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Abstract

Some new refinements of the arithmetic, geometric and harmonic
mean inequalities are presented which improve on the inequalities of P.
R. Mercer given in [5]. In addition, we present a new method to obtain
inequalities. We discuss a few applications to probability theory and
obtain bounds for certain central moments of positive random variables
in terms of these means.

Keywords: Arithmetic, geometric and harmonic mean inequalities

1 Introduction

Let X1, X2, . . . , Xn be positive real numbers and let P1, P2, . . . , Pn be positive
weights with

∑n
j=1 Pj = 1. Then the weighted arithmetic, geometric and

harmonic means are respectively given by

A =
n∑
j=1

PjXj, G =
n∏
j=1

X
Pj

j , H = (
n∑
j=1

Pj
Xj

)−1.
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We are interested in obtaining refinements of some inequalities given by P.
R. Mercer in [5] which are concerned with obtaining upper and lower bounds
for A−G,A−H, logA− logG and logG− logH. We will also be interested in
obtaining bounds for some other functions of the Xj and Pj values, including
the third central moment:

µ3 =
n∑
j=1

Pj(Xj − A)3.

It will be useful to keep in mind the well-known inequality H ≤ G ≤ A.
Then, of course, logH ≤ logG ≤ logA, with equality holding iff all Xj values
are equal. First, let’s discuss some needed results to prove our later theorems.

Lemma A ([3], p.364-366)

Let f(t) be a real-values function on [c, d] with continuous third derivative
f (3)(t) on [c, d]. Suppose f

′′
(t) ≥ 0 and f (3)(t) ≤ 0 on [c, d]. Let L(t) be the

equation of the line passing through the points (c, f(c)) and (d, f(d)). Let
E(t) = f(t)− L(t) be the linear interpolation error, c ≤ t ≤ d. Then:

[f(d)− f(c)− (d− c)f ′(c)](t− c)(t− d)

(d− c)2
≤ E(t)

≤ [(d− c)f ′(d)− f(d) + f(c)]
(t− c)(t− d)

(d− c)2

(1)

Lemma B

Suppose f (3)(t) is continuous on [c, d] with f (3)(t) ≥ 0 on [c, d]. Then∫ d
c
f(t)dt

d− c
≤ f

(
c+ d

2

)
+

(
d− c

12

)
·
(
f
′
(d)− f ′

(
c+ d

2

))
(2)

and ∫ d
c
f(t)dt

d− c
≥ f

(
c+ d

2

)
+

(
d− c

12

)
·
(
f
′
(
c+ d

2

)
− f ′(c)

)
(3)

Proof. See [2], pages 21-22.

Next, we present Propositions 1-5 given in [5] to keep this paper mostly self-
contained. We shall also need the well-known Ky Fan inequality. We shall
improve an all five of these propositions. We shall also present some new in-
equalities in the symmetric Pj’s and Xj’s case.
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Proposition 1.([5], page 1460)

L1 ≤ A−G ≤ U1,

where

L1 =
n∑
j=1

Pj(Xj −G)2

Xj + max(Xj, G)
(4)

and

U1 =
n∑
j=1

Pj(Xj −G)2

Xj + min(Xj, G)
(5)

Proposition 2.([5], page 1460)

L2 ≤ logA− logG ≤ U2,

where

L2 =
1

A

n∑
j=1

Pj(Xj −G)2

Xj + max(Xj, G)
(6)

and

U2 =
1

A

n∑
j=1

Pj(Xj −G)2

Xj + min(Xj, G)
(7)

Proposition 3.([5], page 1461)

L3 ≤ logG− logH ≤ U3,

where

L3 =
n∑
j=1

Pj
Xj

· (Xj −H)2

H + max(Xj, H)
(8)

and

U3 =
n∑
j=1

Pj
Xj

· (Xj −H)2

H + min(Xj, H)
(9)
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Proposition 4.([5], page 1462)

L4 ≤ A−H ≤ U4,

where

L4 =
n∑
j=1

Pj(Xj −H)2 ·
[
Xj + 2H + max(Xj, H)

(Xj + max(Xj, H))2

]
(10)

and

U4 =
n∑
j=1

Pj(Xj −H)2 ·
[
Xj + 2H + min(Xj, H)

(Xj + min(Xj, H))2

]
(11)

Proposition 5.([5], p.1463)

If not all the Xj’s are equal, then

A
′

G′
≤
(
A

G

)q
, (12)

where q < 1 is given by

q =

(
A

1− A

)∑n
j=1 Pj(Xj − A)2/(2−Xj −max(Xj, A))∑n
j=1 Pj(Xj − A)2/(Xj + max(Xj, A))

(13)

Ky Fan’s inequality

Suppose, 0 ≤ Xj ≤ 1
2
, j = 1, 2, ..., n and let Yj = 1−Xj. Let A

′
and B

′
be

the weighted arithmetic and geometric mean of the Yj’s. Then

A
′

G′
≤ A

G
(14)

In all of the above results equality holds iff all the Xj’s are equal.

