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Abstract

Integer Programming is used to solve numerous optimization problems. This class of

mathematical models aims to maximize or minimize a cost function restricted to some

constraints and the solution must be integer. One class of widely studied Integer Program

(IP) is the Multiple Knapsack Problem (MKP). Unfortunately, both IPs and MKPs are

NP-hard, potentially requiring an exponential time to solve these problems.

Utilization of cutting planes is one common method to improve the solution time of IPs.

A cutting plane is a valid inequality that cuts off a portion of the linear relaxation space.

This thesis presents a new class of cutting planes referred to as merged knapsack cover

inequalities (MKCI). These valid inequalities combine information from a cover inequality

with a knapsack constraint to generate stronger inequalities.

Merged knapsack cover inequalities are generated by the Merging Knapsack Cover Algo-

rithm (MKCA), which runs in linear time. These inequalities may be improved by the Exact

Improvement Through Dynamic Programming Algorithm (EITDPA) in order to make them

stronger inequalities. Theoretical results have demonstrated that this new class of cutting

planes may cut off some space of the linear relaxation region.

A computational study was performed to determine whether implementation of merged

knapsack cover inequalities is computationally effective. Results demonstrated that MKCIs

decrease solution time an average of 8% and decrease the number of ticks in CPLEX, a

commercial IP solver, approximately 4% when implemented in appropriate instances.
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Chapter 1

Introduction

Operations research is an important field of study for academics and practitioners. Winston

[67] defines operations research as “a scientific approach to decision making that seeks to

best design and operate a system, usually under conditions requiring the allocation of scarce

resources.” Optimization problems can be modeled in various ways, including use of linear

programming, integer programming, dynamic programming, and simulation. This thesis

discusses integer programming problems and develops a new technique to more quickly

solve this class of problems.

Integer Program (IP) is a class of mathematical models defined as the maximization or

minimization of cTx subject to Ax ≤ b, where x ∈ Zn
+, A ∈ Rm×n, b ∈ Rm, and c ∈ Rn.

IPs are NP-hard as proved by Karp [43] and no known polynomial time algorithm exists

to optimally solve this class of problems.

Application of IPs is relevant in public and private sectors. For example, IPs have

helped improve decision making in project/portfolio management (Bertsimas et al. [12] and
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Pinto and Rustem [57]), capital budgeting problems (Finn [28] and Iwamura and Liu [41]),

transportation of goods (Arunapuram et al. [4], Kaufman et al. [44], Ruiz et al. [59], and

Toth and Vigo [64]), airline industry applications (Anbil et al. [3] and Subramanian et al.

[62]), sports competitions (Easton et al. [25], Trick [65], and Urban and Russell [66]), and

in the medical industry for areas such as genetic research (Brown and Harrower [15] and

Ferreira et al. [27]) and radiation treatments (Lee and Zaider [52] and Lee et al. [51]).

One of the most widely studied class of IPs is the Knapsack Problem (KP). The concept

of KP is similar to a hiker who must decide which items to pack in a knapsack for a camping

trip. Each item has an associated benefit and weight, but the hiker can only carry a specific

maximum weight. A Multiple Knapsack Problem (MKP) follows the same concept but it

has various knapsack constraints. Due to the complexity of MKP when compared to KP,

the multiple knapsack problems are preferable in this thesis. MKP applications have been

researched by Chang and Lee [16], Szeto and Lo [63], and Kolliopoulos and Steiner [47].

Notice that both KP and MKP are NP-hard as proved by Karp [43].

One of the main techniques used to solve IPs is the branch and bound algorithm first

proposed by Land and Doig [50]. This algorithm begins with the linear relaxation solution,

which is the solution of the integer program without the integer constraint. Thus, it takes

one variable with a fractional solution and creates two child nodes. The first node adds

a constraint, making the fractional variable less than or equal to the floor of its fractional

value; the second node adds another constraint, forcing the variable to be greater than or

equal to the ceiling of its fractional value. This process is repeated until all nodes have been

fathomed and the algorithm terminates. A node is fathomed when an integer or infeasible

2



solution is found or the solution of the evaluated node is worse than the best integer solution

found so far. One can see that this enumeration process may require exponential time.

Another technique for solving IPs is the addition of cutting planes. A cutting plane is a

valid inequality because it does not eliminate any integer points and may cut off some linear

relaxation solution. The cutting planes that cut off a larger portion of the linear relaxation

space are considered useful and may help solve IPs more quickly. When these cutting planes

are facet defining, they are theoretically the strongest inequalities. Examples of research

conducted to generate new classes of useful cutting planes are found in Balas [9], Zemel [70],

and Gu et al. [34].

One of the most useful cutting planes used to solve integer programs is the cover cut.

They are valid inequalities that may cut off some space of the linear relaxation solution and

also can be strengthened through the lifting process. Lifting begins with a valid inequality

and seeks to modify this inequality by adding more variables with different coefficients. The

output of the lifting process is another valid inequality that is typically stronger than the

original inequality.

The following sections provide the primary motivations for this thesis, potential contri-

butions of a new class of useful cutting planes, and the outline of the next chapters.

1.1 Motivation

Each year researchers develop new theoretically and computationally useful strategies in-

tended to solve IPs faster. Consequently, finding a new technique that has never been

3



discovered before and decreases the time required to solve integer programs is the primary

motivation of this thesis.

Hickman [38] has recently conducted research on inequality merging, which combines

two or more low dimension valid inequalities to generate a new valid inequality with higher

dimension. This research provided conditions for validity and conditions for facet defining.

In addition, a computational study demonstrated that implementation of merged inequalities

decreases the average time required to solve IPs approximately 9%. Although Hickman’s

results are good, some restrictions are applied. For example, merged inequalities can only

be generated by merging two cover inequalities and coefficients of the resulting merged

inequality are constant.

Hickman’s previous work motivated two questions in this research. Is it possible to

generate valid inequalities by combining information from a cover inequality and a knapsack

constraint? Can these inequalities be generated in such a way that the coefficients of the

merging variables differ, are as strong as possible, and are any positive real number?

1.2 Contributions

This thesis’ primary contribution is a new class of cutting planes that is generated when

information from a cover inequality and a knapsack constraint are merged, resulting in

merged knapsack cover inequalities. Merging a knapsack constraint into a cover inequality

requires a cover and its valid inequality from a knapsack constraint of the problem and a set

of merging variables from the same knapsack constraint. To create a merged knapsack cover
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inequality, the right-hand side of this new valid inequality is the size of the cover minus 1.

The coefficients of the merged variables are linearly scaled (α) multiples of their respective

coefficients in the knapsack constraint. The unmerged variables from the cover inequality

have a coefficient with value equal to 1. If α is correctly selected, the resulting inequality

has a higher dimensional face than the cover inequality in some cases. In certain instances,

this inequality may also be facet defining.

This thesis presents the Merging Knapsack Cover Algorithm (MKCA) in order to gen-

erate this new class of cutting planes. This algorithm is able to report a valid merged

knapsack cover inequality by identifying which variables in the knapsack constraint can be

merged into a chosen cover inequality. The coefficients are determined in such a way that

the validity conditions are met. The MKCA runs extremely fast since it is a linear time

algorithm.

MKCA quickly guarantees a valid merged knapsack cover inequality, but these inequal-

ities can sometimes be strengthened. Another contribution of this thesis is the Exact Im-

provement Through Dynamic Programming Algorithm (EITDPA), which determines the

strongest possible merged knapsack cover inequality. EITDPA is a pseudo-polynomial time

algorithm that runs reasonably fast in practice. In this computational study, it runs in less

than 0.1 seconds.

A computational study demonstrates that merged knapsack cover inequalities are on

average 8.0% better in time and 4.0% better on ticks in CPLEX. In addition, these cutting

planes are worth implementing when an IP has a knapsack constraint such that the minimum

coefficient is approximately 90% of the maximum coefficient.
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1.3 Outline

Chapter 2 introduces the main theoretical background needed to understand this thesis,

including integer programming and polyhedral theory. Theoretical information about knap-

sack and multiple knapsack problems, which are the class of problems studied in this re-

search, cover inequalities, and lifting are also shown. Examples demonstrate the principles

presented.

Chapter 3 describes merged knapsack cover inequalities generated by MKCA, which has

two subroutines. The first subroutine defines the set of merging variables that guarantees

the validity of the inequality; the second subroutine calculates the appropriate coefficient.

The proof of validity is demonstrated for both subroutines. A second algorithm is also

presented to improve the value of the coefficient and increase the strength of the inequality.

Finally, two examples are shown to illustrate the generation, improvement, and theoretical

usefulness of this new class of cutting planes.

The computational study of this thesis is presented in Chapter 4. Merged knapsack

cover inequalities are generated for several instances, and their computational results are

compared to results of CPLEX [40] when the same problem is solved without these inequal-

ities. In addition, instances that demonstrate the relevance of this thesis are described in

order to determine computational effectiveness of this new class of cutting planes based on

computational results provided.

Lastly, Chapter 5 concludes the thesis with a presentation of theoretical and compu-

tational results achieved. Ideas for future computational studies and future theoretical

extensions of merged knapsack cover inequalities are presented.

6



Chapter 2

Background Information

This chapter introduces the necessary background information about integer programming

and a review of theoretical topics and examples to allow increased understanding of this

thesis. The first section defines integer programs, discusses aspects of polyhedral theory,

and describes how this is strongly related to solution techniques of IPs. An integer program

example is presented to demonstrate how IPs are solved through cutting planes. For those

interested in deeper details, Nemhauser and Wolsey [56] is suggested for reading.

The second section approaches knapsack and multiple knapsack problems, since these are

critical to this research. A multiple knapsack example is presented along with its solution.

The third section explains the idea of cover inequalities and use of these inequalities as

cutting planes to solve integer programs. The fourth section defines lifting and clarifies how

valid inequalities can be strengthened through this process. The last section presents one

of the most relevant prior works on inequality merging, including an example to clearly

demonstrate the concepts and usefulness of this class of cutting planes.
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2.1 Integer Programming

Integer Programs (IP) are defined as a class of mathematical models to solve optimization

problems. Let c ∈ Rn, A ∈ Rm×n, and b ∈ Rm. Thus, integer programs are formulated as

the following:

Maximize cTx

Subject to: Ax ≤ b

x ∈ Zn
+.

The linear relaxation space is the feasible region of the IP without the integer restrictions.

Formally, the linear relaxation space is defined as P LR = {x ∈ Rn
+ : Ax ≤ b}. The linear

relaxation solution is defined as (zLR, xLR) with (z∗
LR, x∗

LR) as the optimal solution where

x∗
LR ∈ P LR.

The feasible points of integer programs are denoted as P where P = {x ∈ Zn
+ : Ax ≤ b}

with the set of indices being N = {1, ..., n}. The integer solution is given as (zIP , xIP ) with

(z∗
IP , x∗

IP ) as the optimal solution of the integer program where x∗
IP ∈ P . Clearly, z∗

LR ≥ z∗
IP .

Integer Programs are considered NP-hard as proved by Karp [43], meaning that no

polynomial time algorithm is known to solve this class of problems. Therefore, a great

computational effort may be required to find the optimal integer solution, even for some

small instances. On the other hand, linear programs can be solved in polynomial time

(Khachiyan [46] and Karmarkar [42]) and the optimal linear solution can be found quickly

for most large instances.
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The most used technique to solve IP problems is the branch and bound algorithm. First

proposed by Land and Doig [50], the branch and bound algorithm is used by a majority of

commercial solvers. This algorithm finds the optimal integer solution in some finite time

considering that this optimal solution exists; however, it may require an exponential time.

The initialization of branch and bound algorithm is given by the optimal linear relax-

ation solution x∗
LR and z∗

LR. The algorithm terminates if the linear relaxation solution is

integer, resulting in x∗
IP = x∗

LR and z∗
IP = z∗

LR. Otherwise, this linear relaxation solution

is considered to be the parent node and a non-integer variable is selected for branching. If

xj = f is the variable selected, then two child nodes are generated with an added constraint

xj ≤ bfc and another added constraint xj ≥ dfe. The algorithm repeats this process until

all nodes have been fathomed.

A node is fathomed if the node has an integer solution or is infeasible. If z∗
LR of the

evaluated node is less than (greater than) the best integer solution found in previous steps

for maximization (minimization) problems, the node is also fathomed.

This thesis does not include results on which non-integer variable should be branched

first; however, Linderoth and Savelsbergh [54] and Achterberg et al. [1] have developed

research in this field. In addition, various strategies to evaluate the nodes in the branch and

bound tree are available, such as depth first, breadth first, and best child. Another relevant

method to solve IP problems includes utilization of cutting planes to cut off some space of

the linear relaxation solution. This topic is discussed next in this chapter.

9



2.1.1 Polyhedral Theory

One relevant field of research for IPs, polyhedral theory involves study of the feasible region

of optimization problems. Convexity is a critical topic in this field and some definitions are

presented in this thesis to increase understanding of the topic.

First, the set S ⊆ Rn is said to be convex if and only if λx+(1−λ)x′ ∈ S for all x, x′ ∈ S

and all λ ∈ [0, 1]. This definition states that a straight line can be drawn from any two

points in S concluding all points on this line are in Sch. The convex hull of S, Sch, is the

intersection of all convex sets that contain S. In this work, the covex hull of P is P ch.

