
University of Nebraska at Omaha University of Nebraska at Omaha

DigitalCommons@UNO DigitalCommons@UNO

Computer Science Faculty Publications Department of Computer Science

8-21-2017

Systematic adaptation of dynamically generated source code via Systematic adaptation of dynamically generated source code via

domain-specific examples domain-specific examples

Myoungkyu Song
University of Nebraska at Omaha, myoungkyu@unomaha.edu

Eli Tilevich
Virginia Tech

Follow this and additional works at: https://digitalcommons.unomaha.edu/compscifacpub

 Part of the Computer Sciences Commons

Please take our feedback survey at: https://unomaha.az1.qualtrics.com/jfe/form/

SV_8cchtFmpDyGfBLE

Recommended Citation Recommended Citation
Song, Myoungkyu and Tilevich, Eli, "Systematic adaptation of dynamically generated source code via
domain-specific examples" (2017). Computer Science Faculty Publications. 66.
https://digitalcommons.unomaha.edu/compscifacpub/66

This Article is brought to you for free and open access by
the Department of Computer Science at
DigitalCommons@UNO. It has been accepted for
inclusion in Computer Science Faculty Publications by an
authorized administrator of DigitalCommons@UNO. For
more information, please contact
unodigitalcommons@unomaha.edu.

http://www.unomaha.edu/
http://www.unomaha.edu/
https://digitalcommons.unomaha.edu/
https://digitalcommons.unomaha.edu/compscifacpub
https://digitalcommons.unomaha.edu/compsci
https://digitalcommons.unomaha.edu/compscifacpub?utm_source=digitalcommons.unomaha.edu%2Fcompscifacpub%2F66&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unomaha.edu%2Fcompscifacpub%2F66&utm_medium=PDF&utm_campaign=PDFCoverPages
https://unomaha.az1.qualtrics.com/jfe/form/SV_8cchtFmpDyGfBLE
https://unomaha.az1.qualtrics.com/jfe/form/SV_8cchtFmpDyGfBLE
https://digitalcommons.unomaha.edu/compscifacpub/66?utm_source=digitalcommons.unomaha.edu%2Fcompscifacpub%2F66&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:unodigitalcommons@unomaha.edu
http://library.unomaha.edu/
http://library.unomaha.edu/

IET Software

Research Article

Systematic adaptation of dynamically
generated source code via domain-specific
examples

ISSN 1751-8806
Received on 30th August 2016
Revised 18th May 2017
Accepted on 14th June 2017
doi: 10.1049/iet-sen.2016.0211
www.ietdl.org

Myoungkyu Song1 , Eli Tilevich2

1Department of Computer Science, University of Nebraska, Omaha, USA
2Department of Computer Science, Virginia Tech, Blacksburg, USA

 E-mail: myoungkyu@unomaha.edu

Abstract: In modern web-based applications, an increasing amount of source code is generated dynamically at runtime. Web
applications commonly execute dynamically generated code (DGC) emitted by third-party, black-box generators, run at remote
sites. Web developers often need to adapt DGC before it can be executed: embedded HTML can be vulnerable to cross-site
scripting attacks; an API may be incompatible with some browsers; and the program's state created by DGC may not be
persisting. Lacking any systematic approaches for adapting DGC, web developers resort to ad-hoc techniques that are unsafe
and error-prone. This study presents an approach for adapting DGC systematically that follows the program-transformation-by-
example paradigm. The proposed approach provides predefined, domain-specific before/after examples that capture the
variability of commonly used adaptations. By approving or rejecting these examples, web developers determine the required
adaptation transformations, which are encoded in an adaptation script operating on the generated code's abstract syntax tree.
The proposed approach is a suite of practical JavaScript program adaptations and their corresponding before/after examples.
The authors have successfully applied the approach to real web applications to adapt third-party generated JavaScript code for
security, browser compatibility, and persistence.

1 Introduction
In modern software applications, some of the requirements may
only be discovered at runtime. In some execution environments, a
combination of users, computing devices, time-of-day, and user
interactions often determines the required functionality and
execution behavior an application is expected to exhibit. A
common approach to fulfilling the requirements discovered at
runtime is dynamic code generation.

One domain that has widely embraced the practice of
generating code at runtime is web applications, an integral part of
the modern computing infrastructure. Web servers host code
generators that synthesise custom HTML and JavaScript code for
different clients, with the client's browser subsequently
downloading and executing the generated code. A web application
is commonly divided into a static, fixed part, and a dynamic,
generated part. It is the application's dynamic context that
determines what code needs to be generated for every combination
of the user and execution environment. For example, web
applications use the Ajax mechanism [1], in which web browsers
issue asynchronous, parameterised requests to server-side
JavaScript code generators, which dynamically generate custom
client code for different requests.

Web applications commonly integrate and execute the code
generated by remote, third-party servers. Ads tailored for
individual users and their browsing history, marketing strategies
based on individual shopping histories, potential social network
connections derived from mining the connection graph—all use
dynamically generated JavaScript code, whose shape and features
depend on the individual user's behavioural patterns, associations,
and execution environments.