In Section 2, we shall replace Li by L∗
i and Ui by U∗

i where L∗
i > Li and

U∗
i < Ui, i = 1, 2, 3, 4 in Propositions 1-4 above, thereby improving the bounds

given in [5]. We shall also show that we may replace q by q∗ in Proposition
5 where q∗ < q, improving this proposition as well. In Section 3, we present
some inequalities for the symmetric case, a case which does not appear to have
been previously considered in research papers on A,G and H inequalities.

Proposition 1 above improves upon inequalities given in [1] and [6]. We
shall obtain refinements for Propositions 1-5 in this paper.



Some new refinements of the arithmetic, geometric 2557

2 Some New Refinements

First, we need the following lemma.

Lemma C.

a) For 0 < X ≤ 1,

X − 1− log(X) ≥ (X − 1)2

X + 1
+

(X − 1)2

12
·
(

3− 2X −X2

(1 +X)2

)
≥ (X − 1)2

(X + 1)

(15)

b) For X ≥ 1

X − 1− log(X) ≤ (X − 1)2

X + 1
+

(X − 1)2

12
·
(

1 + 2X − 3X2

X2(1 +X)2

)
≤ (X − 1)2

(X + 1)

(16)

c) For 0 < X ≤ 1,

X − 1− log(X) ≤ (X − 1)2

2X
+

(X − 1)3

6X
≤ (X − 1)2

2X
(17)

d) For X ≥ 1,

X − 1− log(X) ≥ (X − 1)2

2X
+

(X − 1)3

6X2
≥ (X − 1)2

2X
(18)

e) For X ≥ 1,

(X − 1)2(X + 1)

2X2
+

(X − 1)3(X + 2)

6X3
≤ X − 2 +

1

X
≤

(X − 1)2(X + 3)

(X + 1)2
+

(X − 1)2

12

(
−14X3 + 6X2 + 6X + 2

X3(1 +X)3

) (19)

f) For 0 < X ≤ 1,

(X + 3)(X − 1)2

(X + 1)2
+

(X − 1)2

12
·
(

14− 2X3 − 6X2 − 6X

(X + 1)3

)
≤

X − 2 +
1

X
≤ (X − 1)2(X + 1)

2X2
+

1

6

(
1 + 2X

X

)
(X − 1)3

(20)
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Proof.

To prove part (a), let f(t) = (t−1)
t
, c = X, d = 1 in part (1) of Lemma B.

Then f (3)(t) = 6t−4 > 0 on [X, 1] and

∫ 1

X

(
t−1
t

)
dt

1−X
=
X − 1− log(X)

X − 1
≤ f

(
1 +X

2

)
+

(
1−X

12

)
·
(
f
′
(1)− f ′

(
1 +X

2

)) (21)

=
X − 1

1 +X
+

(
1−X

12

)
·
(
X2 + 2X − 3

(1 +X)2

)
,

which gives

X − 1− log(X) ≥ (X − 1)2

1 +X
+

(X − 1)2(3− 2X −X2)

12(1 +X)2

since X − 1 < 0.

This proves part (a), since 3− 2X −X2 ≥ 0, 0 < X ≤ 1.
To prove part (b), let f(t) = t−1

t
, c = 1, d = X in part (1) of Lemma B and

proceed as done above.
To prove part (c), apply Lemma A, the right half of (21) with f(t) = 1−t

t
, c =

X, d = 1. Then

∫ 1

X

(f(t)− L(t))dt =

∫ 1

X

(
1− t
t

)
dt−

(
f(X) + f(1)

2

)
· (1−X)

= X − 1− log(X)−
(
f(X) + f(1)

2

)
· (1−X)

(22)

Also,∫ 1

X

(f(t)− L(t))dt ≤
∫ 1

X

(
(1−X)f

′
(1)− f(1) + f(X)

)
· (t−X)(t− 1)

(1−X)2
dt

=

[
(1−X)f

′
(1)− f(1) + f(X)

]
·
∫ 1

X

(t−X)(t− 1)

(1−X)2
dt

=
1

6X
(X − 1)3.

