., 
2022). 

2.3. Variable dependency analysis 

Call graphs serve as the foundation of program analysis (Grove et 
al., 1997; Weihl, 1980). FProbe statically constructs call graphs to en-
sure comprehensive coverage of code execution paths by resolving call 
sites to their respective targets. The constructed call graphs are directed 
graphs with nodes representing functions and edges representing call 
relations from caller functions to callee functions through call sites. It is 
important to note that accurately constructing call graphs for JavaScript 
programs is challenging due to the dynamic features of JavaScript, such 
as runtime code generation and variadic functions (Chugh et al., 2009; 
Just et al., 2011; Madsen et al., 2013; Nikiforakis et al., 2012; Richards 
et al., 2011, 2010; Yue and Wang, 2013). Although accurate call graphs 
can be dynamically constructed for JavaScript code, generating proper 
inputs to trigger all possible code execution paths while minimizing 
runtime overhead remains a challenging task. 

Given the SSA IR (Cytron et al., 1991) of a function, the variable 
dependency analysis component extracts operands (i.e., value numbers) 
and operators from SSA instructions, and constructs a variable depen-
dency graph to describe immediate value dependencies among value 
numbers. Converting the script to its SSA form enables accurate cor-
relation between the definitions and uses of each value number, even 
when variables are reused in JavaScript code. 

We classify operators in the SSA IR into two groups, basic and 
global, similar to the approach in Zhao et al. (2015). Basic opera-
tors are directly extracted from SSA instructions, representing value 
transformation and passing from right-hand-side value numbers to the 
left-hand-side value number in an SSA instruction within functions. As 
shown in Formula (1), the basic operators include prototype lookup 
(PROTOTYPE), unary/binary operation (UNARY and BINARY), read-
/write to object field (FIELD_GET and FIELD_PUT), conditional expres-
sion (CONDITION), object construction (CONSTRUCT), and Φ-function 
(PHI) (Cytron et al., 1991) in the SSA IR. For instance, a string concate-
nation corresponds to a BINARY_OP operation, while reading a field is 
a FIELD_GET operation. Any operation that cannot be recognized will 
be labeled as UNKNOWN. 

𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟 𝑏𝑎𝑠𝑖𝑐 = {𝑃 𝑅𝑂𝑇 𝑂𝑇 𝑌 𝑃 𝐸, 𝑈𝑁𝐴𝑅𝑌 , 𝐵𝐼𝑁𝐴𝑅𝑌 , 

𝐹𝐼𝐸𝐿𝐷_𝐺𝐸𝑇 , 𝐹 𝐼𝐸𝐿𝐷_𝑃  𝑈𝑇  ,  𝐶𝑂𝑁𝐷𝐼𝑇  𝐼𝑂𝑁,  
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𝐶𝑂𝑁𝑆𝑇𝑅𝑈𝐶𝑇 ,  𝑃  𝐻𝐼,  𝑈  𝑁𝐾𝑁𝑂𝑊  𝑁  } (1) 

We denote the variable dependency graph for function 𝑓 as 𝐷(𝑓 ) 
in Formula (2), in which actual operations on variables are converted 
to their corresponding basic operators. The graph’s nodes correspond to 
value numbers defined or used within the function, while edges repre-
sent operations propagating values from one value number to another, 
indicating dependency relations. 

𝐷(𝑓 ) = {𝑥 
𝑜𝑝 
←←←←←←←←←→ 𝑦 | 𝑥, 𝑦 𝑎𝑟𝑒 𝑣𝑎𝑙𝑢𝑒 𝑛𝑢𝑚𝑏𝑒𝑟𝑠 𝑖𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑓, 

𝑤ℎ𝑒𝑟𝑒 𝑦 = 𝑜𝑝(𝑥) 𝑎𝑛𝑑 𝑜𝑝 ∈𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟 𝑏𝑎𝑠𝑖𝑐 } (2) 

2.4. Prototype propagation 

In strongly typed programming languages such as C and Java, data 
types can be statically determined at variable declarations. Unlike them, 
the prototype of the value in a JavaScript variable cannot be easily 
inferred in static code analyses. However, prototypes play a crucial role 
in browser attribute identification. For example, in Fig. 1, the variable 
sn holds the reference to the screen object in line 2, and its field height is 
referenced in line 5. Without knowledge of the prototype of sn’s value, 
it is impossible to identify the browser attribute screen.height in line 
5. Therefore, the two components of this phase iteratively propagate 
JavaScript values and prototypes throughout the script, as illustrated in 
Fig. 3. 

The propagation is an iterative process that is context-sensitive to 
the call stack and conditional expressions, as illustrated at the top of 
Fig. 3. It iterates through functions in a post-order traversal of the call 
graph 𝐺 to ensure that callees can be processed before their callers 
whenever possible. The propagation terminates when there are no more 
updates to the propagated values and prototypes in the entire script. To 
prevent endless iteration, we have set a timeout for the propagation. 

2.4.1. Function-level propagation 
Utilizing the variable dependency graphs, depicted in the propagate-

function-level of Fig. 3, the function-level propagation component iterates 
through all instructions in function 𝑓 and propagates the value or pro-
totype from right-hand-side value numbers to the left-hand-side value 
number of every instruction 𝑠𝑡𝑚𝑡 intra-procedurally under the current 
call stack 𝑠𝑡𝑎𝑐𝑘. 

Specifically, for a statement which performs a prototype look-up on 
𝑥 (at line 3), the prototype of 𝑥 will be saved to the left-hand-side value 
number 𝑦. For a statement which reads the field of an object 𝑥 to a 
value number 𝑦 (in line 5), the value of 𝑥’s field will be saved to 𝑦. For 
a statement which writes a value number 𝑥 to the field of an object 𝑦 (in 
line 7), the value of 𝑥 will be saved to 𝑦’s field. The read and write op-
erations on array elements are also covered in lines 5 and 7. If the index 
of the array element can be resolved, the propagation will be performed 
on such an element otherwise the entire array. For a statement which 
constructs an object 𝑦 from a prototype 𝑥 (in line 9), the prototype of 𝑦 
will be set to 𝑥. For a statement in which 𝑦 receives one of multiple ob-
jects 𝑥1, … , 𝑥𝑛 (in line 11), the value of 𝑦 will be the set of all possible 
values 𝑥1, … , 𝑥𝑛 . We do not propagate anything in unary/binary opera-
tions and conditional statements since their computation results cannot 
be used to obtain browser attributes. 

2.4.2. Program-level propagation 
Building on the outcomes of function-level propagation and the call 

graph, illustrated in the propagate-program-level of Fig. 3, the program-
level propagation component propagates values and prototypes from the 
definitions of global/lexical variables to their uses, from the arguments 
of callsites in caller functions to the parameters of callee functions, from 
the returned variables of callee functions to the receiving variables at 
the callsites in caller functions, and from event/message dispatchers to 
their handlers across function boundaries (inter-procedurally) under the 

1 while true 
2 for each function 𝑓 ∈ call graph 𝐺 do 
3 propagate-value-function-level(𝑓 ) 
4 propagate-value-program-level(𝑓 , 𝐺) 
5 if no value update then exit 

function propagate-function-level(𝑓 ) 
// 𝑓 : a function  
1 for each statement 𝑠𝑡𝑚𝑡 ∈ 𝑓 do 
2 switch 𝑠𝑡𝑚𝑡 do 
3 case 𝑦 = 𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒_𝑜𝑓 (𝑥) do 
4 𝑦 ← 𝑥.__proto__ | 𝑠𝑡𝑎𝑐𝑘 
5 case 𝑦 = 𝑥.𝑓 𝑖𝑒𝑙𝑑 do 
6 𝑦 ← 𝑥.𝑓 𝑖𝑒𝑙𝑑 | 𝑠𝑡𝑎𝑐𝑘 
7 case 𝑦.𝑓 𝑖𝑒𝑙𝑑 = 𝑥 do 
8 𝑦.𝑓 𝑖𝑒𝑙𝑑 ← 𝑥 | 𝑠𝑡𝑎𝑐𝑘 
9 case 𝑦 = 𝑛𝑒𝑤 𝑥() do 
10 𝑦.__proto__ ← 𝑥 | 𝑠𝑡𝑎𝑐𝑘 
11 case 𝑦 = 𝑝ℎ𝑖(𝑥1, … , 𝑥𝑛 ) do 
12 𝑦 ← {𝑥1 , …, 𝑥 𝑛 } | 𝑠𝑡𝑎𝑐𝑘 

function propagate-program-level(𝑓 , 𝐺) 
// 𝑓 : a function  
// 𝐺: the call graph 
1 for each statement 𝑠𝑡𝑚𝑡 ∈ 𝑓 do 
2 switch 𝑠𝑡𝑚𝑡 do 
3 case 𝑔𝑙𝑜𝑏𝑎𝑙‖𝑙𝑒𝑥𝑖𝑐 𝑎𝑙 ∶ 𝑦 = 𝑥 do 
4 𝑟𝑒𝑎𝑑 𝑠 = find-read(𝑠𝑡𝑚𝑡) 
5 for each [𝑧 = 𝑔 𝑙𝑜𝑏𝑎𝑙‖𝑙𝑒𝑥𝑖𝑐𝑎𝑙 ∶ 𝑦 ∈ function 𝑡] ∈ 𝑟𝑒𝑎𝑑𝑠 do 
6 𝑧 ∈ 𝑡 ← 𝑥 ∈ 𝑓 | new 𝑠𝑡𝑎𝑐𝑘 
7 case 𝑦 = 𝑖𝑛𝑣𝑜𝑘𝑒 𝑚 𝑎𝑟𝑔1, 𝑎𝑟𝑔2, … do 