A hyperplane H in Rn is a set of the form {x ∈ Rn : αTx = β} where α is a non-zero

vector in Rn and β is a scalar. In convex optimization, any inequality of the form ≤ or

≥ restricts the feasible region to either above or below the hyperplane. This is called a

half-space, defined as {x ∈ Rn :
n∑

i=1

αixi ≤ β}. A polyhedron is defined as the intersection

of a finite number of half-spaces. If this polyhedron is bounded, it is called a polytope. Both

P ch and P LR are polyhedrons.

Integer programming is closely related to polyhedral theory. The extreme points of P LR

may be integer and non-integer, and the extreme points of P ch are integer. An inequality

of the form

n∑

i=1

αixi ≤ β is valid for P ch if and only if

n∑

i=1

αix
′
i ≤ β is satisfied for every

x′ ∈ P . Also, a cutting plane is a valid inequality that removes some portion of P LR. In

other words, there exists an x′′ ∈ P LR such that
n∑

i=1

αix
′′
i > β.

Many valid inequalities are not considered useful because the portion of P LR removed

does not improve the solution time of the integer program. Theoretical usefulness of a valid

10



inequality is defined in terms of its induced dimension in P ch. The dimension of a space is

defined as the number of linearly independent vectors. Since the feasible region of an IP

has no feasible vectors, the dimension of P ch is defined as the maximum number of affinely

independent points minus 1. The points x1, ..., xp ∈ Rn are affinely independent if and only

if the unique solution to

p∑

i=1

λixi = 0 and

p∑

i=1

λi = 0 is λi = 0 for all i ∈ {1, ..., p}.

Another critical concept in polyhedral theory is faces. A face is defined as the induced

points of an inequality in P ch. Every valid inequality

n∑

i=0

αixi ≤ β defines a face F ⊆ P ch

that takes the form F = {x ∈ P ch :
n∑

i=0

αixi = β}. If F 6= ∅, then F supports P ch.

The strength of face F is closely related to the dimension of P ch. A face is stronger as its

dimension is closer to the dimension of P ch, given that the dimension of the face must be

at least one unit less than the dimension of P ch. This is a crucial statement when trying to

prove a face is facet defining.

When comparing the strength of faces, those faces that correspond to facet defining in-

equalities are preferable since the portion removed from P LR is maximized. A facet defining

inequality must have dimension equal to the dimension of P ch minus 1. When all facet

defining inequalities are included in the problem, P ch is completely defined and, therefore,

all extreme points are integers. In such a case, the integer program can be solved as a linear

program. The example presented in the next section demonstrates these principles.
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2.1.2 Integer Programming Example

Consider the following IP:

Maximize x1 + 2x2

Subject to 3x1 + 2x2 ≤ 12

3x1 + 4x2 ≤ 15

x1, x2 ∈ Z+.

This example is a two-dimensional IP with two constraints and x ∈ Z2
+. A graphical

representation is shown in Figure 2.1 with the large dots representing the set of feasible

integer points P . The first constraint (3x1 + 2x2 ≤ 12) crosses the points (0,6), C and

D. The second constraint (3x1 + 4x2 ≤ 15) crosses the points A, B, C and (5,0). In this

example the point A is the optimal linear relaxation solution with x∗LR
1 = 0, x∗LR

2 =
15

4
,

and z∗LR =
15

2
.

Clearly P ch can be defined in this example with line segments that passes through points

(0,0) and (0,3), points (0,3) and (1,3), points (1,3) and (4,0), and points (4,0) and (0,0).

There is a portion of the linear relaxation space that is outside of P ch, so adding cutting

planes to remove this space seems a good strategy.

First, the inequality x1 + x2 ≤ 4 is added. It does remove part of the linear relaxation

space (triangle BCD) without removing any feasible integer points, thereby classifying it

as a valid inequality. After adding this inequality and solving the linear program, the new

optimal solution is still the point A with x∗LR
1 = 0, x∗LR

2 =
15

4
, and z∗LR =

15

2
.
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Figure 2.1: Integer Program Example

Adding inequality x2 ≤ 3 to this problem also removes part of the linear relaxation

space (triangle A, B, and (0,3)) without removing any feasible integer points, thereby also

classifying it as a valid inequality. After solving the linear program with this new constraint,

the new optimal solution is the point B with x∗LR
1 = 1, x∗LR

2 = 3, and z∗LR = 7. Since the

13



linear relaxation solution is given by integer points, the solution is optimal with x∗IP
1 = 1,

x∗IP
2 = 3, and z∗IP = 7.

Three conditions must be met in order to prove the inequality x1 + x2 ≤ 4 is facet

defining. First, this IP problem has two variables and dim(P ch) ≤ 2. Also, the dimension of

P ch must be greater than or equal to the maximum number of affinely independent points

minus 1. The points (0, 0), (1, 0), (0, 1) are feasible and are affinely independent; therefore,

dim(P ch) ≥ 2. Thus, dim(P ch) = 2.

Second, x1 +x2 ≤ 4 is valid, since there are no integer points that violate this inequality.

Third, one must prove the dimension of this inequality’s face F . In order to prove this is not

the entire space, the point (0,0) ∈ P ch, and 0 + 0 < 4. Therefore, dim(F ) ≤ dim(P ch)− 1,

so dim(F ) ≤ 1. The points (1, 3) and (4, 0) are feasible, in F , and affinely independent;

therefore, dim(F ) ≥ 1. Consequently, x1 + x2 ≤ 4 is a facet defining inequality.

2.2 Knapsack and Multiple Knapsack Problems

The Knapsack Problem (KP) is a common category of integer programs widely studied by

several researchers in this field such as Lai and Sahni [49] and Pisinger [58]. The idea of

this problem may be explained by a hiker that is packing for a camping trip and has to

decide which items to pack in a knapsack. There are n items available and each item i is

associated with some benefit ci and a non-negative weight ai for each i ∈ {1, ..., n}. One

seeks to maximize the amount of benefit, but the weight carried must be less than or equal

to some limit b.
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The knapsack problem can be modeled as a binary integer program, meaning that de-

cision variables can be either one or zero. If xi = 1, then item i is selected; on the other

hand, if xi = 0, item i is not selected. Let c ∈ Rn, a ∈ Rn
+, b ∈ R+, and a KP is formally

defined as:

Maximize cT x

Subject to: aTx ≤ b

x ∈ {0, 1}.

Another class of integer programming problems related to this research is the Multiple

Knapsack Problem (MKP). This problem also has n items available, and each item i is

associated with some benefit ci and some non-negative coefficient ai,j limited to some bj

for all i ∈ {1, 2, ..., n} and for all j ∈ {1, 2, ...,m} where m is the number of constraints.

The multiple knapsack problem can also be formulated as a binary integer program where

c ∈ Rn, A ∈ Rm×n
+ , and b ∈ Rm

+ . Formally, an MKP is defined as:

Maximize cTx

Subject to: Ax ≤ b

x ∈ {0, 1}.

Define PKP as the set of feasible points of a knapsack problem with

PKP = {x ∈ {0, 1} : aTx ≤ b} and PMKP as the set of feasible points of a multiple knapsack

problem with PMKP = {x ∈ {0, 1} : Ax ≤ b}. Every item i in the knapsack problem has

its associated weight ai such that ai ≤ b, otherwise no feasible point with xi = 1 satisfies

aTx ≤ b and xi can be removed from the problem. In addition, assume all items are sorted
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by ai in descending order. From this assumption, the convex hull P ch
KP has dimension n

because 0 and ξi ∈ N are feasible where ξi is the ith identity point.

Observe that any binary integer programming constraint can be transformed into a

knapsack constraint using simple transformations. An equality constraint can be replaced

by two other constraints: one less than or equal to constraint and one greater than or equal

to constraint. If a greater than or equal to constraint exists, it is simply multiplied by

negative 1. If ai < 0 exists, it is replaced with 1 − x′
i.

Applications of knapsack and multiple knapsack problems arise in many different research

topics, such as production planning and inventory (Dawande et al.[20]), project/portfolio

selection (Chang and Lee [16]), allocation of resources (Babaioff et al. [8]), profit maximiza-

tion (Dizdar et al. [24] and Szeto and Lo [63]), machine scheduling techniques (Kellerer

and Strusevich [45] and Kolliopoulos and Steiner [47]), and storage management/packing

problems (Shachnai and Tamir [60]).

In addition to these applications, several other research topics have been developed in

relation to solution techniques that primarily consider strategies to solve KP and MKP more

quickly. For example, large neighborhood search techniques for multiple knapsack problems

(Ahuja and Cunha [2]), exact synchronized simultaneous uplifting for the knapsack polytope

(Beyer [13]), polyhedral study on knapsack problems with disjoint cardinality (Zeng and

Richard [71]), synchronized simultaneous lifting in binary knapsack polyhedra (Bolton [14]),

a genetic algorithm for the multidimensional knapsack problem (Chu and Beasley [18]), a

cutting plane algorithm to lift variables in three sets (Harris [37]), and equality cuts applied

to multi-demand multidimensional knapsack problem (Delissa [21]).
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This research is mainly focused on multiple knapsack problems. Because applications in

real world usually have multiple constraints, MKPs is of greater significance when compared

to KPs. The subsequent section presents an example of an MKP.

2.2.1 Multiple Knapsack Problem Example

In order to illustrate a multiple knapsack problem, consider a well-known firm specializing

in engineering projects with several project offers for the next year. The managers want

to decide which projects to accept in order to maximize the profit. Each project requires

a certain number of three different resources: engineers, administrative employees, and

manpower. A maximum of 11 projects may be selected and 44 engineers, 52 administrative

employees, and 61 laborers are available. Table 2.1 presents the annual profit for each project

and the number of engineers, administrative employees, and laborers required. Profits are

expressed in $100,000.

Project 1 2 3 4 5 6 7 8 9 10 11
Profit 82 94 12 45 18 26 95 44 38 29 10

Engineers 30 25 20 15 12 11 11 10 10 5 1
Adm. Employees 18 26 28 21 13 17 29 34 31 19 10

Laborers 20 24 19 41 4 18 10 17 37 47 16

Table 2.1: Instance - Multiple Knapsack Example

This problem can be formulated as a multiple knapsack problem. The decision variable

xi ∈ {0, 1} for i ∈ {1, ..., 11} represents whether or not a project is selected. The objective

function seeks to maximize the profit with
11∑

i=1

cixi where ci represents the profit of each

17



project i. Constraints are defined as
11∑

i=1

ai,jxi ≤ bj for j ∈ {1, 2, 3} where ai,j represents

the number of resource j needed for each project i and bj represents the number of each

resource j available. The formulation is:

Maximize 82x1 + 94x2 + 12x3 + 45x4 + 18x5 + 26x6 + 95x7 + 44x8 + 38x9 + 29x10 + 10x11

Subject to: 30x1 +25x2 +20x3 +15x4 +12x5 +11x6 +11x7 +10x8 +10x9 +5x10 +x11 ≤ 44

18x1+26x2 +28x3 +21x4 +13x5 +17x6 +29x7 +34x8 +31x9 +19x10 +10x11 ≤ 52

20x1 +24x2 +19x3 +41x4 +4x5 +18x6 +10x7 +17x8 +37x9 +47x10 +16x11 ≤ 61

xi ∈ {0, 1}, for i ∈ {1, ..., 11}.

The optimal solution of this multiple knapsack problem is (1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0) with

z∗
MKP = 177, meaning that the firm only works on Projects 1 and 7 since both projects

return the maximum profit. The firm makes a profit of $17,700,000 and uses 41 engineers,

47 administrative employees, and 30 laborers.

2.3 Cover Inequalities

Cover inequalities comprise a class of cutting planes for a knapsack constraint. In the

problem presented in Section 2.2.1, a cover represents a number of selected projects that

exceeds resource capacity. Equivalently, a cover represents an infeasible solution.
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From a knapsack constraint, a cover is a set C ⊆ N such that setting xi = 1 for all i ∈ C

is infeasible. Formally, C ⊆ N is a cover if and only if
∑

i∈C

ai > b. The corresponding valid

cover inequality is
∑

i∈C

xi ≤ |C| − 1.

A cover is said to be minimal if and only if any index i removed from set C implies the

set is no longer a cover. A cover is minimal if and only if
∑

i∈C\{j}

ai ≤ b for each j ∈ C.

Also, an extended cover is defined as E(C) = C ∪ {i ∈ N \ C : ai ≥ maxj∈C{aj}} with a

corresponding valid inequality of the form
∑

i∈E(C)

xi ≤ |C| − 1.