(23)
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(21) - (23) give the desired result, after some algebra, since 1+2X−3X2 ≤
0, for X ≥ 1.

The proofs of parts (d)-(f) are very similar, except, we use other parts of
Lemmas A and B. Also, in parts (e) and (f), we use instead f(t) = ±(1−t

2

t2
).

We omit the details here.

Now, we are ready to present refinements of Propositions 1-5 above. The-
orem 1 is a refinement of Proposition 1.

Theorem 1.

Let L1 and U1 be given by (4)-(5). Let

δ1 =
∑
Xj≤G

Pj
(Xj −G)2

12G
·
(

3G2 − 2GXj − (Xj)
2

(Xj +G)2

)
+
∑
Xj>G

1

3!

(Xj −G)3

X2
j

Pj (24)

ε1 =
1

3!

∑
Xj≤G

(Xj −G)3

GXj

Pj +
∑
Xj>G

(Xj −G)2

12G

(G2 + 2XjG− 3X2
j )

X2
j

(
1 +

Xj

G

)2 Pj (25)

Then

L1 + δ1 ≤ A−G ≤ U1 − ε1, (26)

where ε1 ≥ 0 and δ1 ≥ 0, with ε1 > 0 and ε2 > 0 unless all Xj’s are equal.

Proof.

We employ the same method as used by P.R.Mercer in [5], except we use
Lemma C instead of the Hermite-Hadamard inequality.

Suppose Xj ≤ G. Let X =
Xj

G
. Then 0 < X ≤ 1 and Lemma C, part

(a) gives, after multiplying by Pj and summing over j with Xj ≤ Gj,:

∑
Xj≤G

(
Xj

G
− 1− log

(
Xj

G

))
· Pj

≥
∑
Xj≤G

[(Xj

G
− 1
)2

Xj

G
+ 1

+

(Xj

G
− 1
)2

12
·

3− 2Xj

G
−
(Xj

G

)2(
1 +

Xj

G

)2 ]
· Pj

(27)
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If Xj > G instead, let X =
Xj

G
. Then X > 1 and Lemma C, part (d) gives,

after multiplying by Pj and summing over j with Xj > G.

∑
Xj>G

(
Xj

G
− 1− log

(
Xj

G

))
· Pj ≥

∑
Xj>G

[(Xj

G
− 1
)2

2
(Xj

G

) +

(Xj

G
− 1
)3

3!
(Xj

G

)2 ] · Pj (28)

Addition of (27) and(28) gives, after some algebra and combining terms

containing
(Xj

G
− 1
)2

:

A−G ≥ L1 + δ1, as desired (29)

To prove, the upper bound, we use Lemma C, part (c) to those terms with
Xj ≤ G and use part (b) instead for those terms with Xj > G and proceed as
done above. We omit the algebraic details.

The proofs of Theorem 2-5 below are very similar to the proof of Theorem
1, except we use a different choices for X and f(X) and possibly a different
part of Lemma C. Hence, we omit the proofs of these theorems and merely
indicate what choice of X and f(X) to use and/or what part of Lemma C to
use. The rest is straightforward.

Theorem 2.

Let L2 and U2 be given by (6)-(7). Then

L2 + δ2 ≤ log(A)− log(G) ≤ U2 − ε2,
where

δ2 =
1

A

[ ∑
Xj≤A

(Xj − A)2

12A
·

(3A2 − 2AXj −X2
j )

(Xj + A)2
Pj +

1

3!

∑
Xj>A

(Xj − A)3

X2
j

Pj

]
,

(30)
and

ε2 =
1

A

[
1

3!

∑
Xj≤A

1

XjA
(Xj−A)3 ·Pj+

∑
Xj>A

(Xj − A)2

12A
·
(A2 + 2XjA− 3X2

j )

X2
j

(
1 +

Xj

A

)2 ·Pj
]

(31)
where δ2 ≥ 0, ε2 ≤ 0, with δ2 > 0 and ε2 < 0, unless all Xj’s are equal.