case 𝑦 = 𝑑 𝑖𝑠𝑝𝑎𝑡𝑐ℎ 𝑛.𝑚, 𝑎𝑟𝑔1, 𝑎𝑟𝑔2, … do 
8 function 𝑡(𝑝𝑎𝑟𝑎1 , 𝑝𝑎𝑟𝑎2, …) = find-call-target(𝑠𝑡𝑚𝑡, 𝐺) 
9 𝑝𝑎𝑟𝑎[𝑖] ∈ 𝑡 ← 𝑎𝑟𝑔[𝑖] ∈ 𝑓 𝑤ℎ𝑒𝑟𝑒 𝑖 = 1, 2, … | 𝑠𝑡𝑎𝑐𝑘 ← 𝑠𝑡𝑚𝑡 
10 case 𝑟𝑒𝑡𝑢𝑟𝑛 𝑥 do 
11 if 𝑠𝑡𝑎𝑐 𝑘.size == 0 then 
12 𝑐 𝑎𝑙𝑙𝑠𝑖𝑡𝑒𝑠 = find-call-site(𝑓 , 𝐺) 
13 else 
14 frame 𝑟 ← 𝑠𝑡𝑎𝑐𝑘 
15 𝑐 𝑎𝑙𝑙𝑠𝑖𝑡𝑒𝑠 = find-call-site(𝑓 , 𝑟) 
16 for each callsite : 𝑦 = 𝑓 (…) ∈ function 𝑡 ∈ 𝑐 𝑎𝑙𝑙𝑠𝑖𝑡𝑒𝑠 do 
17 𝑦 ∈ 𝑡 ← 𝑥 ∈ 𝑓 | 𝑠𝑡𝑎𝑐 𝑘 
18 case 𝑦 = dispatch *.[dispatchEvent,fireEvent] 𝑥1, 𝑥2, … do 
19 𝑒𝑛𝑎𝑚𝑒 = find-event-name(𝑠𝑡𝑚𝑡) 
20 𝑧1, 𝑧2 , … = find-event-receiver-arg(𝑒𝑛𝑎𝑚𝑒) 
21 𝑧[𝑖]← 𝑥[𝑖] 𝑤ℎ𝑒𝑟𝑒 𝑖 = 1, 2, … | new 𝑠𝑡𝑎𝑐 𝑘 

Fig. 3. Value and prototype propagation algorithm. 

current call stack. Corresponding dependencies are established across 
functions. 

As shown in Formula (3), global operators represent value passing 
across functions. We use GLOBAL_GET and LEXICAL_GET to denote 
reading from global and lexical variables, and use GLOBAL_PUT and 
LEXICAL_PUT to represent writing to global and lexical variables. We 
use INVOKE and DISPATCH to represent function calls and member 
method dispatches, respectively, and RETURN to denote value returns. 

𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟 𝑔𝑙𝑜𝑏𝑎𝑙 = {𝐺𝐿𝑂𝐵 𝐴𝐿_𝐺𝐸 𝑇 , 𝐺𝐿𝑂𝐵 𝐴𝐿_𝑃𝑈  𝑇  ,  

𝐿𝐸 𝑋 𝐼 𝐶 𝐴𝐿_𝐺𝐸 𝑇 , 𝐿𝐸 𝑋𝐼 𝐶 𝐴𝐿_𝑃𝑈  𝑇  ,  

𝐼𝑁𝑉  𝑂𝐾  𝐸  ,  𝐷𝐼𝑆  𝑃  𝐴𝐶  𝑇  𝐻,  𝑅𝐸  𝑇  𝑈  𝑅𝑁  } (3) 

As shown in propagate-program-level of Fig. 3, for a statement 
which writes the value of variable 𝑥 to a global/lexical variable 𝑦 in 
function 𝑓 (in line 3), we search for the statement reading 𝑦’s value to 
another variable 𝑧 in function 𝑡 (find-read in line 4), and propagate the 
value from 𝑥 to 𝑧 under a new call stack (in line 6). It is worth not-
ing that roughly propagating values from a write statement to all read 
statements with the same global/lexical variable could produce false 
positives. Therefore, based on the call graph, find-read in line 4 only 
searches for subsequent read statements prior to the next write state-
ment for such a global/lexical variable. 
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For a statement which invokes a function or dispatches a mem-
ber method in function 𝑓 (in line 7), we first resolve the call target 
𝑡 based on the call graph 𝐺 (find-call-target in line 8), and then prop-
agate the value from each argument 𝑎𝑟𝑔 [𝑖] in the caller function 𝑓 to 
its corresponding parameter 𝑝𝑎𝑟𝑎[𝑖] of the callee function 𝑡 (in line 9). 
Meanwhile, a new stack frame is pushed to the top of the call stack 
𝑠𝑡𝑎𝑐 𝑘. The stack frame includes the caller, the call site, arguments, and 
parameters. 

For a statement which returns 𝑥 in function 𝑓 (in line 10), if the call 
stack is empty, we search the whole program for all call sites pointing to 
𝑓 (find-call-site in line 12); otherwise, we leverage the top frame of the 
call stack to find call sites pointing to 𝑓 (in lines 14 and 15). We then 
propagate the value from the returned variable 𝑥 in the callee function 
𝑓 to the receiving variable 𝑦 at the call site in the caller function 𝑡 
(in line 17). Note that the propagation for return statements is a N-
to-N mapping. It means several return statements can be identified for 
one call site, and several call sites can also be identified for one return 
statement when the call stack is empty. 

For a statement which dispatches an event containing 𝑥1, 𝑥2, … (in 
line 18), we use the event name to search the whole program for its 
corresponding argument 𝑧1, 𝑧2, … at the receiving function (in lines 19 
and 20). We then propagate every dispatched 𝑥[𝑖] to its corresponding 
argument 𝑧[𝑖] (in line 21). 

2.5. Flow analysis 

Based on the propagated values and prototypes, the source variable 
identification component identifies source variables that receive browser 
attribute values. The identification focuses on three types of JavaScript 
operations. The first two involve field references (e.g., navigator.user-
Agen) and method dispatches (e.g., navigator.javaEnabled). Identifica-
tion in these cases relies on the prototypes of JavaScript objects and 
the names of their fields or methods. The third type is the typeof opera-
tion (e.g., typeof navigator.appName), commonly utilized to check the 
existence of JavaScript objects and APIs. 

The flow analysis component conducts a context-sensitive inter-
procedural data flow analysis starting from all source variables and 
summarizes transitive relations among value numbers along the data 
flows. It computes locations within the program where the flows of 
browser attribute values converge (e.g., in an array or a JSON object). 
The algorithm for flow analysis, depicted in Fig. 4, is a recursive process 
based on variable def-use analysis. Given a variable 𝑥 at the end of the 
flow 𝑓𝑙𝑜𝑤 in function 𝑓 , we search for all statements where variable 𝑥 
is used in 𝑓 (find-use in line 1), analyze each of 𝑥’s uses (starting from 
line 2), and record the transitive relation, as defined in Formula (4), for 
the flow. 

𝑇 𝑓 𝑖 ,𝑓𝑗 (𝑥, 𝑦) = {(𝑥 𝑓 𝑖 , 𝑜𝑝1, 𝑣  𝑓1 
1 
,… , 𝑣  𝑓 𝑘 

𝑘 , 𝑜𝑝𝑘+1, 𝑦  𝑓 𝑗 ) | 

𝑓𝑢𝑛𝑐 𝑡𝑖𝑜𝑛𝑠 𝑓  𝑖 , 𝑓1, … , 𝑓𝑘 , 𝑓𝑗 ∈ 𝑐𝑎𝑙𝑙 𝑔𝑟𝑎𝑝ℎ 𝐺, 

𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝑥 𝑓 𝑖 ∈ 𝑓 𝑖 , 𝑣  𝑓1 
1 

∈ 𝑓1, … , 𝑣  𝑓 𝑘 
𝑘 ∈ 𝑓 𝑘 , 𝑦  𝑓 𝑗 ∈ 𝑓 𝑗 , 

𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝑜𝑝1, … , 𝑜𝑝𝑘+1 ∈ 𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟 𝑏𝑎𝑠𝑖𝑐 ∪ 𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟 𝑔𝑙𝑜𝑏𝑎𝑙 , 

∃ 𝑥 𝑓 𝑖 
𝑜𝑝1 
←←←←←←←←←←←←←→ 𝑣 𝑓1 

1 
, … , 𝑣  𝑓 𝑘 

𝑘 

𝑜𝑝 𝑘+1 
←←←←←←←←←←←←←←←←←←←←←←→ 𝑦 𝑓 𝑗 } (4) 

For a statement which puts the value of 𝑥 into the field of an ob-
ject 𝑦 (in line 4), we first look up all statements that read the value of 
𝑦.field to another variable 𝑧 (find-read in line 5). For each read state-
ment, we add a flow segment from 𝑥 to 𝑧 via 𝑦.field to 𝑓𝑙𝑜𝑤 (in line 7), 
and recursively analyze the use of 𝑧 (in line 8). The operation on array 
elements is also covered here. For a write operation on an array ele-
ment, the analysis will be performed on such an element if the element 
index can be resolved otherwise the entire array. 