Using unsafe coding idioms and violating the host application's
policies prevent third-party dynamically generated code (DGC)
from satisfying the requirements. Consequently, programmers must
adapt such DGC before it can be integrated into and executed by
web applications. Unsafe programming idioms violate the security
policy in place; they need to be replaced with safe alternatives.
Browser-specific APIs would render the application unusable
under certain browsers; these APIs need to be replaced with the
equivalent functionality supported by the browser in place. A

persistent web application needs to remember all user-entered data
across invocations, and the data manipulated by the dynamically
generated part of the code needs to be appropriately persisted. All
these adaptation tasks require transforming the source code, whose
exact structure will only be known at runtime.

How can one express the transformations required to adapt the
source code that will only be generated in the future? When
integrating third-party DGC, programmers can examine this code
in a debugger or print it out to the browser's console. Even if
examining such debugging information determines that the code
must be adapted, programmers lack systematic approaches for
effecting the required transformations. An approach that is
commonly used under these circumstances is called ‘monkey
patching’, in which a source code fragment (e.g. a function) is
rendered as a string and manipulated by means of string matching
and modification operations. Although a powerful adaptation
technique, ‘monkey patching’ is inherently unsafe due to its
reliance on string operations to modify the source code. In
addition, DGC may change every time the application is run. Thus,
a systematic approach to transform DGC should be resilient in the
presence of some degree of variability in the generated code.

In this study, we introduce a variant of a by-example approach,
which has been successfully applied to develop novel program
transformation techniques [2–4]. These approaches ask the
programmer to provide before and after examples demonstrating a
program transformation. From these examples, a general program
transformation is derived that can be applied to all other code
fragments needing the same transformation. Since DGC needs to
be adapted automatically without the programmer being present to
control the process, we use a predefined set of before and after
examples, with the programmer's role being limited to confirming
whether given examples describe the intended adaptation. Our
approach is domain-specific in cataloguing the variabilities of
common adaptations of JavaScript programs. The approach focuses
on JavaScript for two main reasons. First, JavaScript has recently
become one of the most widely used [5]. Second, dynamically
generating JavaScript code is a practice in modern web
applications [6].

IET Softw.
This is an open access article published by the IET under the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/)

1

The programmer first chooses an adaptation from our catalogue.
[Our design assumes the presence of a basic catalogue containing
representative examples to be used as guidelines to implement
other examples customised for different domains. Ideally, only
domain experts should be adding examples to the catalogue.] Then
the system presents a series of before/after examples to
disambiguate the context under which the specified adaptation
should be applied. The system checks the programmer's answers
for consistency to resolve any conflicting adaptation directives. In
the end, the system generates an adaptation script that performs the
specified adaptation by directly rewriting the DGC's abstract
syntax tree (AST). The script is then included with the web
application along with a small library containing our adaptation
engine. In our case studies, we have successfully applied our
approach to adapt the DGC of real, third-party web applications for
better security, browser-compatibility, and persistence. Although
our approach is JavaScript-specific to take advantage of the
ubiquity of web applications, the general principles we have
developed can be applied to other languages and application
domains.

This study makes the following main contributions:

• A systematic domain-specific approach to Adapting
Dynamically Generated JavaScript (ADGJS) code based on
predefined before/after examples.

• A domain-specific language (DSL) for specifying and
performing transformations of JavaScript ASTs.

• Empirical results of adapting the DGC portions of third-party
commercial web applications for security, browser compatibility,
and persistence.

2 Motivating examples
Next we present three scenarios arising in web application
development that require adapting DGC for security, browser-
compatibility, and persistence reasons.

A large class of security vulnerabilities arises as a result of
incorrectly or maliciously formed HTML statements dynamically
injected into existing HTML code. A particularly dangerous
vulnerability is cross-cite scripting (XSS) [7], in which an HTML
hyperlink redirects the user to an unsafe website. A known solution
to defending against XSS attacks is sanitising—analysing browser
DOM trees for the presence of unsafe content and neutralising it. In
fact, multiple sanitising libraries [8, 9] have been developed.
Hence, when integrating third-party DGC, a web developer may
want to invoke a preferred sanitising function before new HTML
statements are injected into the DOM tree. However, sanitising all
HTML statements can incur a prohibitively large performance

overhead. A web developer may decide that some dynamically
generated HTML is safe and should not be sanitised. One policy
can be to sanitise only the HTML strings assigned to the
innerHTML property of the JavaScript DOM API. Fig. 1a shows a
snippet of JavaScript adapted to include a call to a sanitising library
—html_sanitize. The introduced code appears in blue.

Fig. 1b demonstrates how introducing a conditional statement
can support browser-specific APIs. Another adaptation strategy can
detect browser features to determine which API should be used.
Fig. 1c demonstrates how the state of a dynamically generated
Email function can be rendered persistent. Special getter and setter
functions can introduce the persistence functionality by means of
the persistence library in place.

The above example motivates the need of adapting DGC for the
unique requirements of diverse web applications. Although the
adaptation may seem straightforward, the main difficulty lies in the
need to specify them without knowing exactly what the generated
code will look like. Web developers may have a general idea of
what these adaptations should entail. However, it is nearly
impossible to consider all the possible patterns under which a
program needs to be transformed to put these adaptations into
effect.