For the multiple knapsack problem presented in Section 2.2.1, the first knapsack con-

straint is 30x1+25x2+20x3+15x4+12x5+11x6+11x7+10x8+10x9+5x10+x11 ≤ 44. Consider

the sets C1 = {5, 6, 7, 8, 9} and C2 = {3, 4, 9, 10, 11}. Since
∑

i∈C1

ai = 12+11+11+10+10 =

= 54 > 44 and
∑

i∈C2

ai = 20+15+10+5+1 = 51 > 44, both C1 and C2 are covers. The cover

C2 is not a minimal cover because the set {3, 4, 9, 10} is a cover. On the other hand, C1 is a

minimal cover because
∑

i∈C1\{j}

ai ≤ 44 for any j ∈ C1. The corresponding valid inequality of

C1 is x5+x6+x7+x8+x9 ≤ 4. This knapsack constraint is sorted, so a1 ≥ a2 ≥ a3 ≥ a4 which

are greater than maxi∈C1{ai}. Therefore, adding the first four variables to the original cover

inequality gives the extended cover inequality x1 +x2 +x3 +x4 +x5 +x6 +x7 +x8 +x9 ≤ 4.

The valid extended cover inequality is not facet defining. However, the valid cover

inequality is facet defining in the restricted space, but not in the full space. Lifting is

one technique used to make this valid inequality facet defining. Section 2.4 explains the

restricted space definition and the lifting process used to generate valid inequalities with

higher dimension.
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2.4 Lifting

Starting from a valid inequality, the lifting procedure, introduced by Gomory [31], is able to

increase the dimension of an inequality, thereby creating stronger inequalities. The lifting

procedure begins with a valid inequality of a restricted space and terminates with a valid

inequality for the entire space.

A restricted space requires a subset of the variables E ⊆ N and k ∈ Z|E|. The restricted

space of P on E and K is defined as PE,K = {x ∈ P : xi = ki ∀i ∈ E}. Lifting requires

a valid inequality of P ch
E,K with the form

∑

i∈E

αixi +
∑

i∈N\E

αixi ≤ β. The lifted inequality is

valid for P ch and takes the form
∑

i∈E

αi
′xi +

∑

i∈N\E

αixi ≤ β
′
.

Several strategies of lifting, such as up, down or middle lifting, exact or approximate

lifting, and sequential or simultaneous lifting are available. These strategies can all be

applied independently creating 12 broad classes of lifting, such as exact sequential up lifting

and approximate simultaneous down lifting. These categories depend on E, K, α′ and β ′.

Lifting procedures typically require solving an optimization problem. The solution to

the optimization problem determines the values of α′ and β ′. If the optimization problem is

solved optimally, then α′ and β ′ are the strongest possible, and the procedure is considered

an exact lifting procedure, as described in Zemel [70], Wolsey [68], Gutierrez [35] and Easton

and Hooker [26]. If the optimization problem is not solved to optimality, then the lifting

procedure is approximate, as described in Balas [9] and Gu et al. [34].

If |E| = 1, then the lifting procedure is sequential, as shown in Cho et al. [17], Gutierrez

[35], Hammer et al. [36], and Wolsey [68]. In other words, only a single coefficient and
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possibly the right-hand side of the inequality is modified. When multiple coefficients are

modified, then it is simultaneous lifting. See Atamtürk [5], Gu et al. [32], [33], and [34],

Shebalov and Klabjan [61], and Kubik [48].

Finally, if the values of K are at the lower bounds of the associated variables, then

the method is called up lifting. If the K values are at the upper bounds, then it is down

lifting. Middle lifting occurs if K is someplace in between. The following section provides

an example of exact sequential up lifting to demonstrate the idea of the lifting procedure.

2.4.1 Lifting Example

In the first knapsack constraint 30x1 + 25x2 + 20x3 + 15x4 + 12x5 + 11x6 + 11x7 + 10x8 +

+10x9 + 5x10 + x11 ≤ 44 from the multiple knapsack problem presented in Section 2.2.1,

a cover is C1 = {5, 6, 7, 8, 9} with corresponding valid inequality x5 + x6 + x7 + x8 +

+x9 ≤ 4. The valid inequality generated by the lifting procedure depends on the start-

ing lifting variable. In this example, assume the lifting order is x4, x3, x2, x1, x10, and x11.

Beginning with variable x4, the first step of exact sequential up lifting defines the inequality

α′x4 + x5 + x6 + x7 + x8 + x9 ≤ 4. The value of α′ is found by solving the following IP:

Maximize x5 + x6 + x7 + x8 + x9

Subject to: 30x1 +25x2 +20x3 +15x4 +12x5 +11x6 +11x7 +10x8 +10x9 +5x10 +x11 ≤ 44

x4 = 1

xi ∈ {0, 1}, for i ∈ {1, ..., 11}.
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The optimal solution of this integer program is given by (0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1) with

z∗
IP = 2. The value for α′ is defined as α′ = β− z∗

IP , so α′ = 4− 2 = 2. The valid inequality

defined in this first step is 2x4 + x5 + x6 + x7 + x8 + x9 ≤ 4. The next step considers the

lifting of variable x3, and the exact sequential up lifting method defines a valid inequality

α′x3 + 2x4 + x5 + x6 + x7 + x8 + x9 ≤ 4 for this step. The new value of α′ is defined by

solving the following integer program:

Maximize 2x4 + x5 + x6 + x7 + x8 + x9

Subject to: 30x1 +25x2 +20x3 +15x4 +12x5 +11x6 +11x7 +10x8 +10x9 +5x10 +x11 ≤ 44

x3 = 1

xi ∈ {0, 1}, for i ∈ {1, ..., 11}.

The optimal solution of the integer program above is given by (0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1)

with z∗
IP = 2. Thus, α′ is calculated by α′ = 4 − 2 = 2, and the valid inequality defined

in this second step is 2x3 + 2x4 + x5 + x6 + x7 + x8 + x9 ≤ 4. This algorithm terminates

when all remaining variables are lifted and the exact sequential up lifted valid inequality

is 3x1 + 2x2 + 2x3 + 2x4 + x5 + x6 + x7 + x8 + x9 ≤ 4. This inequality, which is valid for

the entire space, is stronger than the cover inequality. This inequality is also facet defining

since 11 affinely independent points that meet the inequality at equality exist.
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2.5 Inequality Merging

The most relevant prior work to this thesis involves the generation of valid inequalities

by inequality merging. In this area, Dey and Wolsey [23] present a method to obtain a

new class of cutting planes by combining information from two different rows of a simplex

tableau. The coefficients of this new cutting plane are generated by lifting functions and

integer coefficients are guaranteed in this process.

Additional research on inequality merging was conducted by Dey and Richard [22]. They

present a new strategy to generate facet-defining inequalities for two-dimensional group

problems by combining two facet-defining inequalities of one-dimensional group problems.

Recently, Hickman [38] presented different theoretical foundations to generate cutting

planes by inequality merging for multiple knapsack problems. This research combines two

or more low dimensional valid inequalities in order to generate a new valid inequality of

higher dimension. Theoretical and computational studies are presented in which results

demonstrate a 9% average decrease in computational time.

The research developed by Hickman [38] describes two low-dimensional valid inequal-

ities with one being the host inequality and the other the donor inequality. The host

inequality replaces one or more of its terms with a collection of terms attained from the

donor inequality. Formally, generating a merged valid inequality on a binary variable xp

requires C1 ⊂ N , p ∈ C1 and C2 ⊆ (N\C1) ∪ {p}. The host valid inequality is defined as

∑

j∈C1

α1
jxj ≤ β1 where β1 and α1

j are non-negative integers for all j ∈ C1 and α1
p = 1.
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The valid donor inequality is defined as
∑

j∈C2

α2
jxj ≤ β2 and the merged inequality takes

the form
∑

j∈C1\{p}

α1
jxj +

∑

j∈C2

α2
j

β2
xj ≤ β1.

Hickman presents the following example to demonstrate the concept of inequality merg-

ing. Consider the next two knapsack constraints, where xi ∈ {0, 1} for i ∈ {1, 2, ..., 8}:

13x1 + 12x2 + 11x3 + 5x4 + 3x5 + 2x6 + 2x7 + 1x8 ≤ 38

2x1 + 4x2 + 1x3 + 7x4 + 6x5 + 8x6 + 6x7 + 5x8 ≤ 30.

Assume C1 = {1, 2, 3, 4}, C2 = {4, 5, 6, 7, 8}, and p = 4. Notice that C1 is a cover in

the first knapsack constraint and C2 is a cover in the second knapsack constraint. Thus,

x1 + x2 + x3 + x4 ≤ 3 is a valid host inequality and x4 + x5 + x6 + x7 + x8 ≤ 4 is a valid

donor inequality. The inequality generated by the inequality merging method is given by

x1 + x2 +x3 +
1

4

(
x4 + x5 + x6 + x7 + x8

)
≤ 3. This merged inequality is valid and also facet

defining.

Merging two valid inequalities to generate another valid inequality is a new way to find

useful cutting planes. This concept is the motivation to this thesis and the next chapter

provides the theoretical foundations of merging a knapsack constraint into a cover inequality.
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Chapter 3

Merging a Knapsack Constraint into

a Cover Inequality

This chapter describes the theoretical advancement of this thesis. The first section intro-

duces the concept of merging knapsack constraints with covers. This section also presents

an algorithm developed in this research along with the proof of validity. The second section

proposes two methods to exactly improve merged knapsack cover inequalities in order to

make them stronger inequalities. The third section provides an example where the method-

ology of merging a knapsack constraint with covers is applied. In this example, the method

produces an inequality that is shown to be facet defining. This demonstrates the power of

merged knapsack cover inequalities when compared to exact sequential lifting and sequence

independent lifting.
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3.1 Merging Knapsacks with Covers Methodology

Given a knapsack constraint
∑

i∈N

aixi ≤ b, let C ⊆ N be a cover of the knapsack constraint

and M ⊆ N be a set of merging indices. A merged knapsack cover inequality, MKCC,M,α,

takes the form
∑

i∈C\M

xi + α
∑

i∈M

aixi ≤ |C| − 1.

Every MKCC,M,α with α = 0 is valid, but such an inequality is always dominated by

the cover inequality. Additionally, if α is sufficiently large, then MKCC,M,α is invalid.

Furthermore, the larger the α value, the stronger the inequality.

This research presents the Merging Knapsack Cover Algorithm (MKCA), which deter-

mines both a set of merging indices M ⊆ N and a value for α that guarantees the validity

of the inequality. MKCA is based upon two subroutines: Determine the Set of Merging

Indices (DSMI) and Calculate α Value (CAV). The DSMI subroutine identifies a set of

merging variables that preserves the validity of the inequality, while the CAV subroutine

finds a value for α > 0.

The following DSMI subroutine identifies candidate indices to be considered for merging

and guarantees that there exists a valid inequality with α > 0. Input to DSMI is a knapsack

constraint
∑

i∈N

aixi ≤ b, a cover C ⊆ N where C = {i1, i2, ..., i|C|}, and a set of overlapping

variables M ′ ⊆ C.
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Determine the Set of Merging Indices Subroutine (DSMI)

M ← ∅

If |M ′| = 0, Then

θ← b−
|C|∑

j=2

aij

For i ∈ N \ C Do

If ai > θ , Then

M ←M ∪ {i}

End If

End For

End If

If |M ′| = 1, Then

θ← b−
∑

j∈C\M ′

aij

For i ∈ N \ (C \M ′) Do

If ai > θ, Then

M ←M ∪ {i}

End If

End For

End If

If |M ′| ≥ 2, Then

M ← N \ (C \M ′)

End If

Report M
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Calculating θ requires O(|C|) whether |M ′| = 0 or |M ′| = 1. Assigning indices to the

set M requires O(n − |C|) regardless of whether the If condition is true. Thus, DSMI is a

linear algorithm that requires O(n) effort. Since the functionality of DSMI is not trivial, a

proof is necessary. As shown in the next theorem, DSMI returns a set of indices M such

that MKCC,M,α is a valid inequality for some α > 0.

Theorem 1. Let
∑

i∈N

aixi ≤ b be a knapsack constraint, C ⊆ N be a cover, and M ′ ⊆ C be

a set of overlapping variables. The DSMI subroutine returns a set of merging variables M

such that MKCC,M,α =
∑

i∈C\M

xi + α
∑

i∈M

aixi ≤ |C| − 1 is valid for P ch
KP for some α > 0.

Proof : Given a knapsack constraint
∑

i∈N

aixi ≤ b, a cover C ⊆ N , and a set of overlapping

variables M ′ ⊆ C, let M be the set of merging variables returned from DSMI and α =
1

b
.

In order to show that MKCC,M,α is valid for P ch
KP , let x′ be any point in PKP and define

q =
∑

i∈C\M

x′
i. Since C is a cover, q ≤ |C| − 1.

First, assume q ≤ |C| − 2. Applying x′ to the left hand of the MKCC,M,α inequality

results in q +
1

b

( ∑

i∈N\(C\M)

aix
′
i

)
≤ |C| − 2 +

1

b

( ∑

i∈N\(C\M)

aix
′
i

)
. Since x′ is feasible,

∑

i∈N\(C\M)

aix
′
i ≤ b. Hence, |C| − 2 +

1

b

( ∑

i∈N\(C\M)

aix
′
i

)
≤ |C| − 1 and x′ satisfies the

MKCC,M,α inequality.