For a statement which writes the value of 𝑥 to a global/lexical vari-
able 𝑦 (in line 9), we first look up all the statements which read the 
value of 𝑦 to another variable 𝑧 (find-read in line 10). For each read 

// 𝑠: a source  variable  
// 𝑑 : the function where 𝑠 is defined 
// 𝐺: the call graph 
1 flow-analysis(𝑠, 𝑑 , {}, 𝐺) 

function flow-analysis(𝑥, 𝑓 , 𝑓𝑙𝑜𝑤, 𝐺) 
1 statements 𝑢𝑠𝑒𝑠 = find-use(𝑥, 𝑓 ) 
2 for each statement 𝑢𝑠𝑒 ∈ 𝑢𝑠𝑒𝑠 do 
3 switch 𝑢𝑠𝑒 do 
4 case 𝑦.𝑓 𝑖𝑒𝑙𝑑 = 𝑥 do 
5 𝑟𝑒𝑎𝑑 𝑠 = find-read(𝑢𝑠𝑒) 
6 for each [𝑧 = 𝑦.𝑓 𝑖𝑒𝑙𝑑 ∈ function 𝑡] ∈ 𝑟𝑒𝑎𝑑𝑠 do 
7 𝑓𝑙𝑜𝑤 ′ = 𝑓𝑙𝑜𝑤 + 𝑧 ∈ 𝑡 ← 𝑦.𝑓 𝑖𝑒𝑙𝑑 ← 𝑥 ∈ 𝑓 
8  flow-analysis(𝑧, 𝑡, 𝑓𝑙𝑜𝑤 ′ ) | new 𝑠𝑡𝑎𝑐 𝑘 
9 case 𝑔𝑙𝑜𝑏𝑎𝑙‖𝑙𝑒𝑥𝑖𝑐 𝑎𝑙 ∶ 𝑦 = 𝑥 do 
10 𝑟𝑒𝑎𝑑 𝑠 = find-read(𝑢𝑠𝑒) 
11 for each [𝑧 = 𝑔 𝑙𝑜𝑏𝑎𝑙‖𝑙𝑒𝑥𝑖𝑐𝑎𝑙 ∶ 𝑦 ∈ function 𝑡] ∈ 𝑟𝑒𝑎𝑑𝑠 do 
12 𝑓𝑙𝑜𝑤 ′ = 𝑓𝑙𝑜𝑤 + 𝑧 ∈ 𝑡 ← 𝑔𝑙𝑜𝑏𝑎𝑙‖𝑙𝑒𝑥𝑖𝑐 𝑎𝑙 ∶ 𝑦 ← 𝑥 ∈ 𝑓 
13 flow-analysis(𝑧, 𝑡, 𝑓𝑙𝑜𝑤 ′ ) | new 𝑠𝑡𝑎𝑐 𝑘 
14 case 𝑦 = 𝑖𝑛𝑣𝑜𝑘𝑒 𝑚 … , 𝑥,  … do 

case 𝑦 = 𝑑𝑖𝑠𝑝𝑎𝑡𝑐ℎ 𝑛 𝑚, … , 𝑥,  … do 
15 function 𝑡(… , 𝑧,  …) = find-call-target(𝑢𝑠𝑒, 𝐺) 
16 𝑓𝑙𝑜𝑤 ′ = 𝑓𝑙𝑜𝑤 + 𝑧 ∈ 𝑡 ← 𝑥 ∈ 𝑓 
17 flow-analysis(𝑧, 𝑡, 𝑓𝑙𝑜𝑤 ′ ) | 𝑠𝑡𝑎𝑐 𝑘 ← 𝑢𝑠𝑒 
18 case 𝑟𝑒𝑡𝑢𝑟𝑛 𝑥 do 
19 if 𝑠𝑡𝑎𝑐 𝑘.size == 0 then 
20 𝑐 𝑎𝑙𝑙𝑠𝑖𝑡𝑒𝑠 = find-call-site(𝑓 , 𝐺) 
21 else 
22 frame 𝑟 ← 𝑠𝑡𝑎𝑐𝑘 
23 𝑐 𝑎𝑙𝑙𝑠𝑖𝑡𝑒𝑠 = find-call-site(𝑓 , 𝑟) 
24 for each callsite : 𝑦 = 𝑓 (…) ∈ function 𝑡 ∈ 𝑐 𝑎𝑙𝑙𝑠𝑖𝑡𝑒𝑠 do 
25 𝑓𝑙𝑜𝑤 ′ = 𝑓𝑙𝑜𝑤 + 𝑦 ∈ 𝑡 ← 𝑥 ∈ 𝑓 
26 flow-analysis(𝑦, 𝑡, 𝑓𝑙𝑜𝑤 ′ ) | 𝑠𝑡𝑎𝑐 𝑘 
27 case 𝑦 = dispatch *.[dispatchEvent,fireEvent] … , 𝑥,  … do 
28 𝑒𝑛𝑎𝑚𝑒 = find-event-name(𝑠𝑡𝑚𝑡) 
29 𝑧 ∈ 𝑡 = find-event-receiver-arg(𝑒𝑛𝑎𝑚𝑒) 
30 𝑓𝑙𝑜𝑤 ′ = 𝑓𝑙𝑜𝑤 + 𝑧 ∈ 𝑡 ← 𝑥 ∈ 𝑓 
31 flow-analysis(𝑧, 𝑡, 𝑓𝑙𝑜𝑤 ′ ) | new 𝑠𝑡𝑎𝑐 𝑘 
32 default 𝑦 = 𝑜𝑝 … , 𝑥,  … do 
33 𝑓𝑙𝑜𝑤 ′ = 𝑓𝑙𝑜𝑤 + 𝑦 ← 𝑥 
34 flow-analysis(𝑦, 𝑓 , 𝑓𝑙𝑜𝑤 ′ ) | 𝑠𝑡𝑎𝑐 𝑘 

Fig. 4. Flow analysis algorithm. 

statement, we add a flow segment from 𝑥 to 𝑧 via 𝑦 to 𝑓𝑙𝑜𝑤 (in line 
12), and recursively analyze the use of 𝑧 (in line 13). 

For a statement which invokes a function 𝑚 or dispatches a method 
𝑚.𝑛 (in line 14), we first find the call target 𝑡 (find-call-target in line 15), 
then add a flow segment from the argument 𝑥 in 𝑓 to its corresponding 
parameter 𝑧 in 𝑡 to 𝑓𝑙𝑜𝑤 (in line 16), push the current call site 𝑢𝑠𝑒 at 
the top of the call stack 𝑠𝑡𝑎𝑐 𝑘, and recursively analyze the use of 𝑧 with 
the updated call stack (in line 17). 

For a statement which returns 𝑥 in function 𝑓 (in line 18), if the call 
stack is empty, we search the whole program for all call sites pointing 
to 𝑓 (find-call-site in line 20); otherwise, we leverage the top frame of 
the call stack to find call sites pointing to 𝑓 (in lines 22 and 23). For 
every call site in function 𝑡, where variable 𝑦 receives the returned 𝑥 
from 𝑓 , we add a flow segment from 𝑥 to 𝑦 to 𝑓𝑙𝑜𝑤 (in line 25), and 
recursively analyze the use of 𝑦 in 𝑡 (in line 26). 

For a statement which dispatches an event containing 𝑥 (in line 27), 
we use the event name to search the whole program for its correspond-
ing argument 𝑧 at the receiving function 𝑡 (in lines 28 and 29). We then 
add a flow segment from the dispatched 𝑥 to its corresponding receiv-
ing argument 𝑧 to 𝑓𝑙𝑜𝑤 (in line 30), and recursively analyze the use of 
𝑧 in 𝑡 (in line 31). 

For other statements in which 𝑥 is used and a variable 𝑦 is defined 
(e.g., a binary operation) (in line 32), we add a flow segment from 𝑥 to 
𝑦 to 𝑓𝑙𝑜𝑤 and head to the use analysis of 𝑦 (in lines 33 and 34). 

The log below illustrates the data flow of the browser attribute nav-
igator.appName in the function a() as shown in Fig. 1. Its hierarchical 
structure depicts the transitive relationships among value numbers dur-
ing the flow. At each step, the value numbers (e.g., 37 in line 1) and 
the instruction (e.g., 37 = getfield <appName> 6) are recorded. For 
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Fig. 5. Flows of browser attributes in Fig. 1. 

the flow from a callee to its caller in line 4, we use two instructions: 
the return statement itself in the callee (e.g., “|-1|return 40”) and its 
corresponding call site in the caller (e.g., “|19|19 = invoke 21@15 22 
exception:23”). 

|37|37 = getfield <appName> 6 
-|7|7 = phi 36,37 
--|40|40 = phi 23,7 
---|-1|return 40 & |19|19 = invoke 21@15 22 exception:23 
----|16|fieldref 16.15 = 19 
-----|4|fieldref 4.15 = 16 
------|-1|return 4 

The log below shows a flow joint of browser attribute values in 
Fig. 1. The first line indicates the instruction where the value flows 
of browser attributes converge, along with the total number of joined 
attributes (i.e., 9). The subsequent lines present the browser attributes 
and the corresponding code for retrieving their values. 

JOINT|fieldref 4.15 = 16|9 
-10 = getfield <userAgent> 8|navigator.userAgent 
-37 = getfield <appName> 6|navigator.appName 
-16 = getfield <height> 21|screen.height 
-30 = getfield <colorDepth> 33|screen.colorDepth 
-53 = getfield <systemXDPI> 50|screen.systemXDPI 
-36 = getfield <appVersion> 26|navigator.appVersion 
-58 = getfield <logicalXDPI> 57|screen.logicalXDPI 
-63 = getfield <devicePixelRatio> 61| window.devicePixelRatio 
-24 = getfield <width> 27|screen.width 

Fig. 5 visually illustrates the flow analysis results of our code exam-
ple, including browser attributes and the connections among the value 
flows of these attributes. The value number 𝑣4 in the function getfp() is 
the joint point for all the browser attributes. The edges in the figure are 
annotated with corresponding operators (e.g., BINARY_OP, FIELD_PUT, 
RETURN, and PHI). Notably, the label on the edge from 𝑣36 to 𝑣35 in 
the function getfp() has been updated to STR_OP for dispatching the 
method test() of a string value. 

2.6. Classification 

We observed four patterns related to the flow of browser at-
tribute values in fingerprinting scripts during our manual analysis (Sec-
tion 2.1). (1) Attribute values are aggregated together and then flow to 
a single sink point, as shown in Fig. 1. (2) Attribute values are individ-
ually sent to the same sink point, such as navigator.sendBeacon(). (3) 
Attribute values are aggregated in a JavaScript object without any sink 
point in the script, which is notable in browser fingerprinting libraries. 

(4) Attribute values are aggregated in several JavaScript objects and/or 
flow to several sink points. 

Correspondingly, we define two types of browser fingerprinting be-
havior. The 𝑇 𝑦𝑝𝑒1 behavior corresponds to the first three patterns dis-
cussed above. Over 𝑡1 values from 𝑔 types of browser attributes flow 
to one JavaScript object (e.g., an array or a string) or one dispatched 
method (e.g., XMLHttpRequest.send). The type of a browser attribute is 
determined by what browser property such an attribute describes. For 
example, window.devicePixelRatio and screen.width are of the same 
type, while navigator.language and navigator.userAgent are of different 
types. We use two threshold values, 𝑡1 and 𝑔 , to reduce false positives. 
A typical scenario we observed is that attributes under window.screen 
and window.document are often used together to calculate the size of 
DOM elements for rendering but not fingerprinting purposes. 