3 Program adaptation by domain-specific
examples
Our approach raises the level of automation of by example
mechanisms by leveraging domain-specific knowledge. In a
traditional by example program transformation approach [2–4],
programmers provide before/after examples for a transformation
engine, which then generalises the examples into an automated
transformation. The automated transformations can then be applied
to all the scenarios that are similar to the before/after examples
from which the transformation was derived. In contrast, we provide
a catalogue of adaptations, each of which comes with a series of
predefined before/after examples, which are presented to the
programmer. The programmer's responsibility is to identify which
before/after examples reflect the intended adaptations. Based on
the programmer's input, our approach then generates an adaptation
script that parameterises our adaptation library. Next we
demonstrate how our approach can adapt DGC in the examples
presented in the previous section.

3.1 Sanitising embedded HTML

The purpose of this adaptation is to insert calls to a sanitising
library before dynamically generated HTML code is used.
However, the programmer may decide that not all HTML code
needs to be sanitised. In particular, the adaptation would sanitise
only user-selected HTML injected into a DOM tree, as it can
potentially introduce XSS attacks. Once the programmer selects the
‘[10] HTML SANITIZING’ item from the catalogue in Fig. 2a, the
adaptation generator then presents three before/after examples.
Fig. 2b asks the programmer whether the innerHTML DOM
property returned by function getElementById should be
sanitised. The examples are presented as simplified AST patterns.
Intuitively, this example describes a program fragment. The
innerHTML property is retrieved from the document object. This
example captures an AST pattern. The document,
getElementById, and innerHTML form a successor relationship.

In the next example (c), the programmer specifies whether to
sanitise innerHTML retrieved through a call to getElementBy*.
In this case, the wild card is used for capturing all APIs with prefix
‘getElementBy’. The [$idx] construct expresses that each element
of the array be sanitised. For consistency, the programmer will
either include or exclude this and the previous transformations,
whose after examples wrap the HTML string with a call to
html_sanitize. The generated transformation library will
contain a stub to this function that the programmer needs to fill in
to invoke an appropriate HTML sanitising API. The <STR>
keyword stands for any string type, either literal or variable. The
first two examples describe the scenarios that commonly occur in

Fig. 1  Motivating examples for security, browser-compatibility, and
persistence
(a) Sanitising HTML codes by a JavaScript API, (b) JavaScript API differences
between web browsers, (c) Persisting program state

2 IET Softw.
This is an open access article published by the IET under the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/3.0/)

user-driven interactions, in which a malicious user may enter an
HTML string that can be exploited in a future XSS attack.

In contrast, example (d) describes displaying HTML content
sent by the server. If the programmer trusts this server's provider,
they may choose not to sanitise their static HTML content. For
example, if this content contains advertisements, it may be subject
to a legal agreement that forbids modifying it in any way. In other
words, the assumption of this adaptation is that the developers of
DGC may be negligent in not sanitising user-entered HTML, but
they are not malicious to send HTML code containing XSS attacks.
The resulting adaptation appears in part (e), which contains a script
that agglomerates all the programmer-approved transformations,
with the before and after parts separated by the => marker. This
script will then be applied to transform the AST of DGC at
runtime. These examples are domain-specific so that they capture
common coding idioms in browser-based JavaScript.

3.2 Rendering APIs browser compatible

If third-party generated DGC is incompatible with some browser,
the code can be adapted by leveraging one of the well-known
browser compatibility tables [11]. Since all adaptations of DGC
can take place only at runtime, there is no longer any need for
conditional browser-specific code—the type of browser in place is
already known. Therefore, if DGC contains some API
incompatible with the browser in place, the API should be replaced
accordingly. To that end, our catalogue contains multiple
adaptations specific to browser incompatibility. The details of this
before/after example could be found in the Appendix [10].

3.3 Persisting program state

To render a variable persistent, its state should be written to and
read from stable storage. This can be accomplished by replacing all
the accesses and modifications of a variable with setter and getter
methods, a facility provided by built-in __defineGetter__ and
__defineSetter__ functions. The issue at hand is what kinds of
variables should be persisted. In JavaScript, there are normal,
global, and property variables. Our before/after examples
determine what type of variable the programmer wishes to persist.
In this scenario, the programmer wants to persist normal and
property variables, but not global variables. The details of this
before/after example creating an adaption script to persist variables
could be found in the Appendix [10].

4 Approach
In this section, we describe the architecture, design and
implementation of our adaptation infrastructure, ADGJS. We
present our DSL that describes before/after examples and
transformations. The details of summarising the syntax of the
before/after examples and the adaptation scripts could be found in
the Appendix [10]. Our adaptation engine applies adaptation scripts
with the structural constraints before and after applying
transformations to a program in terms of mapping rules and
encodes ordering dependencies among transformation types to
define which transformation types must be performed before others
on composite transformations.

After showing the ADGJS workflow in Section 4.1, we
demonstrate how ADGJS applies the dynamic adaptations to the
above motivating examples in Section 4.2.