Assume q = |C| − 1 and |M ′| = 1. Thus, x′
i = 1 for every i ∈ C \M . Since x′ is

feasible,
∑

i∈C\M

aix
′
i +
∑

i∈M

aix
′
i ≤ b. Therefore,

∑

i∈M

aix
′
i ≤ b −

∑

i∈C\M

ai. Since M is returned

from DSMI, every ai > θ where θ = b −
∑

j∈C\M ′

aij . Thus, x′
i = 0 for every i ∈ M and

∑

i∈C\M

x′
i +

1

b

(∑

i∈M

aix
′
i

)
= |C| − 1.
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Lastly, assume q = |C| − 1 and |M ′| = 0. Since x′ is feasible,
∑

i∈C

aix
′
i +
∑

i∈M

aix
′
i ≤ b and

∑

i∈M

aix
′
i ≤ b −

∑

i∈C

aix
′
i. Due to the sorted order of C and q = |C| − 1,

∑

i∈C

aix
′
i ≥

|C|∑

j=2

aij.

Since M is returned from DSMI, every ai > θ where θ = b−
|C|∑

j=2

aij . Thus, x′
i = 0 for every

i ∈ M and
∑

i∈C\M

x′
i +

1

b

(∑

i∈M

aix
′
i

)
= |C| − 1. Hence, MKCC,M,α is valid for P ch

KP in this

case. The cases are exhaustive and the result is shown.

2

One can see that a larger α leads to a stronger inequality. One of the challenges of this

research is to select the right variables for merging such that MKCC,M,α becomes a strong

inequality, which would eliminate larger portions of the linear relaxation space.

The following CAV subroutine finds a value for α that creates a valid MKCC,M,α in-

equality. The input to CAV subroutine is a knapsack constraint
∑

i∈N

aixi ≤ b, a cover C ⊆ N

where C = {i1, i2, ..., i|C|}, a set of merging indices M ⊆ N , and a set of overlapping vari-

ables M ′ = C ∩M . CAV does not assume that M comes from the DSMI subroutine, which

guarantees α > 0. The first few If conditions are included in case the only valid DMSI has

α = 0.
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Calculate α Value Subroutine (CAV)

θ← b

l ← |C| − |M ′|

p← |C| − |M ′|+ 1

α←∞

If |M ′| = 0, Then

p← |C| − |M ′| − 1

If min{ak : k ∈M} ≤ b−
|C|∑

j=2

aij , Then

α← 0

End If

End If

If |M ′| = 1, Then

p← |C| − |M ′|

If min{ak : k ∈M} ≤ b−
∑

j∈C\M ′

aij , Then

α← 0

End If

End If

For q = 1 to p Do

α′ ← |C| − q

θ
If α′ < α, Then

α← α′

End If

If q < p, Then

θ← θ − ail

l← l − 1

End If

End For

Report α.
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The first four operations of CAV require O(1), and either of the next two If conditions

require O(n). The For loop repeats q ≤ (|C| − |M ′|) times, and every step within the

loop requires O(1). Thus, the loop requires O(|C|) effort, and CAV is on the order O(n).

The next theorem verifies that CAV returns a value for α such that MKCC,M,α is a valid

inequality.

Theorem 2. Let
∑

i∈N

aixi ≤ b be a knapsack constraint, C ⊆ N be a cover and M ⊆ N be

a set of merging variables. Then MKCC,M,α′ =
∑

i∈C\M

xi + α′
∑

i∈M

aixi ≤ |C| − 1 is a valid

inequality of P ch
KP for any α′ ≤ α where α is returned from CAV.

Proof : Given a knapsack constraint
∑

i∈N

aixi ≤ b, a cover C ⊆ N and a merging set M ⊆ N .

For contradiction, assume that there exists an α′ ≤ α such that
∑

i∈C\M

xi+α′
∑

i∈M

aixi ≤ |C|−1

is not a valid inequality of P ch
KP where α is returned from CAV. Thus, there exists an x′ ∈ PKP

such that
∑

i∈C\M

x′
i + α′

∑

i∈M

aix
′
i > |C| − 1.

Define q =
∑

i∈C\M

x′
i and C\M = {j1, j2, ..., jC\M}. Due to the feasibility of x′,

∑

i∈C\M

aix
′
i+

+
∑

i∈M

aix
′
i ≤ b, and

∑

i∈M

aix
′
i ≤ b −

∑

i∈C\M

aix
′
i. Therefore,

∑

i∈M

aix
′
i ≤ b −

|C\M |∑

k=|C\M |−q+1

ajk
due

to the sets being sorted.

First, assume q ≤ |C| − 2. Since MKCC,M,α′ is not a valid inequality,

α′
∑

i∈M

aix
′
i > |C|−1−q; therefore, α′ >

|C| − 1− q∑

i∈M

aix
′
i

, resulting in α′ >
|C| − 1− q

(
b−

|C\M |∑

k=|C\M |−q+1

ajk

) .

However, one can see that CAV requires α ≤ |C| − 1 − q
(

b−
|C\M |∑

k=|C\M |−q+1

ajk

) , which is a contradic-

tion to α being returned from CAV.
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Assume q ≥ |C| − 1. If q ≥ |C|, x′ violates the cover inequality and contradicts C

being a cover. If q = |C| − 1, then α′
∑

i∈M

aix
′
i > (|C| − 1) − (|C| − 1) implies that α′ > 0

and x′
i = 1 for some i ∈ M . Since α′ > 0, either min{ak : k ∈ M} > b −

|C|∑

j=2

aij or

min{ak : k ∈ M} > b −
∑

j∈C\M

aij for |M ′| = 0 and |M ′| = 1, respectively. However, this

contradicts the feasibility of x′ and the result follows.

2

Based upon Theorem 2, CAV returns a value for α such that MKCC,M,α is a valid

inequality. In conclusion, both Theorem 1 and Theorem 2 proved that DSMI finds a set of

merging variables M such that CAV is applied and finds a value for α > 0 that generates

a valid inequality MKCC,M,α =
∑

i∈C\M

xi + α
∑

i∈M

aixi ≤ |C| − 1. As a result, the Merging

Knapsack Cover Algorithm (MKCA) is presented. Input to MKCA is a knapsack constraint

∑

i∈N

aixi ≤ b, a cover C ⊆ N , and a set of overlapping variables M ′ ⊆ C.

Merging Knapsack Cover Algorithm (MKCA)

M ← Determine the Set of Merging Indices Subroutine (C,M ′)

α ← Calculate α Value Subroutine (C,M,M ′)

MKCC,M,α ←
∑

i∈C\M

xi + α
∑

i∈M

aixi ≤ |C| − 1

Report MKCC,M,α

Clearly DSMI and CAV are both O(n). Since reporting MKCC,M,α is also O(n), the

MKCA runs in O(n). Therefore, merged knapsack cover inequalities can be found in linear

time.
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Merged knapsack cover inequalities MKCC,M,α generated by MKCA are valid inequal-

ities that should be applied as cutting planes in order to cut off some linear relaxation

solution in P LR. However, depending on the value of α, merged knapsack cover inequalities

can be strengthened. The next section provides two algorithms to improve α such that

MKCC,M,α are stronger inequalities.

3.2 Improving Merged Knapsack Cover Inequalities

This section introduces two algorithms to improve merged knapsack cover inequalities. This

improvement is exact through both algorithms. The Exact Improvement Algorithm (EIA)

guarantees the validity of the inequality by solving some knapsack problems, thereby po-

tentially obtaining a larger value for α. The Exact Improvement Through Dynamic Pro-

gramming Algorithm (EITDPA) uses dynamic programming to also potentially obtain a

larger value for α. Both values for α are identical, but EITDPA typically runs with less

computational effort.

The improvement process through EIA is briefly described in terms of θ. As demon-

strated in the CAV subroutine, θ is calculated for each iteration of the For loop, and θ

represents the maximum of
∑

i∈M

ai that maintains feasibility. A lower θ leads to a larger α.

Therefore, EIA maximizes the value of z =
∑

i∈M

aixi such that
∑

i∈M

aixi ≤ θ and
∑

i∈M

aixi.

Thus, θ is replaced by z, potentially making MKCC,M,α a stronger inequality.
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The EIA provides an exact improvement for α and preserves the validity of MKCC,M,α.

Input to EIA is a knapsack constraint
∑

i∈N

aixi ≤ b, a cover C ⊆ N where C = {i1, i2, ..., i|C|},

a set of merging indices M ⊆ N , and a set of overlapping variables M ′ = C ∩M .

Exact Improvement Algorithm (EIA)

θ← b

l ← |C| − |M ′|

p← |C| − |M ′|+ 1

α←∞

If |M ′| = 0, Then

p← |C| − |M ′| − 1

If min{ak : k ∈M} ≤ b−
|C|∑

j=2

aij , Then

α← 0

End If

End If

If |M ′| = 1, Then

p← |C| − |M ′|

If min{ak : k ∈M} ≤ b−
∑

j∈C\M ′

aij , Then

α← 0

End If

End If

For q = 1 to p Do

Solve IP: Maximize z =
∑

i∈M

aixi

Subject to:
∑

i∈M

aixi ≤ θ

xi ∈ {0, 1}∀i ∈M
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α′ ← |C| − q

z
If α′ < α, Then

α← α′

End If

If q < p, Then

θ← θ − ail

l← l − 1

End If

End For

Report α.

The first four operations of EIA require O(1), and either of the next two If conditions

require O(n). The For loop repeats q ≤ (|C|−|M ′|) times, and every step within the loop re-

quires O(1), with the exception of solving the knapsack problem that requires O(SKP (|M |))

where SKP (n) is the time required to solve a knapsack problem with n variables. Therefore,

EIA is on the order O(n(SKP (n))).

In order to prove the validity of EIA, the following theorem is presented with its proof.

The theorem verifies that EIA returns a value for α that is at least as large as the α returned

from CAV. In addition, it also proves that this is an exact algorithm because the α returned

from EIA cannot be increased and still have the inequality remain valid.

Theorem 3. Let
∑

i∈N

aixi ≤ b be a knapsack constraint, C ⊆ N be a cover, M ⊆ N

be a set of merging variables and α returned from EIA. Then, MKCC,M,α′ =
∑

i∈C\M

xi +

+α′
∑

i∈M

aixi ≤ |C| − 1 is a valid inequality of P ch
KP for any α′ ≤ α and is not a valid

inequality of P ch
KP for any α′ > α.
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Proof : Given a knapsack constraint
∑

i∈N

aixi ≤ b, a cover C ⊆ N , a set of merging variables

M ⊆ N , and α returned from EIA. Define q′ to be the value of q, θ′ to be the value of θ,

and z′ to be the value of z when EIA calculates α reported by this algorithm. Also, consider

the inequality MKCC,M,α′ =
∑

i∈C\M

xi + α′
∑

i∈M

aixi ≤ |C| − 1.

Assume α′ > α and let x∗ be the optimal x solution of Maximize z∗ =
∑

i∈M

aixi, Sub-

ject to:
∑

i∈M

aixi ≤ θ′, xi ∈ {0, 1} for all i ∈ M . Since θ′ = b −
|C\M |∑

k=|C\M |−q′+1

ajk
where

C \M = {j1, j2, ..., jC\M}, thus x∗ +

|C\M |∑

k=|C\M |−q′+1

ξjk
∈ PKP . Applying this point to the left-

hand side of MKCC,M,α′ inequality results in
∑

i∈C\M

x∗
i +α′

∑

i∈M

aix
∗
i = q′ +α′z∗ > q′ +αz∗ =

= |C| − 1. Therefore, the inequality
∑

i∈C\M

x∗
i + α′

∑

i∈M

aix
∗
i ≤ |C| − 1 is invalid.

Next, assume α′ ≤ α and let x′′ ∈ PKP . Define q′′ =
∑

i∈C\M

x′′
i and define z′′ to be

the value of z from EIA when q = q′′. Due to the optimality of the integer program,
|C\M |∑

k=|C\M |−q′′+1

ajk
x′′

jk
≤ z′′. Applying x′′ into the left-hand side of MKCC,M,α′ inequality

results in
∑

i∈C\M

x′′
i + α′

∑

i∈M

aix
′′
i ≤ q′′ + α′z′′ ≤ q′′ + αz′′. Since α is returned from EIA,

α ≤ |C| − 1− q′′

z′′ . Substituting results in q′′ + αz′′ ≤ q′′ +

(
|C| − 1 − q′′

z′′

)
z′′ = |C| − 1.

Thus, every x′′ ∈ PKP satisfies the inequality and the result is shown.

2

Solving n knapsack instances with the branch and bound algorithm is cumbersome. Use

of dynamic programming allows these optimization problems be solved in pseudo-polynomial

time. This improvement is formalized in the Exact Improvement Through Dynamic Pro-

gramming Algorithm (EITDPA).
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The primary difference between EITDPA and EIA is the method with which KP is

solved. EITDPA uses dynamic programming to determine all possible integers that can be

achieved by feasible points restricted to the indices in M . An array d is tracked and if the

sum of the coefficients of any combination of feasible points with indices in M is equal to i,

then di is set to 1. Once θ is determined, z is calculated as the index i ≤ θ where di = 1.

Input to EITDPA is a knapsack constraint
∑

i∈N

aixi ≤ b, a cover C ⊆ N where

C = {i1, i2, ..., i|C|}, a set of merging indices M ⊆ N where M = {y1, y2, ..., y|M |}, and

a set of overlapping variables M ′ = C ∩M .