Proof.
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Let X =
Xj

A
instead. Use Lemma C, part (a) for Xj ≤ A and use part (d)

instead for Xj > A and proceed as in proof of Theorem 1. δ2 ≥ 0 follows since
in Lemma C, part (a), 3 − 2X −X2 ≥ 0, 0 < X ≤ 1, since 3 − 2X −X2 = 0
only at X = 1 and this must occur for all Xj. Thus Xj = A for all j iff δ2 = 0.
Thus δ2 > 0, unless all Xj’s are equal to A. Similarly for the proof of ε2 ≤ 0
and ε2 < 0. For the upper bound, use parts (b) and (c) of Lemma C instead.

Theorem 3.

Let L3 and U3 be given by (8)-(9). Then

L3 + δ3 ≤ log(G)− log(H) ≤ U3 − ε3,

where

δ3 =
∑
Xj>H

(Xj −H)2

12X2
j

(3X2
j − 2HXj −H2)

(Xj +H)2
·Pj +

1

3!

∑
Xj≤H

(H −Xj)
3

XjH2
·Pj, (32)

and

ε3 =
∑
Xj≤H

(Xj −H)2

12X2
j

(X2
j + 2HXj − 3H2)

H2
(
1 + H

Xj

)2 ·Pj +
1

3!

∑
Xj>H

(H −Xj)
3

HX2
j

·Pj (33)

Also, δ3 ≥ 0, ε3 ≤ 0 with δ3 > 0 and ε3 < 0 unless all the Xj’s are equal.

Proof.

Let X = H
Xj

. Use Lemma C, part (a) for Xj > H and use part (d) for

Xj ≤ H. This gives the lower bound. For the upper bound, use parts (b) and
(c) of Lemma C instead.

Theorem 4.

Let L4 and U4 be given by (10)-(11). Then

L4 + δ4 ≤ A−H ≤ U4 − ε4,

where
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δ4 =
∑
Xj≤H

(Xj −H)2

12H
·
(

14H3 − 2X3
j − 6X2

jH − 6XjH
2

(Xj +H)3

)
· Pj+

1

3!

∑
Xj>H

(Xj −H)3(Xj + 2H)

X3
j

· Pj,
(34)

and

ε4 =
∑
Xj>H

(Xj −H)2

12H
·

(−14X3
j + 6X2

jH + 6XjH
2 + 2H3)

X3
j

(
1 +

Xj

H

)3 · Pj+

1

3!

∑
Xj≤H

(H + 2Xj)

Xj

·
(

(Xj −H)3

H2

)
· Pj

(35)

Also, δ4 ≥ 0, ε4 ≤ 0 with δ4 > 0 and ε4 < 0 unless all the Xj’s are equal.

Proof.

Use parts (e) and (f) of Lemma C with X =
Xj

H
and proceed as above.

δ4 ≥ 0 and ε4 ≤ 0 follow since −14X3 + 6X2 + 6X + 2 ≤ 0 for X ≥ 1 and
14−2X3−6X2−6X ≥ 0 for 0 < X ≤ 1, by simple calculus. Also, (X−1)3 ≤ 0
for 0 < X ≤ 1 and (X − 1)3 ≥ 0 for X > 1.

Next, we improve on Proposition 5, which itself is an improvement on Ky
Fan’s inequality.

Theorem 5.

Suppose that not all the Xj values are equal. Let q∗ = C1+C2

D1+D2
, where

C1, C2, D2 and D2 are given in the proof below. Then

A
′

G′
<

(
A

G

)q∗
where q∗ < q < 1 and q was given in (14).

Proof.

In Theorem 2, replace Xj by Yj = 1−Xj, A by A
′
.

Let
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C1 =
1

A′

n∑
j=1

Pj(Yj − A
′
)2

(Yj + min(Yj, A
′))
,

C2 =
1

A′

[
1

3!

∑
Yj≤A′

(Yj−A)3Pj

]
+

1

A′

[ ∑
Yj>A

′

(Yj − A
′
)2

12A′
·
(

(A
′
)2 + 2YjA

′ − 3Y 2
j

(Yj + A′)2

)
·Pj
]
,

D1 =
1

A

n∑
j=1

Pj(Xj − A)2

Xj + max(Xj, A)
,

D2 =
1

A

[ ∑
Xj≤A

(Xj − A)2

12A
·
(3A2 − 2XjA−X2

j )

(Xj + A)2
·Pj
]
+

1

A

[ ∑
Xj>A

1

3!

(Xj − A)3

X2
j

·Pj
]
.

Then in [5], it is shown in the proof of Proposition 5, that log
(
A
′

G′
)
)
≤

C1, log
(
A
G

)
≥ D1, and q = C1

D1
.

