
University of Nebraska at Omaha University of Nebraska at Omaha

DigitalCommons@UNO DigitalCommons@UNO

Mathematics Faculty Publications Department of Mathematics

1-30-2020

Approximate and Exact Merging of Knapsack Constraints with Approximate and Exact Merging of Knapsack Constraints with

Cover Inequalities Cover Inequalities

Fabio Vitor
University of Nebraska at Omaha, ftorresvitor@unomaha.edu

Todd Easton
Kansas State University

Follow this and additional works at: https://digitalcommons.unomaha.edu/mathfacpub

 Part of the Mathematics Commons

Please take our feedback survey at: https://unomaha.az1.qualtrics.com/jfe/form/

SV_8cchtFmpDyGfBLE

Recommended Citation Recommended Citation
Fabio Vitor & Todd Easton (2020) Approximate and exact merging of knapsack constraints with cover
inequalities, Optimization, DOI: 10.1080/02331934.2020.1719492

This Article is brought to you for free and open access by
the Department of Mathematics at
DigitalCommons@UNO. It has been accepted for
inclusion in Mathematics Faculty Publications by an
authorized administrator of DigitalCommons@UNO. For
more information, please contact
unodigitalcommons@unomaha.edu.

http://www.unomaha.edu/
http://www.unomaha.edu/
https://digitalcommons.unomaha.edu/
https://digitalcommons.unomaha.edu/mathfacpub
https://digitalcommons.unomaha.edu/math
https://digitalcommons.unomaha.edu/mathfacpub?utm_source=digitalcommons.unomaha.edu%2Fmathfacpub%2F69&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/174?utm_source=digitalcommons.unomaha.edu%2Fmathfacpub%2F69&utm_medium=PDF&utm_campaign=PDFCoverPages
https://unomaha.az1.qualtrics.com/jfe/form/SV_8cchtFmpDyGfBLE
https://unomaha.az1.qualtrics.com/jfe/form/SV_8cchtFmpDyGfBLE
mailto:unodigitalcommons@unomaha.edu
http://library.unomaha.edu/
http://library.unomaha.edu/

January 18, 2020 Optimization gOPTguide

To appear in Optimization
Vol. 00, No. 00, Month 20XX, 1–21

RESEARCH ARTICLE

Approximate and Exact Merging of Knapsack Constraints with

Cover Inequalities

Fabio Vitor∗a and Todd Eastonb

aDepartment of Mathematics, University of Nebraska at Omaha, Omaha, NE 68182,

USA; bDepartment of Industrial and Manufacturing Systems Engineering, Kansas State

University, Manhattan, KS 66506, USA

(Received 00 Month 20XX; accepted 00 Month 20XX)

This paper presents both approximate and exact merged knapsack cover inequalities, a
class of cutting planes for knapsack and multiple knapsack integer programs. These inequali-
ties combine the information from knapsack constraints and cover inequalities. Approximate
merged knapsack cover inequalities can be generated through a O(n logn) algorithm, where
n is the number of variables. This class of inequalities can be strengthened to an exact ver-
sion with a pseudo-polynomial time algorithm. Computational experiments demonstrate an
average improvement of approximately 8% in solution time and 5% in the number of ticks
from CPLEX when approximate merged knapsack cover inequalities are implemented as pre-
processing cuts to solve some benchmark multiple knapsack problems. Furthermore, exact
merged knapsack cover inequalities improve the solution time and number of ticks of some
random multiple knapsack instances by 15% and 5%, respectively.

Keywords: integer programming; cover inequalities; knapsack constraints; cutting planes;
inequality merging; merged knapsack cover inequalities

AMS Subject Classification: MSC 90C10; MSC 90C27; MSC 90C39; MSC 90C57

1. Introduction

Integer program (IP) is a class of mathematical models used to formulate numerous
optimization problems. Integer programs have been used by practitioners to solve
several real world problems from areas such as portfolio management [1, 2], power
generation [3, 4], capital budgeting [5, 6], supply chain and transportation of goods
[7–12], scheduling [13, 14], and health care [15–18]. Unfortunately, IPs areNP-hard
[19] and are typically solved by the branch and bound algorithm [20].

Formally, define an IP as maximize z = cTx, subject to Ax ≤ b and x ∈ Zn+,
where n and r are positive integers, c ∈ Rn, A ∈ Rr×n, and b ∈ Rr. Denote
N = {1, ..., n} to be the set of variable indices and R = {1, ..., r} as the set
of constraint indices. Let P = {x ∈ Zn+ : Ax ≤ b} be the set of feasible integer

solutions, (zIP , xIP) be any feasible integer solution, and (zIP
∗
, xIP

∗
) be an optimal

solution to the IP. Furthermore, denote PLR = {x ∈ Rn+ : Ax ≤ b} as the set of
feasible linear relaxation solutions, (zLR, xLR) to be any feasible linear relaxation
solution, and (zLR

∗
, xLR

∗
) to be an optimal linear relaxation solution to the IP.