Exact Improvement Through Dynamic Programming Algorithm (EITDPA)

d0 ← 1

θ← b

l ← |C| − |M ′|

p← |C| − |M ′|+ 1

α←∞

For q = 1 to |M | Do

For r = b− ayq to 0 Do

If dr = 1, Then

dr+ayq
← 1

End If

End For

End For

If |M ′| = 0, Then

p← |C| − |M ′| − 1

If min{ak : k ∈M} ≤ b−
|C|∑

j=2

aij , Then
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α← 0

End If

End If

If |M ′| = 1, Then

p← |C| − |M ′|

If min{ak : k ∈M} ≤ b−
∑

j∈C\M ′

aij , Then

α← 0

End If

End If

For q = 1 to p Do

flag ← 0

t← θ

While flag = 0 and t ≥ 0 Do

If dt = 1, Then

z ← t

flag ← 1

End If

t← t− 1

End While

α′ ← |C| − q

z
If α′ < α, Then

α← α′

End If

If q < p, Then

θ← θ − ail

l← l − 1

End If

End For

Report α.
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The first five operations of EITDPA require O(1). The first For loop repeats q ≤ |M |

times, the next For loop repeats r ≤ b times, and every step within the loop requires O(1).

Thus, this first part of the algorithm requires O(b|M |). Either of the next two If conditions

require O(n). The next sequence of loops run in O(bn) since p is bounded by n. Therefore,

EITDPA is on the order O(bn), its running time is a function of the input data, and it is a

pseudo-polynomial time algorithm. Thus, EITDPA can be solved in polynomial time if the

right-hand side b is also polynomial.

EITDPA solves the IP from EIA by determining all possible integers that can be achieved

by any combination of points restricted to the indices in M . The array d tracks these integers

by marking the appropriate index with a 1. EITDPA obtains z from EIA by finding the

maximum index i ≤ θ where di = 1. Since there does not exist a point in PKP with a

value larger than z, Theorem 3 is trivially extended to EITDPA. The following corollary

formally presents this argument, thereby making EIA and EITDPA equivalent in terms of

final result.

Corollary 1. Let
∑

i∈N

aixi ≤ b be a knapsack constraint, C ⊆ N be a cover, and

M ⊆ N be a set of merging variables. EITDPA returns the same value for α as EIA and

MKCC,M,α =
∑

i∈C\M

xi + α
∑

i∈M

aixi ≤ |C| − 1 is an exact valid merged knapsack

cover inequality.

2

From a theoretical standpoint, EIA is essential to understand the concept of improving

merged knapsack cover inequalities and the benefits MKCC,M,α inequalities bring to IP
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research. However, less computational effort required by EITDPA makes this algorithm

more appropriate. The next section describes an example of how merged knapsack cover

inequalities are generated by MKCA and potentially improved through EITDPA.

3.3 Merging Knapsacks with Covers Example

Consider the first knapsack constraint from the multiple knapsack problem presented in

Section 2.2.1. Let xi ∈ {0, 1} for i ∈ {1, 2, ..., 11} and the knapsack constraint is presented

in Equation 3.1.

30x1 + 25x2 + 20x3 + 15x4 + 12x5 + 11x6 + 11x7 + 10x8 + 10x9 + 5x10 + x11 ≤ 44. (3.1)

Define C = {5, 6, 7, 8, 9} as a minimal cover and M ′ = ∅. MKCA initially deter-

mines the set of merging variables through the DSMI subroutine. The first step calculates

θ = b −
|C|∑

j=2

aij where C = {i1, i2, ..., i|C|}. Thus, θ = b − a6 − a7 − a8 − a9 = 2. In order

to determine the set of merging indices, ai > θ for all i ∈ N \ C. As a result, all remaining

variables are selected for merging except x11. Therefore, the set of merging indices becomes

M = {1, 2, 3, 4, 10} and the MKCC,M,α inequality is shown in Equation 3.2.

α(30x1 + 25x2 + 20x3 + 15x4 + 5x10) + x5 + x6 + x7 + x8 + x9 ≤ 4. (3.2)

This MKCC,M,α inequality follows Theorem 1, and the set M = {1, 2, 3, 4, 10} guarantees

that the inequality is valid for some α > 0. A value for α is calculated using the CAV
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subroutine. This subroutine begins with θ = 44, k = 5, and α = ∞. As |M ′| = 0 and

min{ak : k ∈ M} > b −
|C|∑

j=2

aij, the subroutine skips the two first If conditions. Thus,

α′ is defined by
|C| − q

θ
, and α′ =

5 − 1

44
=

4

44
. Since α′ < α, α =

4

44
. Following the

subroutine, θ = 44 − 10 = 34 and k = 5 − 1 = 4 are updated. The new α′ is calculated by

α′ =
5− 2

34
. Again, α′ < α and α is updated to

3

34
. Repeating this process |C|−|M ′|−1 = 4

times, the next two values for α′ are
5 − 3

34 − 10
=

2

24
and

5 − 4

24 − 11
=

1

13
. The CAV subroutine

terminates with α =
1

13
, and the merged knapsack cover inequality MKCC,M, 1

13
is described

in Equation 3.3.

1

13
(30x1 + 25x2 + 20x3 + 15x4 + 5x10) + x5 + x6 + x7 + x8 + x9 ≤ 4. (3.3)

Based upon Theorem 2, CAV returns α =
1

13
, and MKCC,M, 1

13
is a valid inequality.

The usefulness of this merged knapsack cover inequality is verified by determining whether

MKCC,M, 1
13

cuts off some linear relaxation solution. Consider the linear relaxation solu-

tion given by the point (0,0,0,
2

15
,0,1,1,1,1,0,0). Applying this point to MKCC,M, 1

13
gives

30

13
(0) +

25

13
(0) +

20

13
(0) +

15

13

(
2

15

)
+ 1(0) + 1(1) + 1(1) + 1(1) + 1(1) +

5

13
(0) =

54

13
. Since

54

13
> 4, MKCC,M, 1

13
cuts off this linear relaxation solution and may be helpful in solving

the integer program.

Potential improvements to this merged knapsack cover inequality can still be veri-

fied using EIA or EITDPA. Because both algorithms return the same result as stated in

Corollary 1 and EITDPA runs in polynomial time, since b = 44, this algorithm is used to

demonstrate how MKCC,M, 1
13

is improved.
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The first part of EITDPA assumes the array d of size 44 where di = 0 for all i ≤ 44. The

algorithm begins with d0 = 1, θ = 44, k = 5, p = 5, and α =∞. The set M is {1, 2, 3, 4, 10},

and the variable x1 has a coefficient equal to 30. Since b−a1 = 44−30 = 14, going through

all indexes of array d, starting at index 14 until index 0, the only index di = 1 for all i ≤ 14

is index 0 and d0+30 is set to 1.

The next two iterations follow the same process, and d0+25 and d0+20 are both set

to 1. At the fourth iteration the array d begins to change a little more. The fourth it-

eration considers the variable x4 with coefficient equal to 15. Because b−a4 = 44−15 = 29,

going through all indexes of array d, starting at index 29 until index 0, then di = 1 for

indexes 25, 20, and 0. Therefore, d25+15, d20+15, and d0+15 are set to 1. The next iteration

assumes variable x10 with coefficient equal to 5, b − a10 = 44 − 5 = 39, and looking at all

indexes of array d, starting at index 39 until index 0, di = 1 for indexes 35, 30, 25, 20, 15,

and 0. Thus, d35+5, d30+5, d25+5, d20+5, and d15+5 are reset to 1, and d0+5 is set to 1 for the

first time. This process is summarized in Table 3.1, which provides all indexes of array d.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
1 0 0 0 0 1 0 0 0 0 1 0 0 0 0
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
1 0 0 0 0 1 0 0 0 0 1 0 0 0 0

Table 3.1: Final d - Example |M ′| = 0

The second part of EITDPA has |M ′| = 0 and min{ak : k ∈ M} > b −
|C|∑

j=2

aij, so

the algorithm skips the two first If conditions. Therefore, variables flag = 0 and θ = 44.
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Starting at index θ = 44, d44 = 0, and the algorithm moves to index 43. Since d43 = 0,

the algorithm jumps to the next index, continuing until it finds d40 = 1. Thus, z = 40,

flag = 1, meaning that the loop is terminated, and α′ =
4

40
. Since α′ < α, α =

1

10
. The

algorithm updates θ = 44 − 10 = 34, k = 5 − 1 = 4, and variable flag is reset to 0.

Beginning at index θ = 34 of array d, d34 = 0 and the algorithm moves until it finds

d30 = 1. The variable z = 30 and flag = 1 are updated, and the loop is terminated again.

Therefore, α′ =
3

30
and α =

1

10
. The algorithm is updated with θ = 34 − 10 = 24 and

k = 4 − 1 = 3. The algorithm repeats |C| − |M ′| − 1 = 4 times and the next two α′

are
2

20
and

1

5
. EITDPA terminates with α =

1

10
. The merged knapsack cover inequality

exactly improved MKCC,M, 1
10

is shown in Equation 3.4. A simplified MKCC,M, 1
10

inequality

is presented in Equation 3.5.

1

10
(30x1 + 25x2 + 20x3 + 15x4 + 5x10) + x5 + x6 + x7 + x8 + x9 ≤ 4 (3.4)

3x1 +
5

2
x2 + 2x3 +

3

2
x4 + x5 + x6 + x7 + x8 + x9 +

1

2
x10 ≤ 4 (3.5)

MKCC,M, 1
10

inequality dominates the MKCC,M, 1
13

inequality. Furthermore, MKCC,M, 1
10

is facet defining. To prove this, observe the dim(P ch
KP ) = 11 and MKCC,M, 1

10
is a valid

inequality based on Corollary 1. Thus, one must prove the dimension of its face F is 10.

First, this face is not the entire P ch
KP space because the point (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) ∈ PKP

and 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 < 4. Therefore, dim(F ) ≤ dim(P ch
KP )− 1, so

dim(F ) ≤ 10. In addition, 11 affinely independent points that meet MKCC,M, 1
10

at equality

are shown in Figure 3.1.
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x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 1 0
0 1 1 1 1 0 0 0 0 0 0
1 0 1 1 1 0 0 0 0 0 1
1 1 0 1 1 0 0 0 0 0 1
1 1 1 0 1 0 1 0 0 1 1
1 1 1 1 0 1 1 0 1 1 1
0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 1

Figure 3.1: Affinely Independent Points - MKCC,M, 1
10

As shown in Figure 3.1, a cyclical permutation of the first five points allows the minimal

cover to be facet defining in the restricted space. Clearly the points (1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0),

(0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0), and (0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1) are affinely independent since vari-

ables x1, x3, and x11 are set to 1, respectively, and all the other variables set to 1 are canceled

by the previously described affinely independent points. The other three remaining points

are also affinely independent because of the cyclical permutation between variables x2, x4,

and x10. Therefore, dim(F ) ≥ 10. Consequently, MKCC,M, 1
10

is a facet defining inequality

and dim(F ) = 10.

Usefulness of MKCC,M, 1
10

is verified by determining whether this cuts off some linear

relaxation solution. The point (0,0,0,
2

15
,0,1,1,1,1,0,0) is in P LR, and application of this point

to MKCC,M, 1
10

gives 3(0)+
5

2
(0)+2(0)+

3

2

(
2

15

)
+1(0)+1(1)+1(1)+1(1)+1(1)+

1

2
(0) =

21

5
.

Since
21

5
> 4, the inequality MKCC,M, 1

10
cuts off this linear relaxation point; therefore, it

is a cutting plane.
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In addition to providing a facet defining inequality, this example also demonstrates that

MKCC,M,α inequalities are a new class of previously unattainable inequalities. The two most

similar methods to this thesis research are sequential and sequence independent lifting.

Consider the first knapsack constraint from Section 2.2.1 and the minimal cover

C = {5, 6, 7, 8, 9}. The exact sequential up lifting inequality for this problem when variables

are lifted in ascending order is given in Equation 3.6. For simple comparison, MKCC,M, 1
13

and MKCC,M, 1
10

are presented in Equations 3.7 and 3.8, respectively. Due to the sequential

lifting method, the coefficients of exact sequential up lifting inequality are always integers.

Thus, exact sequential up lifting could never create an MKCC,M, 1
10

inequality.

3x1 + 3x2 + 2x3 + x4 + x5 + x6 + x7 + x8 + x9 ≤ 4 (3.6)

30

13
x1 +

25

13
x2 +

20

13
x3 +

15

13
x4 + x5 + x6 + x7 + x8 + x9 +

5

13
x10 ≤ 4 (3.7)

3x1 +
5

2
x2 + 2x3 +

3

2
x4 + x5 + x6 + x7 + x8 + x9 +

1

2
x10 ≤ 4 (3.8)

Sequence independent lifting, one of the most related techniques in this field, was intro-

duced by Gu et al. [34]. This method provides a valid superadditive lifting function that

obtains a good approximation to maximum lifting. The research of Gu et al. is closely

related to merging knapsack constraints with covers because the α coefficients are related

to the size of the knapsack coefficients.