The 𝑇 𝑦𝑝𝑒2 behavior corresponds to the last pattern. Over 𝑡2 values 
from 𝑔 types of browser attributes are referenced but flow to multi-
ple JavaScript objects and/or dispatched methods. For instance, some 
fingerprinting scripts send browser attribute values individually at dif-
ferent locations in the scripts. 

Note that only browser attributes known to be effective for browser 
fingerprinting are counted toward the thresholds for both types of 
browser fingerprinting behavior. In Section 4, we will provide more 
details about the selection of browser attributes and the three threshold 
values. 

3. Implementation 

We implemented FProbe in Java, utilized the Closure compiler (Clo-
sure Compiler, 2021a) to identify JavaScript functions and resolve call 
sites, and used the WALA compiler (WALA Compiler, 2021b) to gen-
erate SSA IR. While various compilers for JavaScript call graph con-
struction are available, they are often implemented in languages other 
than Java. Notably, researchers have found that the Closure compiler 
outperforms the WALA compiler regarding the call graph construction 
in aspects such as recursive calls, inline functions, and runtime perfor-
mance (Antal et al., 2018). Throughout our implementation, we also 
observed that the WALA compiler tends to be over-conservative, thus 
easily missing nodes and edges in the call graph, and practically unus-
able for analyzing code at a scale, such as thousands of lines of code. 
Although the Closure compiler may occasionally use name-matching for 
resolving call sites and could introduce false or missing edges in the call 
graph, this does not contradict one of our design goals - FProbe  aims to 
be a practical and accurate tool, rather than a sound one (Section 2.2). 

To improve FProbe’s runtime performance, we cached data depen-
dencies and flow paths that had been explored in the prototype propaga-
tion phase and reused them in the flow analysis phase. 

We used a configuration file to maintain the list of JavaScript APIs 
for browser attribute identification. For instance, we use simple expres-
sions navigator.languages[*] and navigator.javaEnabled to match the 
reference to any element in the language array and the call to javaEn-
abled method, respectively. We use the compound expression such as 
navigator.mediaDevices.enumerateDevices()[*].deviceId to match the 
chained operations on JavaScript objects. The list of JavaScript APIs 
can be updated in a timely manner following the evolving browser fin-
gerprinting techniques. 

FProbe can also discover emerging browser fingerprinting tech-
niques. For instance, we can use the expression navigator.* to analyze 
the flow of every object under the navigator and then identify new 
browser attributes used in conjunction with those already well-known 
for fingerprinting. We believe that our flow-centric approach is more 
accurate and reliable than (Bahrami et al., 2022). 

4. FProbe with scripts from Iqbal et al. (2021) 

We successfully downloaded 4,296 out of the 4,493 fingerprinting 
scripts reported in Iqbal et al. (2021) and  excluded 2,164 of them that 
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were empty or had syntax errors to yield 1,347 unique ones, of which 
148 were obfuscated. FProbe was then evaluated using these 1,347 
unique scripts and compared with (Iqbal et al., 2021). We were unable 
to utilize results from other work on browser fingerprinting detection 
(Acar et al., 2013, 2014; Englehardt and Narayanan, 2016; Bahrami et 
al., 2022), due to the unavailability of their detection results or issues 
with their source code. 

We manually examined the 1,347 unique scripts in our best ef-
fort, and labeled 1,024 of them as fingerprinting and 268 as non-
fingerprinting. The manual analysis results served as the ground truth. 
We labeled a script as fingerprinting when it gathers browser attributes 
of different types not for rendering purposes or when it employed any 
non-traditional fingerprinting technique (e.g., canvas, font, WebRTC, 
and audio-based methods) - adhering  to the criteria used in Iqbal et 
al. (2021). Additionally, we evaluated the script in the browser and 
modified runtime values of browser attributes like navigator.language 
and screen.width to assess their impact on web page rendering. When 
a script loaded and utilized a fingerprinting script,3 we labeled it as 
non-fingerprinting. 

During the manual analysis, we considered several commonly used 
obfuscation techniques, including eval and code and array packers like 
“JavaScript Obfuscator” and “Obfuscator.io”. We failed to deobfuscate 
55 scripts and labeled them as unknown. It is worth noting that we 
do not classify minified scripts as obfuscated since their code remains 
readable. The 148 obfuscated scripts were fed to FProbe in their original 
form. 

In summary, FProbe achieved a 99.8% precision, a 95.9% recall, a 
97.81% F-measure, and a 96.59% accuracy with a low false discovery 
rate on the 1,292 unique fingerprinting and non-fingerprinting scripts 
reported in Iqbal et al. (2021). FProbe also exhibited satisfactory perfor-
mance on obfuscated fingerprinting scripts. Nevertheless, we strongly 
recommend FProbe to be used with JavaScript deobfuscators. 

4.1. Effective browser attributes and threshold values 

We identified 62 effective browser attributes for fingerprinting and 
grouped them into 12 categories based on their purposes, as detailed in 
Table 1. These attributes were compiled from prior research (Acar et al., 
2013; Nikiforakis et al., 2013; Libert, 2015; Englehardt and Narayanan, 
2016; Lerner et al., 2016; Laperdrix et al., 2016; Gómez-Boix et al., 
2018; Iqbal et al., 2021; Rizzo et al., 2021; Sjösten et al., 2021; Bahrami 
et al., 2022) and the Browserize project (Browserize, 2022). These cat-
egories are about characters, languages, plugins, storage, do-not-track 
flags, screen and device properties, software details, Java and cookie 
support, timezone, and Canvas objects. Through a grid search with the 
1,347 unique scripts and the 62 effective browser attributes, we deter-
mined the optimal values for thresholds 𝑡1, 𝑡2, and 𝑔 in Section 2.6 as 
6, 14, and 3, respectively. 

4.2. Detection accuracy 

Out of the 1,292 unique fingerprinting and non-fingerprinting 
scripts, FProbe identified 982 true positives, 2 false positives, 266 true 
negatives, and 42 false negatives. It achieved a 99.8% precision, a 
95.9% recall, a 97.81% F-measure, and a 96.59% accuracy, as detailed 
in Table 2. FProbe’s accuracy on scripts reported in Iqbal et al. (2021) 
is slightly lower than the results in Iqbal et al. (2021) with  static fea-
tures only, likely influenced by non-duplicated scripts and the limited 
number of non-fingerprinting scripts in our experiment. However, the 
analysis of scripts from the wild in Section 5 indicates that FProbe’s ac-
curacy is comparable to that reported in Iqbal et al. (2021). We define 
a true positive (TP) as fingerprinting behavior identified in a finger-
printing script, a false positive (FP) as fingerprinting behavior falsely 

3 An example is https://v2.clickguardian.app/track.js. 

Table 1 
Attributes effective for browser fingerprinting. 

Category Browser Attribute FP Sites 

Character 
document.characterSet 8.19% 
document.charset 4.19% 
document.charSet 4.19% 

Language 

navigator.languages[*] 1.40% 
navigator.language 52.58% 
navigator.browserLanguage 5.30% 
navigator.userLanguage 33.66% 
navigator.systemLanguage 4.25% 

Plugins 

navigator.mimeTypes.length 9.18% 
navigator.mimeTypes[*].description 0.78% 
navigator.mimeTypes[*].suffixes 0.62% 
navigator.mimeTypes[*].type 1.69% 
navigator.plugins.length 21.53% 
navigator.plugins[*].length 0.18% 
navigator.plugins[*].description 18.68% 
navigator.plugins[*].filename 1.93% 
navigator.plugins[*].name 8.84% 
navigator.plugins[*].version 1.65% 
navigator.plugins[*][*].description 0.10% 
navigator.plugins[*][*].suffixes 0.10% 
navigator.plugins[*][*].type 0.12% 

Database 
window.indexedDB 3.97% 
window.localStorage 32.30% 

Do-not-Track 
window.doNotTrack 5.42% 
navigator.doNotTrack 5.40% 
navigator.msDoNotTrack 0.93% 

Touch Points 
navigator.maxTouchPoints 6.19% 
navigator.msMaxTouchPoints 3.94% 

Screen 

window.devicePixelRatio 16.49% 
window.innerHeight 50.87% 
window.innerWidth 47.73% 
window.outerHeight 11.65% 
window.outerWidth 10.65% 
screen.availHeight 16.70% 
screen.availWidth 16.97% 
screen.height 63.91% 
screen.width 65.83% 
screen.colorDepth 31.65% 
screen.pixelDepth 7.99% 
visualViewport.height 0.09% 
visualViewport.width 0.09% 

Devices 

navigator.cpuClass 4.48% 
navigator.deviceMemory 1.76% 
navigator.hardwareConcurrency 2.49% 
navigator.oscpu 2.56% 
navigator.mediaDevices 0.34% 

Software 

window.name 82.06% 
navigator.appCodeName 1.10% 
navigator.appName 14.95% 
navigator.appVersion 8.22% 
navigator.buildID 0.40% 
navigator.platform 15.77% 
navigator.product 1.84% 
navigator.productSub 2.58% 
navigator.userAgent 76.22% 
navigator.vendor 5.79% 
navigator.vendorSub 0.12% 
navigator.version 0.43% 

Java & Cookie 
navigator.cookieEnabled 27.14% 
navigator.javaEnabled 18.70% 

Timezone Date.getTimezoneOffset 50.39% 

DataURL HTMLCanvasElement.toDataURL 4.30% 

identified in a non-fingerprinting script, a true negative (TN) as no 
fingerprinting behavior identified in a non-fingerprinting script, and a 
false negative (FN) as no fingerprinting behavior identified in a finger-
printing script. FProbe did not detect browser fingerprinting behavior 
in the 55 obfuscated scripts with unknown purposes. 

https://v2.clickguardian.app/track.js
https://Obfuscator.io
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Table 2 
FProbe’s overall performance compared with (Iqbal et al., 2021). * is the results for 1,500 
sampled scripts. 

