Developing Architecture for a Routing System using Bridge Data and Adversary Avoidance

Will Heller
University of Nebraska at Omaha

Brian Ricks
University of Nebraska at Omaha, bricks@unomaha.edu

Yonas Kassa
University of Nebraska at Omaha, ykassa@unomaha.edu

Brandon Lacy
University of Nebraska at Omaha, bclacy@unomaha.edu

Rahul Kamar Nethakani
University of Nebraska at Omaha

Follow this and additional works at: https://digitalcommons.unomaha.edu/isqafacproc

Part of the Databases and Information Systems Commons

Please take our feedback survey at: https://unomaha.az1.qualtrics.com/jfe/form/SV_8cchtFmpDYgFBLE

Recommended Citation

Heller, Will; Ricks, Brian; Kassa, Yonas; Lacy, Brandon; and Nethakani, Rahul Kamar, "Developing Architecture for a Routing System using Bridge Data and Adversary Avoidance" (2023). *Information Systems and Quantitative Analysis Faculty Proceedings & Presentations*. 64.
https://digitalcommons.unomaha.edu/isqafacproc/64

This Poster is brought to you for free and open access by the Department of Information Systems and Quantitative Analysis at DigitalCommons@UNO. It has been accepted for inclusion in Information Systems and Quantitative Analysis Faculty Proceedings & Presentations by an authorized administrator of DigitalCommons@UNO. For more information, please contact unodigitalcommons@unomaha.edu.
Developing Architecture for a Routing System using Bridge Data and Adversary Avoidance
William Heller, Brian Ricks, Yonas Kassa, Rahul Kamar Nethakani, Brandon Lacy
University of Nebraska at Omaha

Goal

Traditional Routing

- Traditional routing ignores bridge integrity

Bridge-observant Routing

- Our routing will avoid unsafe and damaged bridges

Architecture + Big Data

End-User Applications

- Any Valhalla-based use case
- Live simulations
- Web-based routing application

Merged Dataset (NBI + OSM)

- Merge data using a custom program
- Resulting data format is in OSM (XML)
- Can be used in any bridge-oriented routing solutions

Valhalla

- Open-source routing system
- Use our custom NBI data
- Editable components
- Sif – Dynamic costing algorithm for bridge safety
- Thor – Custom routing algorithm for adversary avoidance

National Bridge Inventory (NBI)

- Government-managed data
- Publicly available
- Bridges are inspected once every two years
- Data is highly accurate and detailed
- Bridge health, location, max load, recommended load...

Open Street Map (OSM)

- Open-source GIS data
- Worldwide data
- Inconsistent in rural areas
- Widely supported
- Roads, buildings, lakes, bridges

This study was financially supported by the NSF-BD-Spokes Program (Award #1636805) and the NSF-Spokes Program (Award #1762034). Their support is gratefully acknowledged.