The knapsack problem (KP) is a classical IP that models the idea of a hiker
that has to decide which items to pack in a knapsack for a trip. Each item has

∗Corresponding author. Email: ftorresvitor@unomaha.edu

1

January 18, 2020 Optimization gOPTguide

an associated benefit and weight. The problem seeks to maximize the amount of
benefits constrained by a total weight limit. If the knapsack is limited to other
such constraints (e.g. volume and price of items), then this problem is referred
to as the multiple knapsack problem (MKP) or the multidimensional knapsack
problem [21]. Observe that other formulations of MKPs also exist such as MKPs
with multiple objectives [22–24]. Knapsack and multiple knapsack problems have
been used in numerous different applications such as production planning and
inventory control [25, 26], project and portfolio selection [27], resource allocation
[28], machine scheduling [29, 30], and packing problems [31]. Observe that KPs
and MKPs are also NP-hard and substantial research has been performed to more
quickly solve these classes of IPs [32–36].

Formally, define a KP as maximize z = cTx, subject to aTx ≤ b and x ∈
{0, 1}n, where c ∈ Rn+, a ∈ Rn+, and b ∈ R+. Denote PKP = {x ∈ {0, 1}n :
aTx ≤ b} as the set of feasible solutions of a KP. Additionally, define an MKP as
maximize z = cTx, subject to Ax ≤ b and x ∈ {0, 1}n, where c ∈ Rn+, A ∈ Rr×n+ ,
and b ∈ Rr+. Let PMKP = {x ∈ {0, 1}n : Ax ≤ b}. Without loss of generality,
assume every KP has aj ≤ b for all j ∈ N and every MKP has ai,j ≤ bi for all
i ∈ R and j ∈ N . Otherwise, xj = 0 for all cases in which aj > b and ai,j >
bi, and these variables can be eliminated from the problem. Furthermore, denote
(zKP , xKP), (zKP

∗
, xKP

∗
), (zMKP , xMKP), and (zMKP ∗, xMKP ∗) as any feasible

integer solution and an optimal solution for KPs and MKPs, respectively.
The concept of convexity and polyhedral theory are vital to this paper. Let

S ⊆ Rn be convex if, and only if, λx + (1 − λ)x′ ∈ S for all x and x′ ∈ S, and
λ ∈ [0, 1]. If S ⊆ Rn, then its convex hull, Sch, is the intersection of all convex sets
that contain S. Furthermore, define a half space as {x ∈ Rn :

∑n
j=1 αjxj ≤ β},

where α is a nonzero vector and β is a scalar. Define a polyhedron as the intersection
of a finite number of half-spaces and a polytope as a bounded polyhedron. Observe
that P ch, PLR, P chKP , and P chMKP are all polyhedra.

Frequently, cutting planes are used to improve the computational time to solve
IPs. Cutting planes are valid inequalities that remove some space from PLR without
eliminating any xIP ∈ P . For instance, lifting [37], cover cuts [38, 39], disjunctive
cuts [40], Chvátal Gomory cuts [41], mixed integer rounding cuts [42], superadditive
cuts [43], and modular arithmetic cuts [44] are all examples of cutting planes for
integer programming problems.

Formally, any inequality of the form
∑n

j=1 αjxj ≤ β is valid for P ch if, and only

if,
∑n

j=1 αjx
′
j ≤ β for every x′ ∈ P . If an inequality is valid and there exists an

x′′ ∈ PLR such that
∑n

j=1 αjx
′′
j > β, then this inequality is a cutting plane. A valid

inequality
∑n

j=1 αjxj ≤ β weakly dominates another valid inequality
∑n

j=1 α
′
jxj ≤

β′ if αj ≥ α′j for all j ∈ N and β ≤ β′.
The theoretical usefulness of cuttings planes is measured in terms of the dimen-

sion of the cutting plane’s face F = {x ∈ P ch :
∑n

j=1 αjxj = β}. The dimension

of a convex space, P ch, is defined as the maximum number of affinely independent
points minus one. Let Q = {x1, x2, ..., xq} ∈ Rn be a set of affinely independent
points if, and only if, the unique solution to

∑q
k=1 λkx

k = 0 and
∑q

k=1 λk = 0
is λk = 0 for all k ∈ {1, ..., q}. If the dimension of F equals the dimension of
P ch minus one, then the inequality is said to be facet defining and is one of the
theoretically strongest valid inequalities [45].

Since this paper presents merged knapsack cover inequalities, a new class of cut-
ting planes for KPs and MKPs, some background information about covers, lifting,
and inequality merging is useful to understand the paper. Covers represent an in-
feasible solution to a knapsack constraint and are used to create valid inequalities.

2

January 18, 2020 Optimization gOPTguide

Formally, C ⊆ N is a cover if, and only if,
∑

j∈C aj > b. Every cover C has a

corresponding valid cover inequality
∑

j∈C xj ≤ |C| − 1. If
∑

j∈C\{k} aj ≤ b for
each k ∈ C, then the cover is minimal. For brevity, this paper assumes that all
covers are minimal.

Lifting can be used to strengthen some valid inequalities [37]. Lifting begins
with a valid inequality in the restricted space PE,K and creates a valid inequality
over the entire dimensional space P . Let E ⊂ N be an ordered set and K =
(k1, k2, ..., k|E|) ∈ Z|E|. Define the restricted space PE,K = {x ∈ P : xj = kj ∀j ∈
E}. Lifting begins with a valid inequality

∑
j∈E αjxj +

∑
j∈N\E αjxj ≤ β of P chE,K

and creates a valid inequality
∑

j∈E α
′
jxj +

∑
j∈N\E αjxj ≤ β′ of P ch.