Precision Recall F-Measure Accuracy 

FProbe with scripts from Iqbal et al. (2021) 99.8% 95.9% 97.81% 96.59% 
FProbe in the wild * 94.23% 98.49% 96.31% 99% 
Iqbal et al. (2021) static features 92.7% 85.5% 89% 99.8% 
Iqbal et al. (2021) dynamic features 99.1% 96.7% 97.9% 99.9% 
Iqbal et al. (2021) static and dynamic features 93.1% 93.8% 93.4% 93.1% 

Table 3 
FProbe’s performance on 𝑇 𝑦𝑝𝑒1 and 𝑇 𝑦𝑝𝑒2 browser fingerprinting. * is the 
results for sampled scripts. 

Type TPs FPs FDR 

FProbe with scripts from Iqbal et al. (2021) 
𝑇 𝑦𝑝𝑒1 964 2 0.2% 

𝑇 𝑦𝑝𝑒2 18 0 0% 

FProbe in the wild * 
𝑇 𝑦𝑝𝑒1 172 4 2.27% 

𝑇 𝑦𝑝𝑒2 24 8 25% 

We further counted true and false positives in 𝑇 𝑦𝑝𝑒1 and 𝑇 𝑦𝑝𝑒2 
browser fingerprinting and calculated their false discovery rates (FDR), 
as shown in Table 3. FProbe demonstrated excellent and comparable 
performance in detecting both types of browser fingerprinting in the 
scripts from Iqbal et al. (2021). Notably, 𝑇 𝑦𝑝𝑒1 fingerprinting was iden-
tified in 964 (94.14%) of the 1,024 unique fingerprinting scripts from 
Iqbal et al. (2021), with the majority (98.17%) of our detected browser 
fingerprinting falling under 𝑇 𝑦𝑝𝑒1. This indicates that a significant por-
tion of fingerprinting scripts are indeed aggregating browser attributes. 

4.3. False positives and false negatives 

Two false positives are due to the overestimated data flows of lexi-
cal/global variables, a common issue in static code analysis due to the 
lack of runtime context, such as conditions and the call stack informa-
tion (Guarnieri and Livshits Gatekeeper, 2009; Madsen et al., 2013). 
Achieving soundness in the static analysis of JavaScript code can thus 
be highly challenging. 

We investigated the causes of 42 false negatives. 23 of them are 
due to code obfuscation; FProbe’s limitation on obfuscated code will 
be studied later. Ten are due to the exclusive use of canvas-based or 
WebRTC-based fingerprinting, while JavaScript APIs for WebRTC-based 
fingerprinting were missing in FProbe’s configuration. Six are due to the 
lack of runtime context during the analysis. Only two false negatives are 
due to FProbe’s thresholds, as their scripts aggregate five browser at-
tributes of two types, falling below our thresholds. It illustrates that our 
selected threshold values are neither underfitting nor overfitting. The 
code segment below depicts the script of the last false negative,4 where 
it collects browser attributes by iterating through JavaScript objects, 
and FProbe failed to recognize it. 

var FS = "" ; 
f o r  (  var key in  navigator  )  {  

i f  ( key  !=  "cookieEnabled") {  
i f  ( typeof  navigator  [  key  ]  == "string") {  
FS +=  navigator  [  key  ]  

} 
} else  { 
FS += fa l se  

} 
} 

4 http://www.childcare.go.kr/html/AnySign/AnySign4PC/ext/xcryptoCore_ 
min.js?version=20190628. 

Table 4 
FProbe’s performance on deobfuscated code. 

TP FP TN FN 

Completely Deobfuscated 6 0 5 4 
Partially Deobfuscated 0 0 16 13 

4.4. Obfuscated scripts 

Among the 93 obfuscated fingerprinting and non-fingerprinting 
scripts, FProbe successfully resolved certain types of obfuscations and 
detected 49 true positives, 21 true negatives, and 23 false negatives. The 
following code snippet provides a simplified example of using arrays to 
pack values and later unpacking the arrays for use. Due to FProbe’s 
prototype and value propagation, the packed values are correlated with 
their indexes in the array (i.e., ‘userAgent’ at the index 0 and ‘width’ at 
the index 1 in line 1). These values can then be accurately referenced by 
their indexes (i.e., ‘userAgent’ and ‘width’ are referenced by _0x5368[0] 
and _0x5368[1], respectively, in line 2). 

var _0x5368 = ["userAgent" , "width" ] ;  
var _0x42e7e9 = n a vi g at o r [ _0x5368 [ 0 ]] + s c r e en [ _0x5368 [1] ] 

To further investigate the impact of obfuscation, we ran FProbe on 
the deobfuscated code of 44 negatives, 29 of which were only partially 
deobfuscated due to unknown array/code packers. The 55 scripts we 
could not deobfuscate in the manual analysis were excluded. Table 4 
demonstrates FProbe’s performance on these 44 deobfuscated scripts. 

The results indicate that FProbe can achieve the high precision when 
scripts are completely deobfuscated. Among the completely deobfus-
cated scripts, three false negatives occurred because their scripts ex-
clusively use font-based browser fingerprinting. The last false negative 
is due to unresolved references to browser attributes. Unfortunately, 
FProbe struggled to accurately classify all 29 partially deobfuscated 
scripts. Therefore, we strongly recommend FProbe to be used with 
JavaScript deobfuscators. 

5. FProbe with scripts from the wild 

To detect browser fingerprinting in the wild, we downloaded 
2,335,317 pieces of JavaScript code from 988,220 websites, according 
to Alexa’s latest list of the top one million websites. This dataset in-
cludes inline scripts between <script> and </script> tags and scripts 
specified in the 𝑠𝑟𝑐 attribute of <script> tags. We executed FProbe on 
all 969,678 unique scripts from the wild with the 62 effective browser 
attributes. 

In summary, FProbe successfully identified browser fingerprinting 
behavior in 5,698 (0.59%) of all unique scripts with the high preci-
sion, recall, F-measure, and accuracy, along with an acceptable false 
discovery rate. It failed on 8,640 scripts, primarily due to syntax or 
runtime errors. Meanwhile, FProbe discovered 10,570 fingerprinting 
scripts from 2,851 providers on 0.78% of the 988,220 websites, with 
a minor overlap with the findings in Iqbal et al. (2021). We observed a 
noticeable number of websites, especially those related to news, hosting 
multiple fingerprinting scripts. Our results also indicated that some non-
traditional browser fingerprinting techniques might not be as widely 
used as previously believed, aligning with observations in prior research 

http://www.childcare.go.kr/html/AnySign/AnySign4PC/ext/xcryptoCore_min.js?version=20190628
http://www.childcare.go.kr/html/AnySign/AnySign4PC/ext/xcryptoCore_min.js?version=20190628
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(Nikiforakis et al., 2013; Englehardt and Narayanan, 2016; Rizzo et al., 
2021). 

5.1. Detection accuracy 

We randomly sampled 1,300 of the 969,678 unique scripts. Due 
to the highly imbalanced ratio of fingerprinting to non-fingerprinting 
scripts (8:1,292), we additionally sampled 200 scripts that were labeled 
as fingerprinting by FProbe. We manually examined the 1,500 sam-
pled scripts and found 196 true positives, 12 false positives, 1289 true 
negatives, and 3 false negatives. The definitions of true positive, false 
positive, true negative, and false negative are consistent with those out-
lined in Section 4. 

As shown in Table 2, on the 1,500 sampled scripts from the wild, 
FProbe achieved a 94.23% precision, suggesting that a significant por-
tion of its identified fingerprinting behavior is accurate. It achieved 
a 98.49% recall, indicating its ability to identify a substantial portion 
of actual fingerprinting behavior in the wild. It achieved a 96.31% F-
measure and a 99% accuracy with a low false positive rate of 0.92%. 
These results suggest the effectiveness of FProbe in the detection of 
browser fingerprinting. 

True positives, false positives, and false discovery rate (FDR) for 
𝑇 𝑦𝑝𝑒1 and 𝑇 𝑦𝑝𝑒2 fingerprinting among the 1,500 sampled scripts are 
shown in Table 3. The FDR for 𝑇 𝑦𝑝𝑒2 browser fingerprinting is 25%, 
much higher than the FDR for 𝑇 𝑦𝑝𝑒1 (2.27%). One possible reason is 
that 𝑇 𝑦𝑝𝑒2 fingerprinting uses browser attributes in small groups or in-
dividually, resembling code behavior for rendering purposes. However, 
given that only 1.93% of fingerprinting scripts from Iqbal et al. (2021) 
and 5.74% of the sampled fingerprinting scripts from the wild fall into 
𝑇 𝑦𝑝𝑒2, the 25% FDR is unlikely to significantly impact FProbe’s detec-
tion performance. 

5.2. False positives and false negatives 

The scripts of 8 false positives individually used more than 14 
browser attributes for rendering purposes, misclassified as 𝑇 𝑦𝑝𝑒2 fin-
gerprinting. The scripts of other 4 false positives utilized attributes to 
verify specific browser properties (e.g., whether it is on an Apple de-
vice) for rendering purposes, while FProbe overestimated and falsely 
joined value flows of browser attributes. The causes of 3 false negatives 
include code obfuscation by array-based JavaScript packers, individual 
collection of browser attributes, and incomplete data flows due to un-
resolved call sites. 

5.3. Dynamically loaded scripts and obfuscated scripts 

The scripts of 273 (21.18%) true negatives were loading fingerprint-
ing scripts from googletagmanager.com and google-analytics.com. We 
ran FProbe on their loaded scripts and FProbe detected browser finger-
printing on all of them. 

The scripts of 2 true negatives and 1 false negative were obfuscated. 
While code obfuscation was observed in only 2% of the samples from 
the wild, it can significantly impact FProbe’s detection performance, 
particularly the false negative rate. Therefore, it is strongly recom-
mended to use FProbe with code deobfuscators. 