4.1 Infrastructure workflow

We implement ADGJS as a JavaScript library. Programmers declare
ADGJS's library in their applications. To modify dynamically
evaluating JavaScript code, ADGJS proxifies related JavaScript
functions such as eval, transforming text into executable code. It
parses the argument of dynamically evaluating functions into ASTs
and matches the ASTs with the before-state patterns specified in
the adaptation scripts. When it finds a matched pattern, ADGJS
transforms the ASTs based on the after-state patterns. Finally,
ADGJS unparses the transformed ASTs to the argument of eval to
be evaluated. Fig. 3 shows the dynamic adaptation workflow of
ADGJS.

To parse JavaScript code, we use an AST parser, Esprima [12].
To unparse transformed ASTs, we use a code generator, Escodegen
[13].

4.2 Transforming adaptation scripts into AST operations

Using a parser generation technique [14], each adaptation script is
translated into a sequence of AST operations—Match, Add, Move,
and Delete. We define them as the following.

• Match(Nx): find and return the nodes matching Nx.
• Tranx(OP1,…, OPn): perform a series of operations OPi in

sequence, or OPi ∈ {Add, Move, and Delete}.

o Add(Nx, Ny): add node Nx to node Ny as a child.

Fig. 2  Creating an adaptation script to sanitise HTML from a series of
before/after examples
(a) HTML sanitising item in the catalogue, (b) Before/after example #1 (included by
the programmer), (c) Before/after example #2 (included by the programmer), (d)
Before/after example #3 (excluded by the programmer), (e) Resulting adaptation script

IET Softw.
This is an open access article published by the IET under the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/)

3

o Move(Nx, Ny, Nz): move the child node Nx from its parent
node Ny to the new parent node Nz.
o Delete(Nx, Ny): remove node Nx from node Ny.

Algorithm 1 (see Fig. 4) shows our approach to generate AST
operations based on adaptation scripts. To create transformation
operations, Algorithm 1 (Fig. 4) takes as input the AST patterns
representing the before/after examples of an adaptation script; the
resulting output is a set of transformation operations that can be
applied to the matched nodes of the AST of DGC. Recall that both
the before (BF) and after (AF) parts of an adaptation script are
represented as ASTs, which can be traversed and examined. Lines
2 and 6 identify the move operations by calculating the differences
between the BF and AF AST trees. A move operation is generated
whenever the BF/AF trees contain identical subtrees but located at
different distances from the root; in other words, these identical
subtrees have different tree indexes. Line 11 shows the logic for
generating the add operations. An add operation is generated
whenever the AF tree contains a subtree that is not present in the BF
tree. Lines 14 to 21 show the logic for generating the delete
operations. A delete operation is generated whenever the BF tree
contains a subtree that does not appear in the AF tree. As is
common for tree manipulations, these three operations are defined
recursively. In terms of the algorithm's efficiency, since it compares
all the occurrences of a given subtree parameter with all the other
subtrees in before/after trees, the running time is quadratic to the
size of the before/after examples.

4.3 Adaptation examples

To demonstrate how our adaptation infrastructure transforms ASTs
of DGC, we revisit the three motivating scenarios described in
Section 3.

4.3.1 Sanitising embedded HTML: Fig. 5 shows a tree
transformation that inserts a call to function html_sanitize right
before HTML text is assigned to property innerHTML. This
adaptation comprises matching a tree pattern, and then applying the
add and move transformations described above to the matched

nodes: Match([Nb
4 , Nb

5 , Nb
6]) → Tranx(Add(Na

1, Nb
7), Move(Nb

8 , Nb
7 ,

Na
3)).

This example shows how the original AST on the left is
transformed into the one on the right. The before expression of the
adaptation script describes the collection of nodes, [Nb

4 , Nb
5 , Nb

6],
that is to be matched; the pattern matching includes node types and
program construct names. Nb and Na are nodes expressing before/
after the transformation. In this case, the nodes are matched as
follows: node Nb

6 (‘innerHTML’) of type property is a direct
predecessor of node Nb

5 (‘getElementBy*’) of type function, which
in turn is a direct predecessor of node Nb

4 (‘document’) of type
object. The matching mechanism in place matches both the node
types as well as the names of the program constructs they
represent.

The AST on the right shows the results of the performed add
and move operations. The subtree rooted in Na

1 was added to Nb
7;

then Nb
8 was moved to the rightmost child position, thus becoming

a child node of Na
3. Note that because of the use of a wildcard, this

adaptation will be applied to the innerHTML property returned by
all the methods in the document objects starting with the prefix
getElementBy: getElementByName, getElementById,
getElement-ByClass etc. This adaptation's generality is possible
only because we use pre-defined, domain-specific before/after
examples that encompass our analysis of JavaScript coding idioms.
Such a general adaptation would be impossible if JavaScript
programmers had to come up with the before/after examples on
their own.

4.3.2 Achieving browser compatibility: Fig. 6 shows a tree
transformation that adapts DGC to render it browser compatible. In
particular, it renames property innerText into textContent,
whenever this property is a successor of document. This
adaptation makes DGC compatible with Firefox browsers. This
adaptation comprises matching a tree pattern, and then applying the
add and delete transformations described above to the matched
nodes: Match([Nb

4 , Nb
5 , Nb

6]) → Tranx(Add(Na
1, Nb

5), Delete(Nb
6 ,

Nb
5)).