Valid inequalities can be: up, down, or middle lifted; exactly or approximately
lifted; sequentially or simultaneously lifted. Inequalities are up, down, or middle
lifted when for each j ∈ E, the values of kj are at the lower bound, upper bound,
or in between the lower and upper bound, respectively [46]. Furthermore, lifting is
considered exact if α′ cannot be increased and β′ cannot be decreased [47–49]. On
the other hand, if a lifted inequality has either an α′ that can be increased or a β′

that can be decreased, then the corresponding inequality is approximately lifted.
Finally, an inequality is sequentially lifted when |E| = 1 and simultaneously lifted
when |E| > 1 [50–53].

One particular type of simultaneous lifting is referred to as inequality merging
[54, 55]. Inequality merging occurs when two low dimensional valid inequalities are
merged to create a new valid inequality of higher dimension. In such a case, one
valid inequality is defined as the host inequality

∑
j∈C1 α1

jxj ≤ β1, while the other

valid inequality is defined as the donor inequality
∑

j∈C2 α2
jxj ≤ β2, where C1 ⊆ N ,

p ∈ C1, C2 ⊆
(
N\C1

)
∪ {p}, and β1, β2, α1

j , α
2
j ∈ Z+. Thus, the host inequality

replaces at least one of its variables with a set of variables from the donor inequality

and the resulting merged inequality is
∑

j∈C1\{p} α
1
jxj+

∑
j∈C2

α2
j

β2xj ≤ β1. Observe
that merged inequalities may be valid and facet defining under certain conditions.
Other techniques to merge inequalities not related to this paper also exist [56, 57].

This paper presents a O(n log n) algorithm to create valid approximate merged
knapsack cover inequalities. The variables of a cover inequality are merged with a
set of variables from a knapsack constraint. The merged knapsack coefficient must
be greater than a certain predefined value, which allows a strengthening of the
cover inequality. In addition, this paper describes a technique to strengthen these
approximate inequalities into an exact version. Exact merged knapsack cover in-
equalities are generated in pseudo-polynomial time with a dynamic programming
algorithm, and are the theoretically strongest such inequalities. Computational re-
sults demonstrate an average improvement of nearly 8% in solution time and 5%
in the number of ticks from CPLEX when approximate merged knapsack cover in-
equalities are implemented as preprocessing cuts to solve some benchmark multiple
knapsack instances. Moreover, exact merged knapsack cover inequalities improve
the solution time of some random multiple knapsack problems by 15% and number
of ticks by 5%.

The remainder of the paper is organized as follows. Section 2 demonstrates the
theory behind both approximate and exact merged knapsack cover inequalities.
Section 3 provides the main computational results. Section 4 concludes the paper
and presents potential topics for future work.

3

January 18, 2020 Optimization gOPTguide

2. Merging Knapsack Constraints with Cover Inequalities

This section describes the theoretical and algorithmic results involving approximate
and exact merged knapsack cover inequalities. Examples are provided to demon-
strate this novel class of cutting planes. Preliminary results can also be found in a
conference proceedings paper [58] and a thesis [59].

2.1. Approximate Merged Knapsack Cover Inequalities

Let
∑

j∈N ajxj ≤ b be a knapsack constraint, C ⊆ N be a cover, M ⊆ N be a set
of merging indices, and α ∈ R+ be a merging coefficient. Define a merged knapsack
cover inequality MKCα as

∑
j∈C\M xj + α

∑
j∈M ajxj ≤ |C| − 1. Observe that∑

j∈C\M xj ≤ |C| − 1 is part of the cover inequality and
∑

j∈M ajxj is a portion

of the knapsack constraint. If there exists an xKP ∈ PKP that meet MKCα at
equality, then MKCα is an exact merged knapsack cover inequality. If not, then
MKCα is an approximate merged knapsack cover inequality. This definition follows
identically to the terms used to define when an inequality is approximately or
exactly lifted.

Observe that α = 0 results in MKCα being weakly dominated by the cover

inequality. If α > |C|−1
max{aj :j∈M} , then there exists an xKP ∈ PKP with xj = 1

for some j ∈ M that violates the merged knapsack cover inequality, and MKCα
is not valid. Consequently, valid merged knapsack cover inequalities must have

0 < α ≤ |C|−1
max{aj :j∈M} in order to be considered theoretically useful.

The approximate merging knapsack cover algorithm (AMKCA) determines valid
merged knapsack cover inequalities that can be theoretically stronger than the
corresponding cover inequality. This algorithm first determines a set of merging
indices M and calculates a value for α such that MKCα is valid. Algorithm 1
presents AMKCA, which requires as input a knapsack constraint

∑
j∈N ajxj ≤ b,

a cover C ⊆ N such that C = {f1, f2, ..., f|C|}, and a set M ′ ⊆ C, where M ′ =
{g1, g2, ..., g|M ′|}. One can view M ′ as a set of elements in C that are merged
jointly with the elements in M . That is, M ′ = M ∩ C. The output to AMKCA is
an α ∈ R+, a set of merging indices M = {h1, h2, ..., h|M |}, and the approximate
merged knapsack cover inequality

∑
j∈C\M xj + α

∑
j∈M ajxj ≤ |C| − 1.