5.4. Browser fingerprinting in the wild 

On 7,737 (0.78%) of the 988,220 websites, FProbe detected 10,570 
browser fingerprinting scripts; 9,963 (94.26%) of them were of 𝑇 𝑦𝑝𝑒1, 
while 607 (5.74%) of them were of 𝑇 𝑦𝑝𝑒2. It suggests that the dominant 
𝑇 𝑦𝑝𝑒1 browser fingerprinting demands more attention. Fig. 6 illustrates 
the percentages of the two types of traditional browser fingerprinting 
on the top N websites (in thousands). Browser fingerprinting is more 
frequently used on high-ranking websites. Of the 7,737 fingerprinting 

Fig. 6. Percentages of 𝑇 𝑦𝑝𝑒1 and 𝑇 𝑦𝑝𝑒2 browser fingerprinting among the Alexa 
top N websites (in thousands). 

Table 5 
Percentages of top 10 K, 50 K, and 100 K websites were detected with 
fingerprinting scripts by FProbe and FP-INSPECTOR (Iqbal et al., 2021). 

Top 10 K Top 50 K Top 100 K 

FProbe 33.58% 14.65% 7.33% 
FP-INSPECTOR (Iqbal et al., 2021) 22.76% 11.27% 10.18% 

websites, 43.40% are among the top 10 K websites, 85.02% are among 
the top 20 K websites, and 94.42% are among the top 30 K websites. 

Table 5 shows the percentages of the top 10 K, 50 K, and 100 K 
websites where FProbe and FP-INSPECTOR (Iqbal et al., 2021) detected 
browser fingerprinting. Our dataset and FP-INSPECTOR’s dataset shared 
only 3,963 fingerprinting websites and 89 fingerprinting scripts, pos-
sibly because our static crawler cannot capture dynamically loaded 
scripts like (Iqbal et al., 2021). Another possible reason is that Alex-
a’s list of top one million websites and scripts on those websites have 
been updated since (Iqbal et al., 2021). 

5.5. Browser fingerprinting scripts and providers 

FProbe identified 2,851 fingerprinting providers on top one million 
websites compared to 519 and 2,349 providers reported in Englehardt 
and Narayanan (2016) and  Iqbal et al. (2021). It identified 2,136 first-
party fingerprinting scripts on 1,933 websites. It also identified 8,434 
third-party fingerprinting scripts, from 963 third-party providers, on 
6,328 first-party websites. These results, together with our observations 
on the dynamically loaded scripts, suggest that websites tend to deploy 
fingerprinting scripts offered by third parties, significantly reducing de-
velopment and maintenance efforts while enabling user tracking across 
websites. We also observed that 45 domains served as both first-party 
and third-party providers for 524 websites. Half of these domains were 
for hosting shopping, finance, technology/internet, and news websites. 
Table 6 lists the domains of these providers, the number of websites 
they serve, and their categories. 

Only 72 scripts and 10 providers (e.g., adsafeprotected.com, al-
icdn.com, yimg.com, and clickiocdn.com) identified by FProbe were 
reported in Iqbal et al. (2021). FProbe demonstrated complementary 
detection capabilities compared with other fingerprinting methods (En-
glehardt and Narayanan, 2016; Iqbal et al., 2021), attributed to its focus 
on a distinct aspect of browser fingerprinting behavior, i.e., the data 
flow joints of browser attribute values. 

The left part of Table 7 presents the domains of the top 10 browser 
fingerprinting providers and the number of websites that have incor-
porated their browser fingerprinting scripts. Google has become the 
predominant fingerprinting provider since (Iqbal et al., 2021), poten-
tially influenced by its initiative to block third-party cookies. 

https://clickiocdn.com
https://yimg.com
https://icdn.com
https://adsafeprotected.com
https://google-analytics.com
https://googletagmanager.com
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Table 6 
Fingerprinting providers serving as both first-party and third-party. 

Provider Domain Served Website Category 

apple.com 6 Technology/Internet 
jobstreet.com 5 Job Search/Careers 
officedepot.com 5 Shopping 
sony.com 5 Technology/Internet 
tapatalk.com 5 Social Networking 
archive.org 4 Reference 
capitalone.com 4 Finance 
discover.com 4 Finance 
openbank.es 4 Finance 
real.de 4 Shopping 
southwest.com 4 Travel 
tdameritrade.com 4 Brokerage/Trading 
ziggo.nl 4 Technology/Internet 
basecamp.com 3 Office/Business Applications 
townhall.com 3 Political/Social Advocacy 
aa.com 2 Travel 
banorte.com 2 Finance 
bbva.es 2 Finance 
bestbuy.com 2 Shopping 
brother-usa.com 2 Technology/Internet 
castorama.fr 2 Business/Economy 
diepresse.com 2 News 
falabella.com 2 Shopping 
glassdoor.com 2 Job Search/Careers 
gq.com 2 Shopping 
hotspotshield.com 2 Proxy Avoidance 
imageshack.com 2 Media Sharing 
imp.free.fr 2 Email 
index.hu 2 News 
kupivip.ru 2 Shopping 
metacritic.com 2 Entertainment 
nu.nl 2 News 
orange.com 2 Business/Economy 
oregon.gov 2 Government/Legal 
pcmag.com 2 Technology/Internet 
pingan.com 2 Finance 
rghost.net 2 File Storage/Sharing 
sap.com 2 Technology/Internet 
segundamano.mx 2 Shopping 
skrill.com 2 Finance 
timeweb.com 2 Technology/Internet 
uncrate.com 2 News 
vesti.ru 2 News 
worldstarhiphop.com 2 Entertainment 
wunderground.com 2 Reference 

Table 7 
Top 10 fingerprinting providers and top 10 hosting domains of finger-
printing scripts. 

Provider Domain Websites 

googletagmanager.com 2118 
pagead2.googlesyndica 1633 
tion.com 
s7.addthis.com 419 
stats.wp.com 362 
google-analytics.com 335 
googleadservices.com 223 
assets.adobedtm.com 162 
widgets.outbrain.com 130 
script.ioam.de 103 
imasdk.googleapis.com 92 

Hosting Domain FP Scripts 

zhcw.com 12 
mrfood.com 7 
silverdoctors.com 6 
tolivelugu.com 6 
addictinginfo.org 5 
aksalser.com 5 
blic.rs 5 
cafef.vn 5 
dantri.com.vn 5 
epweike.com 5 

Among the 7,737 websites where FProbe detected browser finger-
printing, 2,134 (27.58%) of them hosted at least two fingerprinting 
scripts, and 121 (1.56%) hosted at least four fingerprinting scripts. 
Among the 29 websites hosting at least five fingerprinting scripts, 15 
were related to news, aligning with observations in Iqbal et al. (2021). 
The right part of Table 7 outlines the top 10 hosting domains and the 
number of hosted browser fingerprinting scripts. 

5.6. EasyList and EasyPrivacy 

We employed adblockparser (adblockparser, 2016) with EasyList 
(Easylist, 2021) and EasyPrivacy (Easyprivacy, 2021) to check the URLs 
of the identified fingerprinting scripts. EasyList and EasyPrivacy rec-
ognized the URLs of only 2,384 (22.55%) and 3,405 (32.21%) of the 
10,570 fingerprinting script, respectively. It suggests that at least one-
fifth of browser fingerprinting is used for online advertising and track-
ing, and browser fingerprinting is a useful indicator in their detection. 

5.7. Browser attributes in fingerprinting 

We examined the use of 62 effective browser attributes for finger-
printing across 7,737 websites, as detailed in Table 1. Strikingly, we 
discovered that approximately 50% of the websites used window.in-
nerWidth or window.innerHeight for fingerprinting. These attributes, 
whose values change when the browser window is resized, are seem-
ingly favored under the assumption that users are unlikely or reluctant 
to resize their browser windows. Conversely, certain attributes like 
navigator.oscpu and navigator.product are less frequently used. These 
findings underscore the maximal effort made by fingerprinting scripts 
to gather browser attributes. 

Only 450 (4.26%) of the 10,570 fingerprinting scripts were using 
the toDataURL method. Similarly, only 333 (4.3%) of the 7,737 web-
sites were using the toDataURL method. To address potential biases, 
we further examined all the 969,678 unique scripts from the wild and 
found toDataURL method calls in only 40,544 (4.18%) of them. De-
spite potential omissions of toDataURL method calls in dynamically 
loaded or obfuscated scripts due to the limitations of our evaluation, our 
observations strongly suggest that certain non-traditional browser fin-
gerprinting techniques might not be as prevalent as previously assumed, 
consistent with prior research (Nikiforakis et al., 2013; Englehardt and 
Narayanan, 2016; Rizzo et al., 2021). More attention needs to be given 
to browser fingerprinting techniques that leverage traditional browser 
attributes. 

5.8. Runtime performance 

We measured FProbe’s runtime performance on a desktop computer 
with an 8-core 2.6 GHz CPU, 32 GB of memory, a 64-bit Linux oper-
ating system, and Java Runtime Environment (JRE) 11. For analyzing 
one script, FProbe took 47 hours maximally, less than a second mini-
mally, less than a second on the median, and 19 seconds on average. 
The running time is not linear with code size but is influenced by code 
complexity. Given FProbe’s static approach, this runtime performance 
is considered acceptable. 

The code structure below represents a simplified version of the script 
that consumed 47 hours in FProbe’s analysis. Functions fa and fb call 
each other recursively. We omit stop conditions. FProbe overestimated 
data flows through the global variable g. These overestimated flows 
created a cyclic graph on which FProbe exhaustively explored all po-
tential execution paths among lines 3 → 4 → 8 → 9 → 3, 3 → 4 → 3, 
and 8 → 9 → 8. To address this issue, we plan to convert the cyclic 
graph into acyclic ones (DAGs) and then summarize transitive relations 
among variables within the acyclic graphs. 