Now C2 < 0, since (Yj − A)3 ≤ 0 and 1 + 2X − 3X2 < 0, 0 < X ≤ 1.
Thus, for at least one j, either Yj < A or (A

′
)2 + 2YjA

′ − 3Y 2
j < 0 in C2

expression. Similarly, D2 > 0, since (Xj − A)2 ≥ 0 and 3 − 2X −X2 > 0 for
0 < X < 1 gives 3A2 − 2XjA − X2

j ≤ 0. Thus, there exists a j with either
(Xj−A)2 > 0 or (3A2−2XjA−X2

j ) > 0. Theorem 2 applied to Yj values gives

log(A
′
)− log(G

′
) ≤ C1 + C2 < C1

logA− logG ≥ D1 +D2 > D1

Thus, we obtain

q∗ =
C1 + C2

D1 +D2

<
C1

D1

= q.

This complete the proof.

3 New Method and Inequalities

In this section, we shall obtain inequalities relating A,G,H and µ3. In prob-
ability and statistics, µ3 is related to various measure of skewness. We shall
relate µ3 to A,G and H via some inequalities.
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In [4], a generalization of the Taylor series expansion is discussed. Power
series expansions are given which are usually more accurate than usual Taylor
series expansions. Firstly, we need the following lemma to derive new inequal-
ities using this generalized Taylor expansion.

Lemma D([4], p.243-244)

Let f(X) be a real-valued function defined on an interval I. Let m and
n be nonnegative integers. Let f

′
, f
′′
, f (3), f (4), ..., f (m+n+1) denote the first

(m + n + 1) derivatives of f , which are assumed to be continuous on I. Let
X, aεI. Then

f(X) = f(a)+
L∑
k=1

(m+ n− k)!

(m+ n)!

[(
m

k

)
f (k)(a)−(−1)k

(
n

k

)
f (k)(X)

]
·(X−a)k+R,

where L = max(m,n), f (1) = f
′
, f (2) = f

′′
, and where the remainder term is

R = (−1)n
m!n!

(m+ n)!(m+ n+ 1)!
f (m+n+1)(θ),

where θ is some real number between a and X, and where
(
m
k

)
and

(
n
k

)
are

binomial coefficients with
(
a
b

)
= 0, if a < b. (If n = 0, we obtain the usual m

term with remainder Taylor expansion of f about a.)

We are now ready to state and prove some new inequalities relating A,G,H
and µ3.

Theorem 6.

(a)

log(A)− log(G) ≥ 1

2

(
A

H
− 1

)
+

1

6

n∑
j=1

(
(Xj − A)

Xj

)3

· Pj

(b)

log(A)− log(G) ≤ 1

2

(
A

H
− 1

)
+

µ3

6A3

Proof (a).

Let f(X) = − log(X), a = A in Lemma D using m = 1, n = 1. Then



Some new refinements of the arithmetic, geometric 2565

− log(X) = − log(A) +
1

2
(X − A) ·

(
−1

A
− 1

X

)
+

(X − A)3

12
·
(

2

θ3

)
,

where θ is between a and X. If X > A, we obtain, substituting X for θj:

− log(X) ≥ − log(A)− 1

2
(X − A)

(
1

A
+

1

X

)
+

(X − A)3

6X3
(36)

and substituting A for θ, we obtain:

− log(X) ≤ − log(A)− 1

2
(X − A)

(
1

A
+

1

X

)
+

(X − A)3

6A3
, (37)

If X ≤ A, (36) and (37) hold again, except θε[X,A] instead. Now proceed as
done in [5] and in Section 2 of this paper. Replace X by Xj, multiply by Pj,
and sum over j, using (36). This proves (a). To prove (b), we use (37) instead
of (36) and apply the same procedure.

Corollary 1.

µ3 ≥ 6A3

(
log

(
A

G

)
− 1

2

(
A

H
− 1

))
≥ −3A3

(
A

H
− 1

)
Proof.

The proof is immediate from part (b) of Theorem 6 and since A ≥ G.
Next, we discuss the case of symmetric Pj weights and Xj values symmetric
about the arithmetic mean A.

Corollary 2.

Suppose Pi = Pn+1−i, i = 1, 2, ..., N and Xi+Xn+1−i

2
= A, i = 1, 2, .., N ,

where N = bn
2
c, and where XN+1 = A, if n is odd. Suppose X1 < X2 < ... <

Xn. Then

log(A)− log(G) ≤ 1

2

(
A

H
− 1

)
Proof.