Algorithm 1 has four major steps. The first step (lines 2-12) initializes certain
variables and sorts the knapsack constraint, the indices of C, and the indices of
M ′ in descending order according to the values of a. The second step (lines 13-21)
determines a set M ⊆ N such that α > 0 (Theorem 2.1). The third step (lines

22-29), which is equivalent to calculating α = min
{

|C|−1−q
b−

∑|C\M|
j=|C\M|−q+1 atj

: 0 ≤ q ≤ p
}

(see Theorem 2.2), defines a value for α by efficiently utilizing the sorted knapsack
coefficients to determine feasible solutions for PKP . Observe that any xKP ∈ PKP
may decrease the current estimate for α (Theorem 2.2). The last step (lines 30-32)
reports the α value, M , and MKCα determined by AMKCA.

The most expensive step in AMKCA is to sort the coefficients of the knapsack
constraint. Therefore, approximate merged knapsack cover inequalities can be gen-
erated with O(n log n) effort. To prove that the inequalities reported by AMKCA
are valid and not dominated by their corresponding cover inequality, one must
evaluate both steps (b) and (c) of AMKCA. Theorem 2.1 proves that AMKCA
determines a set of merging indices M such that approximate merged knapsack
cover inequalities are valid for some α > 0.

4

January 18, 2020 Optimization gOPTguide

Algorithm 1 : Approximate Merging Knapsack Cover Algorithm (AMKCA)

1: begin
2: (a) Initialization
3: Sort a = (a1, a2, ...an) such that aj ≥ aj+1 ∀ j = {1, 2, ..., |N | − 1}
4: Sort C = {f1, f2, ..., f|C|} such that afj ≥ afj+1

∀ j = {1, 2, ..., |C| − 1}
5: Sort M ′ = {g1, g2, ..., g|M ′|} such that agj ≥ agj+1

∀ j = {1, 2, ..., |M ′| − 1}
6: M ← ∅
7: l← |C \M ′|
8: α←∞
9: if |M ′| ≤ 2 then

10: p← |C| − 2
11: else
12: p← |C \M ′|
13: (b) Determine M
14: if |M ′| = 0 then

15: θ ← b−
∑|C|

j=2 afj
16: else if |M ′| = 1 then
17: θ ← b−

∑
j∈C\M ′ afj

18: else
19: θ ← 0
20: for each j ∈ N \ (C \M ′) do
21: if aj > θ then M ←M ∪ {j}
22: (c) Calculate α
23: θ ← b
24: for q = 0 to p do

25: α′ ← |C| − 1− q
θ

26: if α′ < α then α← α′

27: if q < p then
28: θ ← θ − afl
29: l← l − 1

30: (d) Output
31: return α ∈ R+ and M = {h1, h2, ..., h|M |}
32: return MKCα ←

∑
j∈C\M xj + α

∑
j∈M ajxj ≤ |C| − 1

33: end

Theorem 2.1 Let
∑

j∈N ajxj ≤ b be a knapsack constraint, C ⊆ N be a cover,

and M ′ ⊆ C be a set of overlapping indices. AMKCA returns a set of merging
indices M such that MKCα is valid for P chKP for some α > 0.

Proof. Let
∑

j∈N ajxj ≤ b be a knapsack constraint, C ⊆ N be a cover, and M ′ ⊆
C be a set of overlapping indices. Assume M is the set of merging indices returned
by AMKCA and α = 1

b . To show that MKCα is valid for P chKP , let x′ be any solution
in PKP and define q =

∑
j∈C\M x′j . Since C is a cover, then

∑
j∈C xj ≤ |C| − 1 is

a valid cover inequality and it holds that q ≤
∑

j∈C x
′
j ≤ |C| − 1.

Assume q ≤ |C| − 2. Applying x′ to the left-hand side of MKCα results in
q+ 1

b

(∑
j∈M ajx

′
j

)
≤ |C|−2+ 1

b

(∑
j∈M ajx

′
j

)
. Since x′ is feasible,

∑
j∈M ajx

′
j ≤ b.

Hence, |C| − 2 + 1
b

(∑
j∈M ajx

′
j

)
≤ |C| − 1 and x′ satisfies MKCα.

Assume q = |C| − 1 and |M ′| = 1. Thus, x′j = 1 for every j ∈ C \ M .

Since x′ is feasible,
∑

j∈C\M ajx
′
j +

∑
j∈M ajx

′
j ≤ b. Therefore,

∑
j∈M ajx

′
j ≤

5

January 18, 2020 Optimization gOPTguide

b −
∑

j∈C\M aj . Since M is returned from AMKCA, aj > θ for every j ∈ M ,

where θ = b −
∑

j∈C\M ′ afj (lines 16-17). Thus, x′j = 0 for every j ∈ M and∑
j∈C\M x′j + 1

b

(∑
j∈M ajx

′
j

)
= |C| − 1.