1 var g ;  
2 function  fa  (  )  {  
3 a = g ; 
4  g = a +  . . . ;  
5 fb ( ) ; 
6 }  

7 function  fb  (  )  {  
8 b = g ; 
9  g  = b +  . . . ;  
10 fa ( ) ; 
11 } 

6. Capability of fingerprinting with traditional browser attributes 

To assess the capability of fingerprinting with traditional browser 
attributes, we conducted a two-phase study. In the first phase, we de-
signed a method to gather traditional browser attributes and deployed it 

https://window.in
https://epweike.com
https://cafef.vn
https://aksalser.com
https://addictinginfo.org
https://tolivelugu.com
https://silverdoctors.com
https://mrfood.com
https://zhcw.com
https://imasdk.googleapis.com
https://script.ioam.de
https://widgets.outbrain.com
https://assets.adobedtm.com
https://googleadservices.com
https://google-analytics.com
https://stats.wp.com
https://s7.addthis.com
https://tion.com
https://googletagmanager.com
https://wunderground.com
https://worldstarhiphop.com
https://vesti.ru
https://uncrate.com
https://timeweb.com
https://skrill.com
https://segundamano.mx
https://rghost.net
https://pingan.com
https://pcmag.com
https://oregon.gov
https://orange.com
https://metacritic.com
https://kupivip.ru
https://index.hu
https://imp.free.fr
https://imageshack.com
https://hotspotshield.com
https://glassdoor.com
https://falabella.com
https://diepresse.com
https://castorama.fr
https://brother-usa.com
https://bestbuy.com
https://banorte.com
https://townhall.com
https://basecamp.com
https://ziggo.nl
https://tdameritrade.com
https://southwest.com
https://openbank.es
https://discover.com
https://capitalone.com
https://archive.org
https://tapatalk.com
https://sony.com
https://officedepot.com
https://jobstreet.com
https://apple.com
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on a public website. We collected 3,073 unique traditional browser at-
tributes across 3,814 visits involving 1,790 visitors. In the second phase, 
we fingerprinted all visitors using the collected browser attributes and 
achieved an impressive F-measure of 96.6%. 

6.1. Collection of traditional browser attributes 

For a given JavaScript object, we perform a recursive iteration of 
all its entries to collect traditional browser attributes. We use the entry 
name as the browser attribute’s name. If the entry contains a primi-
tive value, we directly extract it as the value of the browser attribute. 
If the entry is a (synchronous or asynchronous) function, we selectively 
evaluate it and obtain the returned value as the value of the browser 
attribute. When the entry contains another object, we recursively iter-
ate through its entries and use the browser attributes from these entries 
as the value of the current browser attribute. We record the order of 
all iterated entries as the indexes of the collected browser attributes. 
Attributes obtained using advanced fingerprinting techniques (e.g., can-
vas, font, WebRTC, and audio-based methods) are outside the scope of 
our study, as they have been thoroughly studied in previous research 
(Acar et al., 2013; Englehardt and Narayanan, 2016; Lerner et al., 2016; 
Nikiforakis et al., 2013; Iqbal et al., 2021; Rizzo et al., 2021). 

We excluded the following types of functions for evaluation dur-
ing the attribute collection. (1) Functions do not return anything, 
such as window.sessionStorage.setItem() and window.dispatchEvent(). 
(2) Functions can disrupt browser attribute collection, such as win-
dow.alert(), window.open(), and window.close(). (3) Functions prompt 
users for confirmation. For instance, invoking navigator.geoloca-
tion.getCurrentPosition() will trigger a dialog asking the user to allow 
or decline the access to geolocation information. (4) Functions are 
restricted to the HTTPS protocol only. For example, navigator.geoloca-
tion.getCurrentPosition() does not return anything when invoked under 
the HTTP protocol. Our subsequent analysis demonstrates that our fin-
gerprinting, even without using any values obtained from functions, 
can still achieve a high accuracy. 

We deployed our scheme on a public website. The website randomly 
generates a unique identifier for every client during the first visit and 
saves the identifier in the cookie for associating visits from the same 
client. In every visit, the collected traditional browser attributes are sent 
back to our server together with the identifier. Nothing else was col-
lected on our website. We eventually collected a total of 3,073 unique 
traditional browser attributes during 3,814 visits from 1,790 visitors. 
The number of browser attributes during a visit varies from 419 to 
1258. The study is not human-subjected and has no privacy concern 
so it was exempt from the review by the Institutional Review Board. 

6.2. Analysis of traditional browser attributes 

Among all the 3,073 unique traditional browser attributes, 1,385 of 
them are with primitive values (i.e., 884 strings, 386 numbers, and 115 
booleans), 1,014 of them are with values returned from functions, and 
674 of them are with values derived from JavaScript objects. We di-
vided them into 2,655 leaf attributes and 418 branch attributes. Fig. 7 
shows a tree structure of selected browser attributes. Each node of 
the tree contains the browser attribute’s index, name, type of value, 
and value. The node in index 23 corresponds to window.name, whose 
value is an empty string. The node in index 58 corresponds to navi-
gator.javaEnabled function, which returns true. The node in index 87 
corresponds to navigator.plugins object, which is an container of other 
objects. The node in index 656 corresponds to window.open function, 
which was skipped for evaluation, and its returned value is set to null. 

We excluded 25 leaf attributes for browser fingerprinting because 
their values vary in browsing sessions from a same visitor. With the 
indexes, names, and values of the remaining 2,630 leaf attributes, we 
computed a fingerprint for every visit. We define a true positive as a 
re-visitor correctly recognized based on the fingerprint, a false positive 

Fig. 7. An example of the tree of browser attributes. 

as a new visitor falsely recognized as a re-visitor, a true negative as 
a new visitor correctly identified based on the fingerprint, and a false 
negative as a re-visitor falsely identified as a new visitor. To reduce 
false negatives caused by the evolving value of a browser attribute (e.g., 
the version number in navigator.userAgent), we calculated the value 
distance of that attribute across browsing sessions and compared the 
distance with a threshold during the fingerprinting. 

Our fingerprinting with traditional browser attributes achieved the 
highest F-measure of 81% with window.navigator and an F-measure of 
79.7% with the window object. The results were manually validated. 
We found that the indexes of leaf browser attributes play a signifi-
cant role in the fingerprinting. For example, 376 possible values and 
94 possible indexes can produce 574 unique attribute instances for cli-
entInformation.userAgent. However, the indexes of branch attributes 
such as window.navigator do not improve the fingerprinting accuracy. 

To reduce the number of attributes and simplify the scheme of 
their collection, while achieving a comparable performance, for every 
browser attribute, we calculated the distribution of all its possible val-
ues across all the browsing sessions. For attributes sharing the same 
distribution in terms of their values, we used only one of them for fin-
gerprinting while excluding all the rest. The total number of traditional 
browser attributes for fingerprinting was then reduced to 476, while fin-
gerprinting with the window object achieved a comparable F-measure 
of 80.8%. 

We then performed fingerprinting with all possible combinations 
of the remaining 476 traditional browser attributes. With five leaf 
attributes only (i.e., window.innerHeight, navigator.getBattery, navi-
gator.hardwareConcurrency, navigator.language, and navigator.userA-
gent), the browser fingerprinting achieved a high accuracy among 3,814 
browsing sessions from 1,790 visitors with a 93.7% precision, a 99.7% 
recall, and a 96.6% F-measure. Note that the function navigator.getBat-
tery was not executed during the attribute collection. 

While research studies have explored the effectiveness of browser 
fingerprinting (Laperdrix et al., 2016; Gómez-Boix et al., 2018), our 
fingerprinting scheme distinguishes itself through its unique approach. 
It recursively iterates through JavaScript objects, additionally collects 
the indexes of browser attributes, and exclusively focuses on traditional 
browser attributes in fingerprinting. Despite these differences, finger-
printing with traditional browser attributes proves to be as effective as 
other browser fingerprinting techniques (e.g., canvas, font, WebRTC, 
audio, and even machine learning-based methods) and has been widely 
observed among fingerprinting scripts in our evaluation (Section 5). As 
a result, more attention needs to be given to browser fingerprinting 
techniques leveraging traditional browser attributes. 

6.3. Browser fingerprinting capability 

For all the websites with fingerprinting scripts discovered in Sec-
tion 5, we estimated their fingerprinting capabilities with traditional 
browser attributes. The maximum, minimum, average, and median F-
measure values for a website’s fingerprinting capability were 99.06%, 
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Fig. 8. Percentage of Alexa top N websites versus F-measure of browser finger-
printing. 

70.59%, 87.59%, and 88.42%, respectively. Impressively, 90.6% of fin-
gerprinting websites achieved an 80% F-measure, while 23.6% reached 
a 90% F-measure. Fig. 8 illustrates that fingerprinting with traditional 
browser attributes tends to be more effective among top-ranked web-
sites. 

7. Discussion 

FProbe’s performance is influenced by false and missing edges in call 
graphs (Antal et al., 2018), leading to false positives and false negatives. 
However, call graph construction is not our focus. Please refer to Antal 
et al. (2018) for  discussions on various approaches regarding call graph 
construction for JavaScript programs. 

FProbe suffers from false positives due to the overestimated code 
execution paths, especially those involving conditional statements, lexi-
cal/global variables, event/message handlers, and object fields, in com-
parison to dynamic (taint) analysis for detecting browser fingerprinting 
(Sjösten et al., 2021). (1) When it is impossible to resolve a conditional 
expression, false dependencies could be introduced from variables in 
the expression to those used in the condition’s code blocks. (2) Exces-
sive dependencies are created from the definition of a global/lexical 
variable to all its potential subsequent uses during our propagation and 
data flow analysis. (3) When it is impossible to resolve the event name 
at an event dispatcher, false dependencies could be introduced from the 
dispatchers to all their potential handlers. (4) When it is impossible to 
resolve the name of an object’s field or the index of an array element, 
the propagation and flow analysis are performed on the entire object 
or array. However, the static analysis in FProbe avoids the incomplete 
coverage of code execution paths and the performance overhead often 
incurred in dynamic analysis (Bandhakavi et al., 2010; Dhawan and 
Ganapathy, 2009; Sabelfeld and Myers, 2003; Vogt et al., 2007; Xu et 
al., 2013). 