For simplicity, the necessary algorithm to build a superadditive valid lifting function

is not presented in this thesis and only the output is shown. Consider the first knapsack

45



constraint from Section 2.2.1 and the minimal cover C = {5, 6, 7, 8, 9}. The sequence in-

dependent lifting inequality is given in Equation 3.9, and MKCC,M, 1
13

and MKCC,M, 1
10

inequalities are presented in Equations 3.10 and 3.11, respectively, for comparison.

25

9
x1 +

20

9
x2 +

16

9
x3 +

11

9
x4 + x5 + x6 + x7 + x8 + x9 +

1

3
x10 ≤ 4 (3.9)

30

13
x1 +

25

13
x2 +

20

13
x3 +

15

13
x4 + x5 + x6 + x7 + x8 + x9 +

5

13
x10 ≤ 4 (3.10)

3x1 +
5

2
x2 + 2x3 +

3

2
x4 + x5 + x6 + x7 + x8 + x9 +

1

2
x10 ≤ 4 (3.11)

The sequence independent lifting inequality has coefficients of variables x1, x2, x3, and x4

larger than MKCC,M, 1
13

inequality and a coefficient of variable x10 smaller than MKCC,M, 1
13

.

However, with the exception of the cover inequality variables, all variables in MKCC,M, 1
10

inequality have coefficients larger than the sequence independent lifting inequality, meaning

that MKCC,M, 1
10

dominates this inequality. Clearly, the sequence independent lifting in-

equality is not facet defining, and MKCC,M, 1
10

is a stronger inequality. Therefore, merging

knapsack constraints with covers may be better than sequence independent lifting.

Various other methods are available to find valid inequalities. Arguments are not given

in this thesis, but simple application of disjunctive cuts [10], Chvátal Gomory cuts [19],

mixed integer rounding cuts [29], superadditive cuts [69], or modular arithmetic cuts [30]

would not have generated merged knapsack cover inequalities. Consequently, MKCC,M,α

inequalities are a new class of valid inequalities for the knapsack polytope.

46



To further demonstrate MKCC,M,α technology, consider a new problem with the first

knapsack constraint from Section 2.2.1, the cover C = {5, 6, 7, 8, 9}, and M ′ = {9}. Follow-

ing the DSMI subroutine, all remaining variables are merged, M = {1, 2, 3, 4, 9, 10, 11}, and

the new merged knapsack cover inequality MKCC,M,α is presented in Equation 3.12.

α(30x1 + 25x2 + 20x3 + 15x4 + 10x9 + 5x10 + x11) + x5 + x6 + x7 + x8 ≤ 4 (3.12)

A value for α is calculated to this new MKCC,M,α inequality using the CAV subroutine.

The subroutine can be followed |C| − |M ′| = 4 times, and α′ is
4

44
,

3

34
,

2

23
, and

1

12
for each

iteration. CAV terminates with α =
1

12
. The merged knapsack cover inequality MKCC,M, 1

12

is shown in Equation 3.13.

1

12
(30x1 + 25x2 + 20x3 + 15x4 + 10x9 + 5x10 + x11) + x5 + x6 + x7 + x8 ≤ 4 (3.13)

This MKCC,M, 1
12

inequality can also be improved using EITDPA. For simplicity, only

the final output is presented and Table 3.2 shows all indexes of array d. The EITDPA

terminates with α =
1

11
. The new MKCC,M, 1

11
inequality exactly improved is described in

Equation 3.14.

1

11
(30x1 + 25x2 + 20x3 + 15x4 + 10x9 + 5x10 + x11) + x5 + x6 + x7 + x8 ≤ 4 (3.14)
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 1 0 0 0 1 1 0 0 0 1 1 0 0 0
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
1 1 0 0 0 1 1 0 0 0 1 1 0 0 0
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
1 1 0 0 0 1 1 0 0 0 1 1 0 0 0

Table 3.2: Final d - Example |M ′| = 1

MKCC,M, 1
11

is a new valid inequality. Applying the point (0,0,0,
1

15
,0,1,1,1,1,0,1) to

MKCC,M, 1
11

gives
30

11
(0) +

25

11
(0) +

20

11
(0) +

15

11

(
1

15

)
+ 1(0) + 1(1) + 1(1) + 1(1) +

10

11
(1) +

+
5

11
(0)+

1

11
(1) =

45

11
. Since

45

11
> 4, MKCC,M, 1

11
cuts off the linear relaxation solution and

is a cutting plane.

The preceding examples present two different valid and useful inequalities. The cover

inequality is identical in both cases, but the number of merging variables, the initial α, and

improved α values differ. In the example presented, MKCC,M, 1
10

is theoretically more useful

than MKCC,M, 1
11

because it cuts off a larger space of the linear relaxation region. However,

no conclusions regarding which inequality should be implemented can be made without a

reasonable computational study. Chapter 4 describes a computational study to evaluate the

effectiveness of merged knapsack cover inequalities.
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Chapter 4

Computational Study

This chapter introduces a computational study performed to validate the usefulness of

merged knapsack cover inequalities. The time required to solve multiple knapsack prob-

lems with and without these inequalities is compared. The chapter first presents a method

used to generate random multiple knapsack instances. Computational implementation of

merged knapsack cover inequalities is described along with the method used to generate

cover inequalities. The importance of selecting strong cover inequalities to generate useful

merged knapsack cover inequalities is also discussed. Two computational results are shown

and analyzed.

This computational study was performed on an Intelr CoreTM i7-4770 3.4GHz processor

with 8 GB of RAM. The study was completed using CPLEX 12.5 [40] and coded in C++

using Microsoft Visual Studio [55]. Two relevant measures were tracked in this study: the

time required to solve the problem in seconds and the number of ticks in CPLEX. The

number of ticks represents the number of operations used by CPLEX to solve the problem.
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The number of ticks is independent of the computer on which the algorithm runs, thereby

allowing a true comparison between various computational studies. However, the ticks

depend on which CPLEX version is used. Many multiple knapsack problems require an

intensive computational effort; therefore, the node files are stored in the hard drive instead

of RAM in this computational study to avoid out of memory issues. The remainder of

CPLEX’s settings are at default.

4.1 Generating Random Instances

Multiple knapsack instances are randomly generated in this thesis. Let c ∈ Rn, A ∈ Rm×n
+ ,

and b ∈ Rm
+ . Thus, each instance takes the form:

Maximize cTx

Subject to: Ax ≤ b

x ∈ {0, 1}.

The matrix A is integer and is generated according to a random uniform distribution

between l and u. The right-hand side vector b is defined as bi =

⌊
β

n∑

j=1

ai,j

⌋
for each

i ∈ {1, ...,m} where β = 0.25. The cost vector c is defined as cj =
m∑

i=1

ai,j +b500γjc where γj

is a uniform random number between 0 and 1, for each j ∈ {1, ..., n}. All random numbers

are generated through the Linear Congruential Generator algorithm (LCG) proposed by

Lehmer [53] and the seed value is changed for each instance. Notice that each multiple

knapsack instance is generated in polynomial time (O(nm)).
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This computational study primarily focuses on problems with 5 and 10 constraints and

60, 80, and 100 variables. For each problem, 15 instances are tested to avoid random

anomalies in any one instance.

The next section provides the relevant information about the computational implementa-

tion of merged knapsack cover inequalities. The section discusses the main technical aspects

of this implementation and also includes a discussion on the importance of selecting strong

cover inequalities.

4.2 Computational Implementation

The main goal of this computational study is to compare the solution time of multiple

knapsack problems with and without implementation of merged knapsack cover inequalities.

For each instance, the problem is first solved using CPLEX at default settings.

For the number of variables overlapped in this computational study, it is first assumed

that at least half of the variables of the cover inequality should remain unmerged in order

to maintain some properties of the cover inequality. Due to the intensive computational

effort to solve some multiple knapsack instances, it is infeasible to overlap each possible set

of variables and have all the results for comparison in a reasonable amount of time. Con-

sidering both constraints, the most reasonable experiment would identify the effectiveness

of computational results when no variable is overlapped and when some few of them are

overlapped. This results in overlapping a maximum of two variables in this computational

study, concluding |M ′| = 0, |M ′| = 1, and |M ′| = 2. It is assumed that the overlapping

variables are those with the highest ai,j coefficients.
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Adding multiple useful cutting planes to the problem may result in removing more of the

linear relaxation space. Since these instances have so few constraints, increasing the size of

matrix A may slow the computational processing and the results can be worse. Therefore,

only one merged knapsack cover inequality is added to determine whether these inequalities

are computationally effective.

Merged knapsack cover inequalities are generated by merging variables of one knapsack

constraint into a cover inequality of the same knapsack constraint. Assume that only one

cover inequality is considered in each knapsack constraint. Since there exist m constraints in

every multiple knapsack problem, a variation of 3m merged knapsack cover inequalities can

be implemented to each problem since overlapping zero, one, and two variables represents a

different cutting plane. Because instances are randomly generated, there are no known theo-

retical foundations that prove merged knapsack cover inequalities of one knapsack constraint

are better than merged knapsack cover inequalities of other knapsack constraints. There-

fore, only merged knapsack cover inequalities generated from the first knapsack constraint

are implemented and compared.

Identification of strong cover inequalities is critical to this research in terms of both

theoretical and computational results. Strong cover inequalities are typically those that are

violated or almost violated by the linear relaxation solution. Cover inequalities that are

violated by the linear relaxation solution by the greatest extent are preferable. To better

find a cover inequality in this computational study, the algorithm developed by Gu et al.

[32] with some modifications is implemented.
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Given a knapsack constraint
∑

i∈N

aixi ≤ b, the optimal linear relaxation solution x∗
i ∈

P LR, and the reduced cost di, define the ratio ri =
di

ai
+ xi for all i ∈ N . Sort all variables

xi in non-increasing value of ratio ri. Define the cover C by taking the indices in this sorted

order until
∑

i∈C

ai > b. Determine whether the cover C is minimal. If not, remove indices

from the cover C starting with the highest ai until it is a minimal cover.

According to the brief method description, one can see that the minimal cover inequality

reported has a reasonable probability of eliminating the optimal linear relaxation solution

since the variables where x∗
i = 1 are selected first, followed by the variables where 0 < x∗

i < 1,

and finally x∗
i = 0. The next section describes computational results and analysis.

4.3 Computational Results and Discussions

This section presents and discusses the main computational results, which contains two

computational studies. The first study examines random knapsack instances that mimic

some standard benchmark instances. In these instances, EITDPA does not provide any

improvement. A second computational study examines the types of multiple knapsack

instances where EITDPA does improve the α coefficient. The section concludes with a final

discussion that summarizes the results.
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4.3.1 Computational Results Without EITDPA

A standard method to create difficult multiple knapsack instances is to have the ai,j be

randomly distributed between 1 and 1, 000 as proposed by Chu and Beasley [18] and can be

found in the OR-Library [11]. Thus, this computational study sets l = 1 and u = 1, 000.

Table 4.1 provides the time in seconds and the number of ticks when the problems are

solved using CPLEX at default settings and when merged knapsack cover inequalities are

implemented with zero, one, and two overlapping variables. The problem column denotes

the number of rows and variables. All times are listed in seconds and are the average of

the 15 instances. A majority of the problems are solved in approximately 40 minutes on

average. Table 4.2 shows the percent improvement.

CPLEX |M ′| = 0 |M ′| = 1 |M ′| = 2
Problem Time # Ticks Time # Ticks Time # Ticks Time # Ticks

5×60 95 10831 100 11511 100 11330 92 10810
5×80 162 10631 161 10778 164 10551 180 11788
5×100 984 137398 994 145297 1002 145623 1054 152146
10×60 4200 1297456 4171 1309254 4308 1336215 4254 1319230
10×80 4227 1445558 4456 1563998 4445 1509567 4461 1489726
10×100 5140 1645558 5253 1658704 5321 1660676 5268 1658310
Average 2468 757905 2523 783257 2557 778993 2552 773668

Table 4.1: Results - Time and Ticks with l = 1 and u = 1, 000

The average time when no variable is overlapped is 2.1% worse and the average number

of ticks is 3.9% worse. When one variable is overlapped, the average time is 3.9% worse and

the average number of ticks is 3.0% worse. In addition, when two variables are overlapped,

the average time is 4.0% worse and the average number of ticks is 4.5% worse.
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|M ′| = 0 |M ′| = 1 |M ′| = 2
Problem Time # Ticks Time # Ticks Time # Ticks

5×60 -5.3 -6.3 -5.3 -4.6 3.2 0.2
5×80 0.6 -1.4 -1.2 0.8 -11.1 -10.9
5×100 -1.0 -5.7 -1.8 -6.0 -7.1 -10.7
10×60 0.7 -0.9 -2.6 -3.0 -1.3 -1.7
10×80 -5.4 -8.2 -5.2 -4.4 -5.5 -3.1
10×100 -2.2 -0.8 -3.5 -0.9 -2.5 -0.8

Avg. Imp. % -2.1 -3.9 -3.9 -3.0 -4.0 -4.5

Table 4.2: Results - Percent Improvement with l = 1 and u = 1, 000

Most of the results presented in Table 4.2 are worse than CPLEX results. Regarding the

90 problems tested, when no variable is overlapped, 31.1% of them presents improvements

in time and 23.3% presents improvements in number of ticks. When only one variable is

overlapped, 31.1% are shown to be better in time and 28.9% are better in number of ticks.