Assume q = |C|−1 and |M ′| = 0. Since x′ is feasible,
∑

j∈C ajx
′
j+
∑

j∈M ajx
′
j ≤ b

implies that
∑

j∈M ajx
′
j ≤ b−

∑
j∈C ajx

′
j . Because C is sorted and q = |C|−1, then∑

j∈C ajx
′
j ≥

∑|C|
j=2 afj . Since M is returned from AMKCA, every aj > θ where

θ = b −
∑|C|

j=2 afj (lines 14-15). Thus, x′j = 0 for every j ∈ M and
∑

j∈C\M x′j +
1
b

(∑
j∈M ajx

′
j

)
= |C|−1. Hence, MKCα is valid for P chKP . The cases are exhaustive

and the result is shown.

From Theorem 2.1, AMKCA returns M = {h1, h2, ..., h|M |} such that MKCα is
valid for some α > 0. Theorem 2.2 proves that the α value returned by AMKCA
implies that

∑
j∈C\M xj +α

∑
j∈M ajxj ≤ |C|−1 is a valid merged knapsack cover

inequality for P chKP .

Theorem 2.2 Let
∑

j∈N ajxj ≤ b be a knapsack constraint, C ⊆ N be a cover,

andM ⊆ N be a set of merging indices. Then,
∑

j∈C\M xj+α
′∑

j∈M ajxj ≤ |C|−1

is a valid inequality of P chKP for any α′ ≤ α, where α is returned by AMKCA.

Proof. Let
∑

j∈N ajxj ≤ b be a knapsack constraint, C ⊆ N be a cover, and
M ⊆ N be a set of merging indices. For contradiction, assume that there exists an
α′ ≤ α such that

∑
j∈C\M xj + α′

∑
j∈M ajxj ≤ |C| − 1 is not a valid inequality

of P chKP , where α is returned by AMKCA. Thus, there exists an x′ ∈ PKP such
that

∑
j∈C\M x′j + α′

∑
j∈M ajx

′
j > |C| − 1. Define q =

∑
j∈C\M x′j and C \M =

{t1, t2, ..., t|C\M |}. Since x′ is feasible,
∑

j∈C\M ajx
′
j +

∑
j∈M ajx

′
j ≤ b implies that∑

j∈M ajx
′
j ≤ b−

∑
j∈C\M ajx

′
j . Therefore,

∑
j∈M ajx

′
j ≤ b−

∑|C\M |
j=|C\M |−q+1 atj due

to the sets being sorted.
Assume q ≤ |C|−2. Since MKCα′ is not a valid inequality, α′

∑
j∈M ajx

′
j > |C|−

1 − q. Therefore, α′ > |C|−1−q∑
j∈M ajx′j

implies that α′ > |C|−1−q(
b−

∑|C\M|
j=|C\M|−q+1 atj

) . However,

AMKCA requires α ≤ |C|−1−q(
b−

∑|C\M|
j=|C\M|−q+1 atj

) (lines 22-29). Thus, α′ > α contradicts

α being returned by AMKCA.
Assume q ≥ |C| − 1. If q ≥ |C|, x′ violates the cover inequality and contradicts

C being a cover. If q = |C| − 1, then α′
∑

j∈M ajx
′
j > (|C| − 1)− (|C| − 1) implies

that α′ > 0 and x′j = 1 for some j ∈ M . Since α′ > 0, AMKCA returns an α > 0.

Thus, min{ahj
: j ∈ {1, 2, ...|M |}} > b −

∑|C|
j=2 afj for |M ′| = 0 or min{ahj

: j ∈
{1, 2, ...|M |}} > b −

∑
j∈C\M afj for |M ′| = 1 (lines 14-17). Both cases contradict

the feasibility of x′ and the result follows.

The following example demonstrates the implementation of AMKCA to generate
valid approximate merged knapsack cover inequalities.

Example 2.1 Consider the knapsack constraint described in (1), where xj ∈ {0, 1}
for every j ∈ {1, 2, ..., 11}. Let C = {5, 6, 7, 8, 9} be a cover and M ′ = ∅ for this
example.

30x1 +25x2 +20x3 +15x4 +12x5 +11x6 +11x7 +10x8 +10x9 +5x10 +x11 ≤ 44 (1)

6

January 18, 2020 Optimization gOPTguide

Since the knapsack constraint in (1) and the cover C are given in a sorted order,
and because M ′ = ∅, the first steps in AMKCA initializes M = ∅, l = 5 − 0 = 5,
α =∞ and p = 5− 2 = 3 (lines 2-12). The subsequent step in AMKCA calculates

θ = b−
∑|C|

j=2 afj , where C = {f1, f2, ..., f|C|} (lines 13-21). Consequently, θ = 2 and

M contains every j ∈ N \ C such that aj > θ = 2. Therefore, M = {1, 2, 3, 4, 10}.
Observe that including the index corresponding to variable x11 in M violates the
conditions described in Theorem 2.1. The following step in AMKCA calculates a

value for α such that α = min
{ |C|−1−q

θ

}
for every q = {0, ..., |C|−2} (lines 22-29).

Thus, α = min
{

4
44 ,

3
34 ,

2
24 ,

1
13

}
= 1

13 . The algorithm terminates (lines 30-32) and

reports α = 1
13 , M = {1, 2, 3, 4, 10}, and the valid approximate merged knapsack

cover inequality MKC 1

13
presented in (2).

x5 + x6 + x7 + x8 + x9 +
1

13
(30x1 + 25x2 + 20x3 + 15x4 + 5x10) ≤ 4 (2)

Observe that MKC 1

13
is also a cutting plane. To show that, consider the linear

relaxation solution xLR = (0, 0, 0, 2
15 , 0, 1, 1, 1, 1, 0, 0) ∈ PLR. Applying xLR to

MKC 1

13
results in

∑
j∈C\M xLRj + 1

13

∑
j∈M ajx

LR
j = 54

13 . Since 54
13 > 4, MKC 1

13

cuts off the corresponding xLR.