Fig. 3  ADGJS: runtime adaptation workflow

Fig. 4  Algorithm 1 Translating an adaptation script into a collection of operations

4 IET Softw.
This is an open access article published by the IET under the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/3.0/)

First, properties that are named innerText and are successors
of document are matched, and their direct predecessor nodes
identified. A node with the wildcard value of (‘*’) represents any
single AST node. In this example, the wildcard will match any
node, whose direct successor has the value of ‘innerText’ and
whose predecessor (direct or indirect) is the document object.
Then, a new node Na

1 (‘textContent’) is added to the identified
predecessor nodes (Nb

5), whatever they happen to be. Finally, the
existing node Nb

6 (‘innerText’) is deleted from the tree. In
essence, combining the delete and add operations forms a replace
operation. However, to keep our design minimalistic, we chose not
to include any operations that can be expressed by combining the
existing operations.

4.3.3 Persisting program state: Fig. 7 shows a tree
transformation that renders DGC persistent. This adaptation
introduces special functions, __defineGetter__ and
__defineSetter__, which cause all accesses and modifications
of a given normal variable or property to be replaced with the
provided getter and setter functions. Getters retrieve the requested
values from persistent storage, and setters store them there. This
adaptation comprises matching a tree pattern, and then applying a
pair of add operations to the matched node: Match (Nb

3) → Tranx
(*’ Add(Na

1, Nb
1), Add(Na

10, Nb
1)).

Node Nb
3 represents all the normal variables and properties that

are matched. Then, subtrees Na
1 and Na

10, describing the getter and
setter functions, respectively, are added to the root (‘program’) of

Fig. 5  Transforming DGC to insert html_sanitize at the AST level

Fig. 6  Transforming DGC to replace innerText with textContent at the AST level

Fig. 7  Transforming DGC to wrap persist APIs with setter/getter at the AST level

IET Softw.
This is an open access article published by the IET under the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/)

5

the tree. In this transformation, the persisted program construct's
name in Nb

3 is the same of the literals represented by the nodes Na
3

and Na
12. While the literals represented by the nodes Na

9 and Na
17

have the values that concatenate the enclosing function's name and
the persisted program construct's name. For anonymous functions,
this adaptation uses the prefix ‘anonFun_N,’ where N is a counter
maintained by the transformer.

5 Case studies
For assessing ADGJS's effectiveness, we performed case studies.
We first assessed ADGJS's adaptation of DGC. In the second study,
we assessed performance in real scenarios. To guide our
evaluation, we defined the following research questions:

• RQ1. Can our approach accurately adapt the DGC of real-world
web applications?

• RQ2. Can our approach efficiently transform the DGC of real-
world web applications?

5.1 Experimental design

To evaluate our adaptation approach, we applied ADGJS to the
DGC found in 14 diverse, real-world, commercial web
applications. We selected these applications from the list of the top
24 websites as reported by www.alexa.com. To create a controlled
environment, we used TracingSafari, an instrumented version of
the Safari 5 browser as described in [15]. This instrumentation
approach makes it possible to record the execution traces of
JavaScript programs. Although our approach works with standard
web browsers and does not require any instrumentation, using
TracingSafari to collect and record the test data made our case
studies reproducible.

5.2 Study results and discussion

For each web application, we have attempted to locate three kinds
of DGC that could be sanitised, rendered browser compatible, and
made persistent. For each subject web application, Table 1 reports
the total size of the adapted DGC in kB (SZ), the number of AST
nodes of the adapted DGC (ND), and the total number of
adaptations applied (AS).

RQ1. Can our approach accurately adapt the DGC of real-world
web applications? Our case studies have confirmed that our
approach can be applied to adapt the DGC of real-world
applications. The adaptations that we extracted from our
predefined, domain-specific before/after examples can be
accurately applied to such applications. The accuracy was checked
by manually inspecting the adapted DGC. Regarding the validation
process, the first author analysed ADGJS's results. The results then
were validated in the meetings with the remaining authors. When
there was any disagreement, each issue was put to a second
analysis round, and a joint decision was made. In some cases, we
could not perform on transformation when an application does not
implement APIs related to adaptation in our approach, where the
dash character marks the applications, whose DGC did not need
any of the studied adaptations. For example, the DGC used by
Facebook did not contain any coding idioms that could be sanitised
or rendered browser compatible. Another example, the DGC used
by Amazon could not be sanitised, but could be adapted to be
compatible with Firefox. As yet another example, the DGC used by
Linkedin could be sanitised, but did not contain any browser-
specific idioms.