The conditions on Pj and Xj given in the corollary give µ3 = 0, by a simple
computation. The result follows from part (b) of Theorem 6 above.

Corollary 3.
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a)

log(A)− log(G) ≥ 1

2

(
A

H
− 1

)
+

V1
12A2

− 1

12

(
1− 2A

H
+ A2V2

)
− 1

30A5

n∑
i=1

(Xi − A)5Pi,

where V1 =
n∑
j=1

(Xj − A)2Pj is the variance and V2 =
n∑
j=1

(Pj

X2
j
. Also,

b)

log(A)− log(G) ≤ 1

2

(
A

H
− 1

)
+

V1
12A2

− 1

12

(
1− 2A

H
+ A2V2

)
− 1

30

n∑
j=1

(
Xj − A
Xj

)5

Pj.

Proof.

Let m = 2, n = 2, f(X) = − log(X), a = A in Lemma D. Then

− log(X) = − log(A)− 1

2

(
1

A
+

1

X

)
· (X −A) +

1

12

(
1

A2
− 1

X2

)
(X − a)2 +R,

where R = − 1
30θ5(X−A)5 , θ between a and X.

Proceeding as in the proof of Corollary 2 above, upon replacing X by Xj

multiplying by Pj and summing over j and replacing θ by either A or Xj for
parts (a) and (b) respectively, we obtain the desired results.

Theorem 7.

(a)

log(A)− log(G) ≤ 2

3

(
A

H
− 1

)
− 1

6

(
1− 2A

H
+

n∑
j=1

A2

X2
j

· Pj
)

+
1

12

[ ∑
Xj≤A

(
Xj − A
Xj

)4

· Pj +
∑
Xj>A

(
Xj − A
A

)4

· Pj
]
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(b)

log(A)− log(G) ≥ 2

3

(
A

H
− 1

)
− 1

6

(
1− 2A

H
+

n∑
j=1

A2

X2
j

· Pj
)

+
1

12

[ ∑
Xj≤A

(
Xj − A
A

)4

· Pj +
∑
Xj>A

(
Xj − A
Xj

)4

· Pj
]

Proof.

Apply Lemma D with f(X) = − log(X),m = 1, n = 2. Then

− logX = − logA−
(
X − A

3A

)
− 2

3

(
X − A
X

)
− 1

6

(
X − A
X

)2

+
1

12

(
X − A
θ

)4

where θ is between a and X

Since m+n = 3 is odd, we must consider separately the cases: Xj ≤ A and
Xj > A, unlike in the proof of Theorem 6. We still utilize the same procedure
originally given by P.R.Mercer in [5]. Replacing X by Xj, multiplying by Pj
and summing either over Xj ≤ A or over Xj > A, we obtain parts (a) and (b),
upon replacing θ by either A or Xj

The next theorem relates logA− logG in terms of the second central mo-
ment (variance) and possibly the fourth central moment.

Theorem 8.

(a)

log(A)− log(G) ≤ 1

3

(
A

H
− 1

)
+

1

6A2

n∑
j=1

(Xj − A)2Pj

− 1

12

[ ∑
Xj≤A

(
Xj − A
A

)4

Pj +
∑
Xj>A

(
Xj − A
Xj

)4

Pj

]
(b)

log(A)− log(G) ≥ 1

3

(
A

H
− 1

)
+

1

6A2

n∑
j=1

(Xj − A)2Pj

− 1

12

[ ∑
Xj≤A

(
Xj − A
Xj

)4

Pj +
∑
Xj>A

(
Xj − A
A

)4

Pj

]
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Proof.

Let f(X) = − logX,m = 2, n = 1, a = A in Lemma D and proceed as in
the proof of Theorem 7. We omit the details since the proof is very similar to
the proof of Theorem 7.

It should be mentioned that another proof of Proposition 2 and Theorem
2 can be obtained from Lemma D, so that these are other uses for this lemma.
From Lemma D, many more inequalities can be derived by choosing different
choices for f(X), a,m and n.

4 Conclusions

In this paper, refinements of various inequalities involving A,G,H and several
central moments are discussed which improve on those given in [5]. In addi-
tion, a generalized Taylor series method is utilized to obtain more inequalities.
In particular, the case of symmetric Pj and Xj values symmetric about A was
considered, a case not previously considered in the literature.
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