2.2. Exact Merged Knapsack Cover Inequalities

Since the MKCα determined by AMKCA is approximate, an obvious question is
whether these inequalities can be strengthened. This paper also presents a tech-
nique to determine an α∗ ∈ R+ such that α∗ cannot be increased and the inequality
remains valid. These type of inequalities are referred to as exact merged knapsack
cover inequalities.

Observe that AMKCA determines an α value such that α = min
{ |C|−1−q

θq

}
for

every q = {0, ..., |C| − 2}, where θq is dependent on the value of q. Exact merged
knapsack cover inequalities have an α∗ such that there exists an xKP ∈ PKP that
meets MKCα∗ at equality. Thus, one can determine the value of α∗ by maximizing
z =

∑
j∈M ajxj , subject to

∑
j∈M ajxj ≤ θq and xj ∈ {0, 1} for all j ∈ M . If

α∗ = min
{ |C|−1−q

zq

}
for every q = {0, ..., |C|−2}, where zq also depends on the value

of q, then an optimal solution to the aforementioned maximization problem satisfies
MKCα∗ at equality, and MKCα∗ is an exact merged knapsack cover inequality.
Since C is assumed to be minimal, and q ≤ |C| − 2, then zq > 0 for each of these
subproblems.

The exact merging knapsack cover algorithm (EMKCA), described in Algorithm
2, uses dynamic programming to determine the largest possible value of α∗. This
is achieved by tracking an array d = (d0, d1, ..., db), where dk ∈ {0, 1} for each
k ∈ {0, ..., b} (lines 12-15). If the sum of the coefficients of any combination of
feasible solutions with indices in M equals k, then dk = 1. If not, dk = 0 for all
k ∈ {0, ..., b}. Once d is computed, θ is updated by the same method as in AMKCA
and z is determined as the maximum index k ≤ θ such that dk = 1 (lines 16-29).

The input to EMKCA is a knapsack constraint
∑

j∈N ajxj ≤ b, a cover C ⊆ N ,
and a set of merging indices M ⊆ N . The set M must satisfy the conditions of
Theorem 2.1. Therefore, running steps (a) and (b) of AMKCA is sufficient to
identify a suitable M = {h1, h2, ..., h|M |}. The output to EMKCA is an α∗ ∈ R+

7

January 18, 2020 Optimization gOPTguide

and the exact merged knapsack cover inequality
∑

j∈C\M xj + α∗
∑

j∈M ajxj ≤
|C| − 1 (lines 30-32).

Algorithm 2 : Exact Merging Knapsack Cover Algorithm (EMKCA)

1: begin
2: (a) Initialization
3: d0 ← 1
4: dk ← 0 for all k ∈ {1, ..., b}
5: θ ← b
6: l← |C \M |
7: α∗ ←∞
8: if |C ∩M | ≤ 2 then
9: p← |C| − 2

10: else
11: p← |C \M |
12: (b) Compute d
13: for q = 1 to |M | do
14: for r = b− ahq

to 0 do
15: if dr = 1 then dr+ahq

← 1

16: (c) Calculate α∗

17: for q = 0 to p do
18: t← θ
19: flag ← 0
20: while flag = 0 do
21: if dt = 1 then
22: z ← t
23: flag ← 1

24: t← t− 1

25: α′ ← |C| − 1− q
z

26: if α′ < α∗ then α∗ ← α′

27: if q < p then
28: θ ← θ − afl
29: l← l − 1

30: (d) Output
31: return α∗ ∈ R+

32: return MKCα∗ ←
∑

j∈C\M xj + α∗
∑

j∈M ajxj ≤ |C| − 1
33: end

Computational complexity of EMKCA is clearly O(bn+ n log n). Since the run-
ning time is a function of input data, EMKCA is a pseudo-polynomial time al-
gorithm that solves quickly if the right-hand side b is bounded by a constant.
The following theorem formally proves that EMKCA generates valid exact merged
knapsack cover inequalities.

Theorem 2.3 Let
∑

j∈N ajxj ≤ b be a knapsack constraint, C ⊆ N be a cover,
M ⊆ N be a set of merging indices, and α∗ be returned by EMKCA. Thus,∑

j∈C\M xj +α′
∑

j∈M ajxj ≤ |C| − 1 is a valid inequality of P chKP for any α′ ≤ α∗

and is not a valid inequality of P chKP for any α′ > α∗.

8

January 18, 2020 Optimization gOPTguide

Proof. Let
∑

j∈N ajxj ≤ b be a knapsack constraint, C ⊆ N be a cover, M ⊆ N

be a set of merging indices, and α∗ be returned by EMKCA. Assume α′ ≤ α∗ and
let x′ ∈ PKP . Define q′ =

∑
j∈C\M x′j and z′ =

∑
j∈M ajx

′
j . From Algorithm 2,

dz′ = 1 (lines 12-15 and lines 21-22). Thus, α∗ ≤ |C|−1−q′
z′ (line 25). Consequently,∑

j∈C\M x′j + α′
∑

j∈M ajx
′
j ≤ q′ + |C|−1−q′

z′ z′ ≤ |C| − 1. Therefore,
∑

j∈C\M x′j +

α′
∑

j∈M ajx
′
j ≤ |C| − 1 is valid for P chKP .