When two variables are overlapped, 27.7% of the problems presents improvements in time

and 30.0% presents improvements in number of ticks.

One surprising result is that EITDPA did not ever improve the α coefficient, which means

that α initially generated by MKCA remains the same. This statement is well explained

by the research developed by Hunsaker and Tovey [39]. For numerous random knapsack

instances, there is a probability approaching 1 that there exists a set of variables that sum

exactly to b. Thus, in the majority of random knapsack instances, EITDPA does not improve

α. One can confirm this by tracking the array d in EITDPA and see that almost all the

indexes are marked, which virtually eliminates gaps for improvement.

In Chapter 3, the examples presented demonstrate the importance of improving α to

generate stronger inequalities. Therefore, it is not likely that good computational results
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are obtained if no α improvement is made. Thus, the next computational study describes

instances where EITDPA does improve α and consequently shows a real computational

improvement.

4.3.2 Computational Results With EITDPA

After concluding EITDPA does not improve α due to the structure of the random instances

generated, an additional observation is also noticed in the computational study. The value

of α occurs in the loop when q = |C| \ |M | or q = |C| \ |M | − 1. Therefore, the primary

goal of creating instances in which EITDPA provides some improvement is to create an

improvement in these two cases.

If all ai,j are random between 1 and some max, then several small and one large number

can be combined to create numerous combinations between 1 and 2×max. Thus, ai,j should

be between some min and max where min is at least 50% of max. After attempting a few

problems, it appears as though something with min set to about 90% of the max appears

to show substantial improvement in α through EITDPA.

A natural choice is to let all ai,j be uniformly distributed between 900 and 1, 000. Because

of the small number of variables in this study, almost every integer in this range would be

present and the problems lose the randomness. To alleviate this issue, the max has to

be substantially larger than 1, 000. Successful results are found when ai,j are uniformly

distributed integers between 30, 000 and 32, 000.
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The multiple knapsack instances created in this computational study take the same form

as presented in Section 4.1. The ai,j coefficients are integers and follow a random uniform

distribution between 30, 000 and 32, 000. Thus l = 30, 000 and u = 32, 000. The right-hand

side vector b is still defined as bi =

⌊
β

n∑

j=1

ai,j

⌋
for each i ∈ {1, ...,m} where β = 0.25. The

cost vector c is also still defined as cj =
m∑

i=1

ai,j + b500γjc where γj is a uniform random

number between 0 and 1, for each j ∈ {1, ..., n}.

The results of problems with 5 constraints and 60 variables are first presented in Table

4.3. This table provides the time in seconds and the number of ticks of 15 instances when

the problems are solved using CPLEX at default settings and when merged knapsack cover

inequalities are implemented with zero, one, and two overlapping variables. The majority

of the problems are solved in approximately 10 minutes. Table 4.4 illustrates the percent

improvement for each problem.
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CPLEX |M ′| = 0 |M ′| = 1 |M ′| = 2
Instance Time # Ticks Time # Ticks Time # Ticks Time # Ticks

1 42 2622 24 2539 18 1734 18 1948
2 216 15075 152 14903 128 13367 133 13715
3 238 15240 134 12557 129 12980 134 13318
4 256 11568 154 14834 120 13169 134 14031
5 764 80458 706 70278 647 71372 653 72461
6 531 39742 359 33558 342 34612 326 35217
7 341 20287 212 18610 192 18176 187 17947
8 122 5174 48 4783 51 4704 51 4717
9 354 25049 287 21755 299 29144 318 28939
10 134 6015 74 7496 69 7067 66 7164
11 924 120657 761 105290 1090 108798 1066 108405
12 213 7674 118 5756 102 6435 103 7210
13 735 73721 775 61368 463 57761 466 57845
14 2840 480580 1996 384975 1801 376614 1800 380213
15 699 56696 501 58081 445 53564 458 58144

Average 561 64037 420 54452 393 53966 394 54752

Table 4.3: Results 5 × 60 - Time and Ticks with l = 30, 000 and u = 32, 000

|M ′| = 0 |M ′| = 1 |M ′| = 2
Instance Time % Ticks % Time % Ticks % Time % Ticks %

1 43.9 3.2 57.7 33.9 57.7 25.7
2 29.7 1.1 40.8 11.3 38.6 9.0
3 43.9 17.6 45.7 14.8 43.6 12.6
4 40.1 -28.2 53.1 -13.8 47.8 -21.3
5 7.6 12.7 15.3 11.3 14.5 9.9
6 32.3 15.6 35.6 12.9 38.6 11.4
7 37.6 8.3 43.6 10.4 45.1 11.5
8 60.5 7.5 58.5 9.1 58.0 8.8
9 19.0 13.2 15.6 -16.3 10.4 -15.5
10 45.0 -24.6 48.3 -17.5 50.7 -19.1
11 17.6 12.7 -17.9 9.8 -15.4 10.2
12 44.8 25.0 52.2 16.2 51.6 6.1
13 -5.5 16.8 36.9 21.6 36.6 21.5
14 29.7 19.9 36.6 21.6 36.6 20.9
15 28.4 -2.4 36.3 5.5 34.4 -2.6

Avg. Imp. % 31.6 6.5 37.2 8.7 36.6 5.9

Table 4.4: Results 5 × 60 - Percent Improvement with l = 30, 000 and u = 32, 000
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When no variables are overlapped, 14 out of 15 problems demonstrate improvements in

time with an average improvement of approximately 31.6% and standard deviation of 204

seconds. For the number of ticks, 12 out of 15 problems present improvements and merged

knapsack cover inequalities demonstrate an average improvement of 6.5% with a standard

deviation of 24,396 ticks.

When only one variable is overlapped, 14 out of 15 problems are shown to be better

in time with an average improvement of 37.2% and standard deviation of 262 seconds. In

addition, 12 out of 15 problems are better in number of ticks than CPLEX with an overall

improving average of approximately 8.7% and standard deviation of 26,508 ticks.

When two variables are overlapped, the same 14 out of 15 problems demonstrate better

results in time with an improving average of 36.6% and standard deviation of 261 seconds.

Also, 11 out of 15 instances present some improvement in the number of ticks, and it is on

average 5.9% better with standard deviation of 25,778 ticks.

The average improvement of α through EITDPA is also tracked in this computational

study. For simplicity, only the final output is discussed. When no variable is overlapped,

EITDPA improves α an average of 20.1%. When one or two variables are overlapped, no

improvement is found and α remains the same as initially generated by MKCA.

The next multiple knapsack problems have 5 constraints and 100 variables. Table 4.5

describes the results. These problems are harder than those presented so far and each

problem is solved in approximately seven to nine hours. Table 4.6 provides the percent

improvement for each of these problems following the same assumptions.
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CPLEX |M ′| = 0 |M ′| = 1 |M ′| = 2
Instance Time # Ticks Time # Ticks Time # Ticks Time # Ticks

1 32037 6524350 36993 6446778 37730 6405108 38877 6511009
2 4866 583713 4106 463008 5391 581130 5183 549858
3 21316 4848565 24065 4515377 25983 4581434 26431 4589133
4 26083 4471644 30592 4546217 33013 4442404 33564 4374947
5 43911 5586931 43147 5575846 42278 5442210 43107 5586845
6 24142 5407826 28526 5102992 29522 4979355 29960 4963055
7 2495 551135 2662 522704 2304 419779 2782 490787
8 17426 2927893 18608 2735414 23144 3208621 21374 2915692
9 42027 5241233 38681 4740869 40231 4877226 40392 4941626
10 25617 3295996 24819 3235129 26010 3308366 25731 3309171
11 20629 4234824 24307 4094457 25442 4024260 25579 4039743
12 22951 4722795 26443 4637397 27635 4686955 28202 4658223
13 15877 3401043 20637 3270365 22523 3360554 23670 3485229
14 18161 2052490 18804 2129772 18969 2143884 19864 2169742
15 1950 435987 2185 402910 2267 394022 2297 400478

Average 21299 3619095 22972 3494616 24163 3523687 24467 3532369

Table 4.5: Results 5 × 100 - Time and Ticks with l = 30, 000 and u = 32, 000

|M ′| = 0 |M ′| = 1 |M ′| = 2
Instance Time % Ticks % Time % Ticks % Time % Ticks %

1 -15.5 1.2 -17.8 1.8 -21.4 0.2
2 15.6 20.7 -10.8 0.4 -6.5 5.8
3 -12.9 6.9 -21.9 5.5 -24.0 5.4
4 -17.3 -1.7 -26.6 0.7 -28.7 2.2
5 1.7 0.2 3.7 2.6 1.8 0.0
6 -18.2 5.6 -22.3 7.9 -24.1 8.2
7 -6.7 5.2 7.6 23.8 -11.5 10.9
8 -6.8 6.6 -32.8 -9.6 -22.7 0.4
9 8.0 9.5 4.3 6.9 3.9 5.7
10 3.1 1.8 -1.5 -0.4 -0.4 -0.4
11 -17.8 3.3 -23.3 5.0 -24.0 4.6
12 -15.2 1.8 -20.4 0.8 -22.9 1.4
13 -30.0 3.8 -41.9 1.2 -49.1 -2.5
14 -3.5 -3.8 -4.4 -4.5 -9.4 -5.7
15 -12.1 7.6 -16.3 9.6 -17.8 8.1

Avg. Imp. % -8.5 4.6 -15.0 3.5 -17.1 3.0

Table 4.6: Results 5 × 100 - Percent Improvement with l = 30, 000 and u = 32, 000
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When no variable is overlapped, the time is improved in only 4 out of 15 problems and

the average is about 8.5% worse than CPLEX with a standard deviation of 2,577 seconds.

However, the number of ticks are improved in 13 out of 15 problems tested with an average

improvement of 4.6% with a standard deviation of 156,033 ticks.

When only one variable is overlapped, there are a few problems that present improve-

ments in time (3 out of 15), and the average time is 15.0% worse with a standard deviation

of 3,131 seconds. However, the number of ticks are also improved in 12 out of 15 problems

and the average improvement is about 3.5% with a standard deviation of 177,386 ticks.

Two variables overlapped demonstrate that only 2 out of 15 problems are improved

in terms of time and the average time is 17.1% worse with a standard deviation of 3,242

seconds. The same occur with these merged knapsack cover inequalities; the number of ticks

present an average improvement of 3.0% with a standard deviation of 151,429 ticks in 12

out of 15 problems tested.

One can see in these problems an example of how merged knapsack cover inequalities

does decrease the number of operations to solve the integer programs but the addition of

one extra constraint increases the time. This issue may be avoided in problems with a

larger number of constraints. In addition, EITDPA improves α an average of 14.2% when

no variable is overlapped. On the other hand, the average improvement when one or two

variables are overlapped are close to 0.0%, approximately 0.03% and 0.01% respectively.

The following multiple knapsack instances have 10 constraints and 60 variables. Table

4.7 illustrates the results. These problems are also hard, requiring approximately 10 hours

to solve each one. Table 4.8 summarizes the percent improvement results for each instance.
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CPLEX |M ′| = 0 |M ′| = 1 |M ′| = 2
Instance Time # Ticks Time # Ticks Time # Ticks Time # Ticks

1 11141 3252027 11840 3395288 11310 3337736 11796 3355847
2 33806 9905552 25892 7495062 25001 7164011 22542 6659990
3 27818 7655830 25504 7271825 24551 7177520 25898 7490830
4 60314 16688886 64689 17764906 63446 17133070 65863 17725513
5 19617 6073236 20379 6084337 20249 6248183 20118 6177667
6 47313 13155649 48312 13578523 48433 13608359 51522 13485082
7 30738 8626026 31703 8927580 30542 8844204 30904 8865736
8 43138 12134831 49694 13774272 42431 11839776 40588 11734916
9 22248 6622808 24034 7155665 22983 6860463 22910 6792680
10 50688 14203626 46016 13014124 53207 14477743 45405 12715144
11 62675 13860815 59730 13838140 60021 13979173 52586 13527821
12 6152 1669192 6029 1538049 6207 1602970 6575 1722326
13 26302 7327517 23395 7083256 22843 6980367 23442 7035312
14 32905 8823231 30256 8298283 31559 8658225 29665 8279701
15 32386 8859666 33187 9139924 36026 9204253 31878 8608444

Average 33186 9257260 33377 9223949 33254 9141070 32113 8945134

Table 4.7: Results 10 × 60 - Time and Ticks with l = 30, 000 and u = 32, 000

|M ′| = 0 |M ′| = 1 |M ′| = 2
Instance Time % Ticks % Time % Ticks % Time % Ticks %

1 -6.3 -4.4 -1.5 -2.6 -5.9 -3.2
2 23.4 24.3 26.0 27.7 33.3 32.8
3 8.3 5.0 11.7 6.2 6.9 2.2
4 -7.3 -6.4 -5.2 -2.7 -9.2 -6.2
5 -3.9 -0.2 -3.2 -2.9 -2.6 -1.7
6 -2.1 -3.2 -2.4 -3.4 -8.9 -2.5
7 -3.1 -3.5 0.6 -2.5 -0.5 -2.8
8 -15.2 -13.5 1.6 2.4 5.9 3.3
9 -8.0 -8.0 -3.3 -3.6 -3.0 -2.6
10 9.2 8.4 -5.0 -1.9 10.4 10.5
11 4.7 0.2 4.2 -0.9 16.1 2.4
12 2.0 7.9 -0.9 4.0 -6.9 -3.2
13 11.1 3.3 13.2 4.7 10.9 4.0
14 8.1 5.9 4.1 1.9 9.8 6.2
15 -2.5 -3.2 -11.2 -3.9 1.6 2.8

Avg. Imp. % 1.2 0.8 1.9 1.5 3.9 2.8

Table 4.8: Results 10 × 60 - Percent Improvement with l = 30, 000 and u = 32, 000
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When no variable is overlapped, 7 out of 15 problems demonstrate some improvement in

time and the overall average time is approximately 1.2% better with a standard deviation

of 3,586 seconds. In addition, 7 out of 15 problems demonstrate some improvement in

the number of ticks; the average improvement is about 0.8% with a standard deviation of

933,794 ticks.