False negatives may occur due to several reasons. (1) FProbe has lim-
ited capability in detecting browser fingerprinting in obfuscated scripts, 
as discussed in Section 4.4. Therefore, we recommend FProbe to be 
used with JavaScript deobfuscator to address this limitation to a cer-
tain extent. It is worth mentioning that FProbe can effectively analyze 
minified JavaScript files, where comments and unnecessary whitespaces 
are removed to reduce file size (Xu et al., 2013). (2) As it is impossi-
ble to achieve soundness in our propagation and flow analysis, browser 
attributes and their value flows may be omitted or incomplete. Conse-
quently, some browser fingerprinting behavior may be overlooked. (3) 
FProbe cannot identify browser fingerprinting dispersed across scripts, 
similar to prior work (Iqbal et al., 2021; Su and Kapravelos, 2023). (4) 
FProbe cannot detect browser fingerprinting utilizing APIs not listed in 
Table 1. However, this limitation can be addressed by enhancing the 
API list. 

We plan to (1) support the detection of other types of browser 
fingerprinting techniques such as those based on fonts, WebRTC, and 

audio, (2) integrate dynamic analysis techniques and address its perfor-
mance issues, (3) reduce false positives and false negatives caused by 
false or missing data dependencies, (4) add modules for deobfuscating 
JavaScript code, and (5) improve browser fingerprinting classification 
using machine learning models. However, given the inherent nature of 
static and dynamic analyses, our tool aims to be practical and accurate 
rather than sound. 

8. Related work 

8.1. Browser fingerprinting detection 

Only a few research studies targeted browser fingerprinting detec-
tion. In Nikiforakis et al. (2013), Nikiforakis et al. identified the preva-
lent use of flash objects in third-party commercial fingerprinting scripts. 
Analyzing JavaScript inclusion on the top 10,000 websites, they found 
that 40 websites included flash-based fingerprinting scripts. FPDetective 
was proposed in Acar et al. (2013). It drives an instrumented browser 
and monitors fingerprinting-related API calls during web browsing. It 
was evaluated on the top one million websites and identified 16 new 
fingerprinting-related scripts and flash objects. OpenWPM was intro-
duced in Englehardt and Narayanan (2016) to  measure both stateless 
and stateful web tracking techniques on the top one million websites. 
During web browsing, it simulates user behavior, records HTTP re-
sponses and cookies, and intercepts the use of specific JavaScript objects 
and APIs. OpenWPM identified canvas-based fingerprinting on 1.6% of 
the websites and font-based fingerprinting on less than 1% of the web-
sites. It also identified fingerprinting techniques relying on WebRTC, 
AudioContext, and battery status. In Lerner et al. (2016), by examining 
the use of JavaScript APIs, Lernel et al. analyzed web tracking tech-
niques (i.e., cookie-based web tracking and browser fingerprinting) on 
web page archives from 1996 to 2016. The results highlighted the in-
creasing use of JavaScript-based fingerprinting over time. 

Researchers have recently introduced machine learning-based ap-
proaches for detecting browser fingerprinting (Iqbal et al., 2021; Rizzo 
et al., 2021; Bahrami et al., 2022). In Iqbal et al. (2021), they trained a 
classifier with static and dynamic features extracted from the selected 
fingerprinting and non-fingerprinting scripts. The static features are de-
rived from the abstract syntax tree of the source code. The dynamic 
features include the invoked JavaScript objects and APIs and JavaScript 
execution traces collected during web browsing. They detected browser 
fingerprinting behavior on 10.18% of Alexa top 100 K websites. The de-
tection model achieved an F-measure of 89% with static features only, 
97.9% with dynamic features only, and 93.4% with both static and dy-
namic features. Similar approaches have been proposed in Rizzo et al. 
(2021); Bahrami et al. (2022). 

These heuristic approaches (Iqbal et al., 2021; Rizzo et al., 2021; 
Bahrami et al., 2022) and other studies (Acar et al., 2013; Nikiforakis 
et al., 2013; Englehardt and Narayanan, 2016; Lerner et al., 2016) con-
centrated on JavaScript objects and APIs invoked to retrieve browser 
attribute values. However, they overlooked the use and flow of browser 
attributes within JavaScript code, as emphasized in Lerner et al. (2016). 
In contrast, FProbe focuses on how browser attributes are aggregated in 
scripts for fingerprinting, since the value flows of browser attributes is 
crucial for browser fingerprinting detection, aligning with the definition 
of browser fingerprinting behavior. To the best of our knowledge, this is 
the first work that performs static data flow analysis to detect browser 
fingerprinting, and FProbe is complementary to existing fingerprinting 
detection methods. 

Researchers have recently introduced EssentialFP (Sjösten et al., 
2021), which performs dynamic analysis for browser fingerprinting 
detection. Dynamic analysis can explore code execution paths more pre-
cisely with runtime information. However, it often suffers incomplete 
coverage of code execution paths (Sabelfeld and Myers, 2003; Vogt et 
al., 2007) and non-negligible performance overhead (Bandhakavi et al., 
2010; Sjösten et al., 2021). In our recent investigations, we observed 
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that the performance overhead of dynamic taint analysis in browsers 
could lead to the freezing of browsing tabs, preventing the loading of 
the scripts to be analyzed, a phenomenon also highlighted in Sjösten 
et al. (2021). Additionally, dynamic analysis often requires software-
specific instrumentation (Dhawan and Ganapathy, 2009). 

Static and dynamic analyses have been combined to uncover emerg-
ing browser fingerprinting techniques (Su and Kapravelos, 2023). They 
first execute scripts to gather the sequence of API executions and then 
employ static data flow analysis to identify emerging APIs that are 
concurrently executed with well-known browser fingerprinting APIs. 
However, this approach suffers from the limitations of dynamic anal-
ysis, as discussed above. 

Although static code analysis suffers relatively low accuracy on pre-
dicting code execution paths and runtime values compared to dynamic 
analysis, FProbe demonstrated excellent performance in our evaluation. 
Importantly, it minimizes the risk of incomplete code path coverage and 
performance overhead (Bandhakavi et al., 2010; Dhawan and Ganap-
athy, 2009; Sabelfeld and Myers, 2003; Vogt et al., 2007; Xu et al., 
2013), aligning with our design objective - a  practical and accurate solu-
tion for maximally detecting browser fingerprinting. In contrast to tools 
like OpenWPM (Openwpm, 2021) used in Englehardt and Narayanan 
(2016); Iqbal et al. (2021) and  JSFlow Jsflow (2021) used  in Sjösten 
et al. (2021), FProbe does not require any browser-specific instrumen-
tation. While FProbe has limited capability for obfuscated scripts, we 
believe it can be partially addressed by integrating JavaScript deobfus-
cators. 

8.2. JavaScript code analysis 

Research on the security analysis of JavaScript programs mainly fo-
cused on web attack and vulnerability detection. Different from them, 
FProbe focuses on a different research problem. It aims to be a practical 
and accurate tool for detecting browser fingerprinting. 

Researchers have performed the static analysis of JavaScript to de-
tect malware (Chugh et al., 2009; Curtsinger et al., 2011; Laskov and 
Šrndi´ c, 2011), to explore vulnerabilities (e.g., injection and cross-site 
scripting) in web applications (Guarnieri et al., 2011; Guha et al., 2009; 
Jovanovic et al., 2006; Livshits and Lam, 2005; Wassermann and Su, 
2008) and browser extensions (Bandhakavi et al., 2010), to protect ap-
plications (Huang et al., 2004), and to verify JavaScript behavior (Taly 
et al., 2011). 

Dynamic analysis techniques have also been used to detect mali-
cious JavaScript code (Cova et al., 2010; Livshits and Cui, 2008; Provos 
et al., 2007; Yin et al., 2007), to explore vulnerabilities in web appli-
cations (Saxena et al., 2010; Tripp et al., 2014), to identify information 
flows that violate privacy policies (e.g., cookie stealing and history sniff-
ing) (Djeric and Goel, 2010; Dhawan and Ganapathy, 2009; Jang et al., 
2010; Yin et al., 2007), and to enforce information flow security in 
JavaScript (Hedin and Sabelfeld, 2012; Zeng et al., 2010). 

Static and dynamic analysis techniques have been combined to pre-
vent cross-site scripting attacks (Tripp et al., 2014; Vogt et al., 2007), 
and to track information flow and injected code in web attacks (Just et 
al., 2011; Wei and Ryder, 2013). 

Compared with existing tools for static data flow and taint analyses, 
FProbe is lightweight in terms of value and prototype propagation and 
data flow analysis. It focuses on values, variables, and flows associated 
with browser attributes, in contrast to others focusing on the entire 
program. Furthermore, the propagation of JavaScript values and pro-
totypes improves the hit rate of source variable identification. FProbe 
computes data flow joints to identify the aggregation of browser at-
tribute values, a feature that, to the best of our knowledge, has not yet 
been leveraged by other tools. 

9. Conclusion 

In this paper, we defined browser fingerprinting behavior as the 
aggregation of various browser attributes, and reduced browser fin-
gerprinting detection to a joint analysis of the data flows of browser 
attribute values in JavaScript code. We introduced a flow-centric 
browser fingerprinting detection framework, FProbe, which performs 
context-sensitive static data flow analysis of JavaScript code. We evalu-
ated FProbe using 4,296 fingerprinting scripts from recent work and 
2,335,317 pieces of JavaScript code from 988,220 websites. FProbe 
achieved F-measures of 97.81% and 96.31% on these datasets, re-
spectively. It identified browser fingerprinting behavior on 0.78% of 
the 988,220 websites. Only 72 browser fingerprinting scripts and 10 
browser fingerprinting providers identified by FProbe were reported in 
prior research. These results demonstrate the effectiveness of FProbe in 
detecting browser fingerprinting. Additionally, we conducted a study 
to assess the capability of fingerprinting with traditional browser at-
tributes. 
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