RQ2. Can our approach efficiently transform the DGC of real-
world web applications? To discuss the performance results of our
approach, we analyse the asymptotic computational complexity,
which can correlate the execution time of our approach with the
size of the DGC being adapted. The number of nodes in the DGC's
AST is a more accurate parameter to consider than the DGC's
physical size. Large, text-rich JavaScript codebases can be parsed
into ASTs with moderate numbers of nodes. Therefore, we use the
AST's size in all performance-related discussions. For an AST of
size n, the complexity of an exhaustive tree walk (we use the
depth-first order) to match the nodes to transform is O(n). The
complexity of transforming a matched tree node is constant. Thus,
the overall complexity of our approach is O(n)C, where C is a
constant. As a result, the runtime of our approach should be
proportional to the AST size of the adapted DGC. Indeed, the
results of our performance benchmark, presented in Fig. 8, clearly
show that the actual running time of our approach grows linearly
with the size of the DGC's AST. Our approach is efficient in real
world settings, since its execution time is directly proportional to
the size of the DGC being adapted.

Table 1 Using our approach to adapt DGC found in commercial web applications (W: Webpages, R: Rank, A: Facebook, B:
Google, C: Youtube, D: Yahoo, E: Wikipedia, F: Live, G: Amazon, H: Twitter, I: Blogspot, J: Linkedin, K: MSN, L: Ebay, M: Bing,
and N: Wordpress)
W R Sanitizing Browser compatibility Persisting

Size Nodes Adapt Size Nodes Adapt Size Nodes Adapt
A 1 — — — — — — 1.0 244 5
B 2 214.6 70,565 15 — — — 97.4 3,237 70
C 3 90.1 22,573 3 — — — 106.0 22,834 341
D 4 990.4 197,912 54 91.6 24,507 4 38.3 8,256 227
E 6 3,942.5 446,566 117 2,212.2 362,748 34 231.3 29,050 773
F 7 37.4 7,940 13 — — — 76.7 14,667 384
G 8 — — — 200.7 44,776 8 115.5 17,199 551
H 10 162.2 31,324 16 80.9 17,726 1 345.0 74,240 1,782
I 12 993.6 255,347 9 890.1 226,385 7 297.4 96,134 1,270
J 14 661.3 103,993 62 — — — 663.0 130,586 3,445
K 18 2,279.9 209,482 148 1,354.4 297,585 26 1,535.5 339,537 8,051
L 19 — — — — — — 169.0 37,697 731
M 21 — — — 77.6 18,411 4 109.2 28,490 1,026
N 23 701.0 153,934 44 500.8 102,757 2 704.9 142,533 2,990

Fig. 8  Performance in adaptation

6 IET Softw.
This is an open access article published by the IET under the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/3.0/)

Discussion: How difficult is it for a domain expert to develop a
set of before/after examples for a new adaptation? In essence, the
before/after examples in our approach configure adaptations rather
than provide input to a learning routine to generalise them into a
general program transformation. Thus, if an adaptation is amenable
to our approach, developing the examples, in which the before/after
parts have the distance of one, is rather straightforward. It took us
around an hour to design, implement, and verify each set of the
before/after examples described in the paper.

6 Threats to validity
Regarding studies on adaptation, in terms of construct validity, the
accuracy of the AST parser Esprima [12] and the code generator
Escodegen [13] directly affects ADGJS's capability in DGC
adaptation. The correctness of adaptation catalogues also affects its
adaptation. When multiple interfering transformations are designed
in the same catalogue, ADGJS may generate false positives or
negatives. Our design goal of the adaptation script is to create one-
to-one mapping rules in the transformation. We provide a catalogue
of adaptations that consists of concrete and abstract pattern
matches. To prevent mapping rules from conflicting each other, we
present concrete before/after examples to capture concrete
expressions and then partial abstract before/after examples for the
abstract representation matches resulting in most specific
transformation. In terms of internal validity, we adapt the DGC
portions of applications for security, browser compatibility, and
persistence. Not all identified DGC portions are indeed to be
adapted and could be intentional. For example, if a programmer
trusts the server's execution, they may accept static HTML contents
without sanitisation. In terms of external validity, our results do not
generalise beyond our data set and the subject applications. Our
evaluation with only open source projects that are implemented in
JavaScript may not generalize to projects. Further investigation is
required to validate ADGJS on projects that are developed with
different settings, such as programming languages, application
domains, or development organizations.

7 Related work
7.1 Program transformation by example

Programming by example, a general methodology behind program
transformation by example, has been applied to a variety of
software development contexts [2, 16–18]. For example, Galenson
et al. present CodeHint to interactively transform a program by
using code fragments as an example. Model transformation by
example (MTBE) [4, 19, 20] is an automated approach for
generating transformation rules by applying inductive inference on
example-based specifications. By using context and dependent
analysis, MTBE infers transformation rules by leveraging
constraints and domain-specific knowledge. To map representative
examples, pattern matching has been advocated to generalise
transformation rules [21–24].

Unlike these prior efforts, our approach presents a predefined,
domain-specific set of before/after AST examples for each
adaptation for the programmer to confirm. Using predefined
adaptations and examples makes it possible for us to adapt DGC
automatically outside the programmer's purview.

7.2 Program transformation languages

JTL [25], JavaCOP [26], and CIL [27] are high-level languages
and infrastructures for transforming Java and C programs. A recent
work presents Ann, a new language for design and validation of
Java annotations [28]. The design of our transformation
infrastructure has been inspired by the technique described in these
prior efforts, albeit adapted for the needs of JavaScript.