When only one variable is overlapped, 7 out of 15 problems present improvements in

time and the average time is 1.9% better with a standard deviation of 3,122 seconds. In

addition, 6 out of 15 problems are shown to improve the number of ticks, and the average

improvement is approximately 1.5% with a standard deviation of 780,736 ticks.

When two variables are overlapped, 8 out of 15 problems are shown to be better in time,

with an improving average time equal to 3.9% and a standard deviation equal to 4,567

seconds. Also, 8 out of 15 problems present some improvement in the number of ticks and

the average improvement is about 2.8% with a standard deviation of 975,552 ticks.

The average improvement of α with no overlapping variable is on the order of 18.1%.

However, no improvement is made when one or two variables are overlapped, meaning that

EITDPA has no significant impact on their final output and α remains the same as initially

generated by MKCA.

Table 4.9 provides the time in seconds and the number of ticks of another class of multiple

knapsack instances in which the matrix A is integer and is uniform randomly distributed

between 30,000 and 33,000 (l = 30, 000 and u = 33, 000). Although these are not the main

problems studied in this thesis and results from other variations of these problems are not

presented, the intention is to provide an additional example of how impressive the results
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can be when merged knapsack cover inequalities are applied to appropriate instances. Notice

that these problems are solved in approximately 30 to 40 minutes each. Table 4.10 describes

the percentage improvement.

CPLEX |M ′| = 0 |M ′| = 1 |M ′| = 2
Instance Time # Ticks Time # Ticks Time # Ticks Time # Ticks

1 78 4676 50 5843 57 4121 40 5165
2 864 101339 651 88649 598 90070 585 92207
3 1916 249122 1306 191856 1192 188237 1228 192318
4 751 70792 930 67035 726 64424 658 75472
5 3185 546378 2101 435749 1927 413326 1997 437151
6 4350 773773 2997 606826 3012 633751 2958 635126
7 1757 263959 1589 277313 1222 228468 1261 239509
8 1039 118967 671 79898 614 81830 594 79961
9 8517 1628007 2871 536918 2721 543107 2598 533182
10 2265 310689 1572 243933 1619 235566 1511 238042
11 7242 1239820 5040 1093867 5528 1147756 5416 1160282
12 615 42404 601 41028 573 38937 546 34887
13 1415 185760 1239 188439 987 155272 942 151192
14 2799 496375 1980 372357 1887 390688 1875 389877
15 4686 821523 3647 747937 3039 654648 3302 739262

Average 2765 456905 1816 331843 1713 324680 1701 5003632

Table 4.9: Results 5 × 60 - Time and Ticks with l = 30, 000 and u = 33, 000

In these problems, when no variable is overlapped, 14 out of 15 problems present some

improvement in time and the average time is 24.8% better than CPLEX with a standard

deviation of 1,442 seconds. The number of ticks also demonstrate some improvement in 12

out of 15 problems, and the average improvement is approximately 14.8% with a standard

deviation of 273,561 ticks.
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|M ′| = 0 |M ′| = 1 |M ′| = 2
Instance Time % Ticks % Time % Ticks % Time % Ticks %

1 35.5 -25.0 27.4 11.9 48.9 -10.5
2 24.6 12.5 30.8 11.1 32.3 9.0
3 31.9 23.0 37.8 24.4 35.9 22.8
4 -23.8 5.3 3.4 9.0 12.4 -6.6
5 34.0 20.2 39.5 24.4 37.3 20.0
6 31.1 21.6 30.8 18.1 32.0 17.9
7 9.6 -5.1 30.4 13.4 28.2 9.3
8 35.4 32.8 40.9 31.2 42.8 32.8
9 66.3 67.0 68.1 66.6 69.5 67.2
10 30.6 21.5 28.5 24.2 33.3 23.4
11 30.4 11.8 23.7 7.4 25.2 6.4
12 2.2 3.2 6.8 8.2 11.2 17.7
13 12.4 -1.4 30.2 16.4 33.4 18.6
14 29.3 25.0 32.6 21.3 33.0 21.5
15 22.2 9.0 35.1 20.3 29.5 10.0

Avg. Imp. % 24.8 14.8 31.1 20.5 33.7 17.3

Table 4.10: Results 5 × 60 - Percent Improvement with l = 30, 000 and u = 33, 000

When only one variable is overlapped, all 15 problems are better in time and ticks. The

average improvement time is about 31.1% with a standard deviation of 1,427 seconds, and

the average improvement of ticks is 20.5% with a standard deviation of 268,947 ticks.

Considering two variables overlapped, all 15 problems are improved in terms of time; the

average time is 33.7% better with a standard deviation of 1,446 seconds. In addition, 13 out

of 15 problems present some improvement in the number of ticks with an overall average

improvement of 17.3% and standard deviation of 272,299 ticks.

The average improvement of α is on the order of 19.1% when no variable is overlapped.

However, EITDPA does not improve α when one or two variables are overlapped. In this

case, α is maintained as initially generated in MKCA.
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After the results are described, notice that multiple knapsack instances where l = 30, 000

and u = 32, 000 dominate the regular problems where l = 1 and u = 1, 000. These prob-

lems advantageously utilize their structure in which gaps for improvement exist. Therefore,

EITDPA may generate larger α values and consequently stronger inequalities.

Although α is mostly improved through EITDPA in problems where there is no overlap-

ping variable, the results are shown to be satisfactory in all the cases. Table 4.11 summarizes

the results of problems tested in this computational study.

|M ′| = 0 |M ′| = 1 |M ′| = 2
Problem Time % Ticks % Time % Ticks % Time % Ticks %

5×60 31.6 6.5 37.2 8.7 36.6 5.9
5×100 -8.5 4.6 -15.0 3.5 -17.1 3.0
10×60 1.2 0.8 1.9 1.5 3.9 2.8

Avg. Imp. % 8.1 4.0 8.0 4.6 7.8 3.9

Table 4.11: Summary Results - Computational Study

When no variable is overlapped, the average improving time is 8.1% and the number

of ticks are improved 4.0%. When only one variable is overlapped, the average improving

time is 8.0% and the number of ticks are improved by 4.6%. Finally, when two variables are

overlapped, the average improving time is 7.8% and the number of ticks can be improved

in average 3.9%.

In conclusion, implementing merged knapsack cover inequalities are beneficial in this

computational study when EITDPA makes real improvements in α. In this case, stronger

inequalities are generated and the computational results are satisfactory. Therefore, this

new class of cutting planes is worth implementing when an IP has a knapsack constraint
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where the minimum coefficient ai,j is approximately 90% of the maximum coefficient. Based

upon the results described in this thesis, l = 30, 000 and u = 32, 000 show improvements in

α and good computational outcomes.

For the number of overlapping variables in this computational study, a recommendation

is made to implement merged knapsack cover inequalities with no overlapping variables for

two reasons. First, no overlapping variables has the least worst average improving time

in problems with 5 constraints and 100 variables. Second, no overlapping variables has

the smallest standard deviation, meaning the solution times are more consistent with less

variability.
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Chapter 5

Conclusions and Future Research

This research generated a new class of useful cutting planes by merging knapsack constraints

with cover inequalities. Results showed that merged knapsack cover inequalities are valid

inequalities, and an example demonstrated that these inequalities may be facet defining for

some instances. This example also demonstrated that merged knapsack cover inequalities

may cut off some portion of the linear relaxation space and help improve the solving time

of integer programs.

The merged knapsack cover inequalities are generated using the Merging Knapsack Cover

Algorithm (MKCA), which has two subroutines: Determine the Set of Merging Indices Sub-

routine (DSMI), and Calculate α Value Subroutine (CAV). The DSMI subroutine determines

a set of merging variables that preserves the validity of the inequality while CAV finds a

value for α > 0. MKCA is a linear time algorithm and requires O(n) effort. These in-

equalities can be improved using either the Exact Improvement Algorithm (EIA) or Exact

Improvement Through Dynamic Programming Algorithm (EITDPA). Both algorithms pro-
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vide identical output; however, EIA is an exponential time algorithm and EITDPA is a

pseudo-polynomial time algorithm that runs in linear time when the instance is polynomial.

The proof of correctness is shown for each algorithm.

A computational study is also developed in this thesis to determine whether implemen-

tation of merged knapsack cover inequalities is computationally effective. The multiple

knapsack instances approached in this thesis are randomly generated. In order to more

accurately find cover inequalities, the algorithm developed by Gu et al. [32] with some

modifications is implemented to find the strongest covers.

The first multiple knapsack instances tested have their coefficients between 1 and 1, 000.

The results are worse than CPLEX and surprisingly EITDPA does not improve α in any of

the cases, which is well explained by the research developed by Hunsaker and Tovey [39].

Thus, some other class of problems are tested and improvement in α appears when the

constraint coefficients are distributed between a minimum value that is approximately 90%

of the maximum value. These multiple knapsack problems have their coefficients between

30, 000 and 32, 000 or 30, 000 and 33, 000. When compared to CPLEX, merged knapsack

cover inequalities improve the time on average 8.0% and decrease the number of ticks on

average 4.0%.

Additionally, three strategies on overlapping variables are tested in this thesis. The

strategy that demonstrates better results and more consistency is the one with no overlap-

ping variables. This approach has the highest average improving time and also the smallest

standard deviation.
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5.1 Future Research

During the development of this thesis, some questions arose on potential future research on

both computational and theoretical areas. While other computational studies would help

understand new classes of problems where these cutting planes are worth implementing,

numerous theoretical extensions of merged knapsack cover inequalities can be approached.

The next two sections present some future research ideas.

5.1.1 Future Computational Studies

A potential future computational study is to identify other classes of multiple knapsack in-

stances where implementation of merged knapsack cover inequalities is also computationally

effective. In this thesis, problems where the minimum constraint coefficient value is approx-

imately 90% of the maximum value show substantial improvements in α and consequently

in the final outcomes. However, other problems where the minimum value is at least 50%

of the maximum value may be explored and possibly extend the usefulness of this class of

cutting planes.

In addition, the study of merged knapsack cover inequalities applied to benchmark in-

stances is another area that can be explored. For example, the OR-Library [11] has complex

benchmark instances and is used by many researchers in the field. This library contains 270

different multiple knapsack instances that vary in terms of number of variables, number of

constraints, and tightness ratio.
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Variations on the number of overlapping variables is another potential future research

area. In this thesis, at most two overlapping variables are considered. Although the strat-

egy of overlapping no variables demonstrated better results and more consistency in the

computational study performed in this thesis, it may be possible to find better results when

the number of overlapping variables increases.

Another future research opportunity is extending merged knapsack cover inequalities to

general integer programming problems. Because any binary integer program constraint can

be converted into a knapsack constraint through a simple transformation, this new class

of cutting planes can be implemented and help decrease the time required to solve these

integer programs.

5.1.2 Future Theoretical Extensions

Topics for theoretical extensions in merging knapsack constraints with cover inequalities

are described in this section. A potential future research direction is to merge multiple

knapsack constraints into a cover inequality of the problem. This concept can be referred

to as inequality lifting. As described in Chapter 3, the merging variable coefficients ai,j

can be any positive real number as long as the validity conditions are met. Therefore, the

information from one potential strong cover inequality of the problem can be combined with

multiple knapsack constraints in order to generate a stronger inequality. This may generate

another new class of useful cutting planes and also stronger computational results.
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Since the merging variable coefficients ai,j can be literally any value, another potential

future research is to develop a method that finds appropriate values of these coefficients

in such a way that the validity conditions are still met and the EITDPA always produces

real improvements in α. In this case, it is most likely that these inequalities have better

computational results and can be applied in more classes of multiple knapsack problems.

Lastly, extending the concept of merged knapsack cover inequalities in order to merge

multiple cover inequalities of the problem with either a knapsack or multiple knapsack con-

straints is a promising research direction. The idea is to combine as much useful information

as possible from the cover inequalities with the knapsack constraints, which would probably

discover an unknown class of cutting planes.
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