Assume α′ > α∗. Let q′′ and z′′ be the values of q and z, respectively, that
generated α∗ in EMKCA. Clearly, dz′′ = 1 and there exists an x′′ ∈ PKP such
that

∑
j∈C\M x′′j = q′′ and

∑
j∈M ajx

′′
j = z′′. Applying x′′ to MKCα′ results in

q′′ + α′z′′ > q′′ + α∗z′′ = q′′ + |C|−1−q′′
z′′ z′′ = |C| − 1. Thus, x′′ violates MKCα′ and

MKCα′ is not a valid inequality of P chKP .

Theorem 2.3 proves that merged knapsack cover inequalities reported by
EMKCA are exact because the x′′ from the proof demonstrates that MKCα′ sup-
ports P chKP . Example 2.2 demonstrates the implementation of EMKCA.

Example 2.2 Consider the knapsack constraint presented in (1), the same
cover C = {5, 6, 7, 8, 9} from Example 2.1, and the set of merging indices M =
{1, 2, 3, 4, 10} returned by AMKCA.

EMKCA initializes d0 = 1, θ = 44, l = 5, α∗ =∞, and p = 5−2 = 3 (lines 2-11).
Step (b) of EMKCA runs |M | times and defines the combination of all possible
integers that can be achieved by points restricted to indices in M (lines 12-15).
Table 1 summarizes the final array d. Therefore, any combination of points from∑

j∈C\M xj results in
∑

j∈M ajxj being equal to an integer represented by any

index of d where dk = 1 for all k ∈ {0, 1, ..., b}.

Table 1. Final array d of Example 2.2.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 0 0 0 0 1 0 0 0 0 0 0 0 0 0

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
1 0 0 0 0 1 0 0 0 0 1 0 0 0 0

30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
1 0 0 0 0 1 0 0 0 0 1 0 0 0 0

The algorithm continues and calculates a value for α∗ such that α∗ =

min
{ |C|−1−q

z

}
for every q = {0, ..., |C| − 2} (lines 16-29). Therefore, α∗ =

min
{

4
40 ,

3
30 ,

2
20 ,

1
5

}
= 1

10 and EMKCA reports α∗ = 1
10 along with the valid ex-

act merged knapsack cover inequality MKC 1

10
presented in (3) (lines 30-32).

x5 + x6 + x7 + x8 + x9 +
1

10
(30x1 + 25x2 + 20x3 + 15x4 + 5x10) ≤ 4 (3)

Observe that MKC 1

10
is exact while MKC 1

13
is approximate. For instance, let

xKP = (0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1) ∈ PKP . Applying xKP to MKC 1

10
and MKC 1

13

results in MKC 1

10
being equal to 4 while MKC 1

13
being equal to 46

13 . Thus, the cor-

responding solution xKP meets MKC 1

10
at equality, but not MKC 1

13
. The reader

can enumerate every xKP ∈ PKP and see that the argument holds for all cases.
Clearly, MKC 1

10
dominates MKC 1

13
. In addition, MKC 1

10
is facet defining while

MKC 1

13
is not a facet defining inequality. Table 2 presents 11 affinely indepen-

9

January 18, 2020 Optimization gOPTguide

dent points that meet MKC 1

10
at equality as part of the facet defining proof for

MKC 1

10
. Furthermore, MKC 1

10
is also a cutting plane because

∑
j∈C\M xLRj +

1
10

∑
j∈M ajx

LR
j = 21

5 > 4, where xLR = (0, 0, 0, 2
15 , 0, 1, 1, 1, 1, 0, 0) ∈ PLR from

Example 2.1. Observe that 21
5 > 54

13 and MKC 1

10
also cuts off xLR by more than

MKC 1

13
.

Table 2. Affinely independent points for MKC 1
10

.

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 1 0 0

0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1 0 1 0

0 1 1 1 1 0 0 0 0 0 0

1 0 1 1 1 0 0 0 0 0 1

1 1 0 1 1 0 0 0 0 0 1

1 1 1 0 1 0 1 0 0 1 1

1 1 1 1 0 1 1 0 1 1 1

0 0 0 0 0 0 0 0 1 1 0

0 0 0 0 0 0 0 0 0 0 1

Sequence independent lifting [49] is similar to both approximate and exact
merged knapsack cover inequalities because the lifted coefficients are correlated
to the size of the knapsack coefficients. For instance, consider the same knapsack
constraint and cover from Examples 2.1 and 2.2. The resulting sequence indepen-
dent lifted inequality is given in (4). Observe that MKC 1

10
weakly dominates the

sequence independent lifted inequality in this case. Moreover, the sequence inde-
pendent lifted inequality in (4) is not facet defining while MKC 1

10
is a facet defining

inequality.

x5 + x6 + x7 + x8 + x9 +
25

9
x1 +

20

9
x2 +

16

9
x3 +

11

9
x4 +

1

3
x10 ≤ 4 (4)