7.3 AST differencing

CHANGEDISTILLER [29] computes the difference between two
program versions from their ASTs. CHANGEDISTILLER employs
AST structural analysis to produce tree modification operations,

such as insert, delete, move and update. Similarly, Falleri et al. [30]
analyse AST edits, focusing on move and update edit operations to
tackle limitations of textual-based different techniques. DOM
schema transformation approaches [31–33] infer differences by
comparing the ASTs of different versions, including the elements
of XML documents. Our approach's implementation is closely
related to these approaches in modifying ASTs directly; however,
we also put forward a DSL for before/after examples and
adaptation scripts.

7.4 Transformations for web applications

Several recent research studies [34–36] transformed JavaScript
using aspect-oriented programming (AOP) configured via XML or
expressive patterns. AjaxScope [37] dynamically instruments
JavaScript programs at the AST level at runtime. AspectScript [38]
extends JavaScript with a dynamic AOP mechanism implemented
as a source-to-source translator. Lerner et al. [39] provide an AOP
extension for JavaScript, integrated with a JIT compiler, whose aim
is to support principled runtime adaptation. BrowserShield [40, 41]
have provided their parsers to by rewriting JavaScript to increase
the level of security against vulnerable threats of DGCs. In contrast
our approach provides domain-specific before/after examples to
configure the required transformations.

8 Conclusion
In this study, we presented a systematic approach for ADGJS code
in web applications that follows a program-transformation-by-
example methodology. Unlike prior approaches following this
methodology, we provide predefined, domain-specific examples.
By approving the examples that describe the desired
transformations, the programmer configures an adaptation script.
We demonstrated how our approach can adapt DGC for security,
browser compatibility, and persistence accurately and efficiently.
We have developed a DSL for expressing program transformations
at the AST level. Our experimental results of adapting DGCs from
14 real-world web applications indicate that our approach can
become a practical tool in the toolset of web developers.

9 References
[1] Deitel, P., Deitel, H.: ‘Ajax, rich internet applications, and web development

for programmers’ (Prentice Hall PTR, 2008)
[2] Lieberman, H. (Ed.): ‘Your wish is my command programming by example’

(Morgan Kaufmann, 2001)
[3] Meng, N., Kim, M., McKinley, K.S.: ‘LASE: locating and applying

systematic edits by learning from examples’. Int. Conf. Software Engineering,
2013, pp. 502–511

[4] Balogh, Z., Varró, D.: ‘Model transformation by example using inductive
logic programming’, Softw. Syst. Model., 2009, 8, (3), pp. 347–364

[5] The top 10 programming languages. http://spectrum.ieee.org/at-work/tech-
careers/the-top-10-programming-languages, accessed May 2017

[6] Richards, G., Hammer, C., Burg, B., et al.: ‘The eval that men do: a large-
scale study of the use of eval in JavaScript applications’. Int. Conf. Object-
oriented Programming, 2011, pp. 52–78

[7] Grossman, J., Hansen, R., Petkov, P.D.,, et al.: ‘XSS attacks: cross site
scripting exploits and defense’ (Oxford, 2007)

[8] Ohara, C.: ‘Node validator’. https://github.com/chriso/node-validator
[9] JsHtmlSanitizer. http://code.google.com/p/google-caja/wiki/JsHtmlSanitizer,

accessed May 2017
[10] Appendix to Systematic Adaptation of Dynamically Generated Source Code.

http://faculty.ist.unomaha.edu/msong/adagejs/appendix.pdf
[11] Compatibility overview. http://quirksmode.org/compatibility.html, accessed

May 2017
[12] Esprima: ‘ECMAScript parsing infrastructure for multipurpose analysis’.

http://esprima.org/, accessed May 2017
[13] Escodegen: ECMAScript code generator from parser API AST. https://

github.com/Constellation/escodegen, accessed May 2017
[14] PEG.js. http://pegjs.majda.cz/, accessed May 2017
[15] Richards, G., Lebresne, S., Burg, B., et al.: ‘An analysis of the dynamic

behavior of JavaScript programs’. Int. Conf. Programming Language Design
and Implementation, 2010, pp. 1–12

[16] Cypher, A., Halbert, D.C., Kurlander, D., et al.: ‘Watch what I do:
programming by demonstration’ (MIT Press, 1993)

[17] Mandelin, D., Xu, L., Bodk, R., et al.: ‘Jungloid mining: helping to navigate
the API jungle’. Int. Conf. Programming Language Design and
Implementation, 2005, pp. 48–61

[18] Galenson, J., Reames, P., Bodik, R., et al.: ‘Codehint: dynamic and interactive
synthesis of code snippets’. Int. Conf. Software Engineering ACM, 2014, pp.
653–663

IET Softw.
This is an open access article published by the IET under the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/)

7

http://spectrum.ieee.org/at-work/tech-careers/the-top-10-programming-languages
http://spectrum.ieee.org/at-work/tech-careers/the-top-10-programming-languages
https://github.com/chriso/node-validator
http://code.google.com/p/google-caja/wiki/JsHtmlSanitizer
http://faculty.ist.unomaha.edu/msong/adagejs/appendix.pdf
http://quirksmode.org/compatibility.html
http://esprima.org/
https://github.com/Constellation/escodegen
https://github.com/Constellation/escodegen
http://pegjs.majda.cz/

[19] Varró, D.: ‘Model transformation by example’. Int. Conf. Model Driven
Engineering Languages and Systems, 2006, pp. 410–424

[20] Varró, D., Balogh, Z.: ‘Automating model transformation by example using
inductive logic programming’. Int. Conf. Symp. Applied Computing, 2007,
pp. 978–984

[21] Wimmer, M., Strommer, M., Kargl, H., et al.: ‘Towards model transformation
generation by-example’. Int. Conf. Annual Hawaii, 2007

[22] Kappel, G., Langer, P., Retschitzegger, W., et al.: ‘Model transformation by-
example: a survey of the first wave’, in Düsterhöft, A., Klettke, M., Schewe,
K.-D. (EDs.): ‘Conceptual modelling and its theoretical foundations’
(Springer, 2012), pp. 197–215

[23] Strommer, M., Murzek, M., Wimmer, M.: ‘Applying model transformation
by-example on business process modeling languages’. Int. Conf. Conceptual
Modeling, 2007, pp. 116–125

[24] Alves, E.L., Song, M., Massoni, T., et al.: ‘Refactoring inspection support for
manual refactoring edits’, IEEE Trans. Softw. Eng., 2017, (accepted)

[25] Cohen, T., Gil, J.Y., Maman, I.: ‘JTL: the java tools language’. Int. Conf.
Object-oriented Programming, Systems, Languages, and Applications, 2006,
pp. 89–108

[26] Markstrum, S., Marino, D., Esquivel, M., et al.: ‘JavaCOP: declarative
pluggable types for java’, ACM Trans. Prog. Lang. Syst., 2010, 32, (2), p. 4

[27] Necula, G.C., McPeak, S., Rahul, S.P., et al.: ‘CIL: intermediate language and
tools for analysis and transformation of C programs’. Int. Conf. Compiler
Construction, 2002, pp. 213–228

[28] Córdoba-Sánchez, I., de Lara, J.: ‘Ann: a domain-specific language for the
effective design and validation of java annotations’, Comput. Lang., Syst.
Struct., 2016, 45, pp. 164–190

[29] Fluri, B., Wuersch, M., PInzger, M., et al.: ‘Change distilling: tree
differencing for fine-grained source code change extraction’, IEEE Trans.
Softw. Eng., 2007, 33, (11), pp. 725–743

[30] Falleri, J.-R., Morandat, F., Blanc, X., et al.: ‘Fine-grained and accurate
source code differencing’. Int. Conf. Automated Software Engineering ACM,
2014, pp. 313–324

[31] Cobena, G., Abiteboul, S., Marian, A.: ‘Detecting changes in XML
documents’. Int. Conf. Data Engineering, 2002, pp. 41–52

[32] Martin, E.: ‘Toward the automatic derivation of XML transformations’, in
Jeusfeld, M.A. and Pastor, O. (Eds) Conceptual Modeling for Novel
Application Domains, 2003, pp. 342–354

[33] Königs, A., Schürr, A.: ‘MDI – a rule-based multi-document and tool
integration approach’, Int. J Softw. Syst. Model., 2006, 5, (4), pp. 349–368

[34] Washizaki, H., Kubo, A., Mizumachi, T., et al.: ‘AOJS: aspect-oriented
JavaScript programming framework for web development’. Int. Conf.
Aspects, Components, and Patterns for Infrastructure Software, 2009, pp. 31–
36

[35] Ofuonye, E., Miller, J.: ‘Securing web-clients with instrumented code and
dynamic runtime monitoring’, J. Syst. Softw., 2013, 86, (6), pp. 1689–1711

[36] Leger, P., Tanter, É., Fukuda, H.: ‘An expressive stateful aspect language’,
Sci. Comput. Prog., 2015, 102, pp. 108–141

[37] Kiciman, E., Livshits, B.: ‘Ajaxscope: a platform for remotely monitoring the
client-side behavior of web 2.0 applications’. Int. Conf. Operating Systems
Review, 2007, pp. 17–30

[38] Toledo, R., Leger, P., Tanter, É.: ‘Aspectscript: expressive aspects for the
web’. Int. Conf. Aspect-oriented Software Development, 2010, pp. 13–24

[39] Lerner, B.S., Venter, H., Grossman, D.: ‘Supporting dynamic, third-party code
customizations in JavaScript using aspects’. Int. Conf. Object-oriented
Programming Systems, Language and Applications, 2010, pp. 361–376

[40] Reis, C., Dunagan, J., Wang, H.J., et al.: ‘Browsershield: vulnerability-driven
filtering of dynamic HTML’, ACM Trans. Web, 2007, 1, (3), pp. 11

[41] Yu, D., Chander, A., Islam, N., et al.: ‘JavaScript instrumentation for browser
security’. Int. Conf. Principles of Programming Languages, 2007, pp. 237–
249

8 IET Softw.
This is an open access article published by the IET under the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/3.0/)

	Systematic adaptation of dynamically generated source code via domain-specific examples
	Recommended Citation

	tmp.1516310742.pdf.vJKJw