To demonstrate EMKCA when M ′ 6= ∅, consider the same knapsack constraint
described in (1) and cover C = {5, 6, 7, 8, 9}. Let M ′ = {9} and the inequality
presented in (5) is returned by AMKCA while the inequality presented in (6) is re-
turned by EMKCA. In this case, EMKCA’s inequality weakly dominates AMKCA’s
inequality as well.

x5 + x6 + x7 + x8 +
1

12
(30x1 + 25x2 + 20x3 + 15x4 + 10x9 + 5x10 + x11) ≤ 4 (5)

x5 + x6 + x7 + x8 +
1

11
(30x1 + 25x2 + 20x3 + 15x4 + 10x9 + 5x10 + x11) ≤ 4 (6)

3. Computational Study

This paper also presents a computational study that evaluates the real effective-
ness of both AMKCA and EMKCA to solve MKPs. Multiple knapsack instances

10

January 18, 2020 Optimization gOPTguide

were first solved in CPLEX [60], a high performance mathematical programming
solver, at default settings. Thus, approximate and exact merged knapsack cover
inequalities were added as preprocessing cuts, and the problems were solved again
with these newly developed cutting planes.

The computational study was performed on an Intel R© CoreTM i7-6700 3.4GHz
processor with 32 GB of RAM. Both AMKCA and EMKCA were implemented
in C++ using Microsoft Visual Studio and CPLEX Version 12.7. Computational
experiments also stored node files in the hard drive instead of RAM in order to
avoid running out of memory.

Computational experiments evaluated approximate and exact merged knapsack
cover inequalities with and without overlapping variables between C and M . There-
fore, computational experiments tested these inequalities with |M ′| = 0, |M ′| = 1,
and |M ′| = 2. Observe that only one inequality was implemented at a time for each
multiple knapsack instance.

This study implemented these inequalities with minimal covers as discussed in
Section 1. Furthermore, one cover inequality was generated for each constraint of
the multiple knapsack instance. The cover inequality of each knapsack constraint
i ∈ R was generated by selecting variables xLRj

∗
with the greatest ratios rLR

∗

j =
dLR∗
j

ai,j
+ xLRj

∗
for all j ∈ N , where dLR

∗

j is the reduced cost of variable xLRj
∗
.

Additionally, the knapsack constraint i ∈ R selected to generate the newly cre-
ated inequalities for each instance was determined as the ith constraint with the
max

{∑
j∈Ci

xLRj
∗}

. Observe that the computational time to generate cover in-
equalities, approximate and exact merged knapsack cover inequalities, and perform
other preprocessing operations were not included in the final results. However, these
times were less than 0.01 seconds for every implementation and would not have
impacted the final results.

Improvement in solution time for each instance is computed by ∆time =(
sCPLEX−sMKCA

sCPLEX

)
× 100% and improvement in the number of ticks is calculated as

∆ticks =
(
tCPLEX−tMKCA

tCPLEX

)
× 100%, where sMKCA corresponds to the solution time and

tMKCA is the number of ticks when solved with either approximate or exact merged
knapsack cover inequalities, and sCPLEX is the solution time and tCPLEX represents
the number of ticks when solved with CPLEX at default settings. When ∆time and
∆ticks of all instances from a corresponding problem set are averaged, it creates
∆time and ∆ticks, respectively.

3.1. Computational Experiments for AMKCA

This paper first describes the results obtained with the implementation of AMKCA.
Multiple knapsack instances solved in this study are benchmark problems from
the OR-Library [61]. These problems set are named as mknapcb1, mknapcb2, ...,
mknapcb9 and each problem set contains 30 instances with: 100, 250, and 500
variables; 5, 10, and 30 constraints. These MKPs are suggested by Chu and Beasley
[32] and take the form of maximize z =

∑
j∈N cjxj , subject to

∑
j∈N ai,jxj ≤ bi

for all i ∈ R and xj ∈ {0, 1} for all j ∈ N .
Each ai,j is integer, randomly generated, and uniformly distributed between an

lb and ub, where lb = 0 and ub = 1, 000. Right-hand side values were calculated as
bi =

⌊
δ
∑

j∈N ai,j
⌋
, where δ represents the tightness ratio. Cost coefficients were

generated as cj =
∑

i∈R ai,j + b500γjc, where γj is a uniform random number
between 0 and 1. Observe that each problem set from the OR-Library has 10
instances with δ = 0.25, 10 instances with δ = 0.50, and 10 instances with δ = 0.75.

11

January 18, 2020 Optimization gOPTguide

This paper solved the following problems set from the OR-Library: mknapcb1,
mknapcb2, mknapcb3, mknapcb4, mknapcb5, and mknapcb7. Results for mknapcb6,
mknapcb8, and mknapcb9 are not reported in this paper because numerous in-
stances in each of these problems set could not be solved to optimality within a
time limit of 24 hours. On average, instances in mknapcb1, mknapcb2, and mk-
napcb4 were solved in less than one minute, instances in mknapcb7 were solved in
less than 20 minutes, instances in mknapcb3 were solved in less than 1.5 hours, and
instances in mknapcb5 were solved within 3.5 hours. Since problems set mknapcb3
and mknapcb5 appear to be more significant, the solution time and number of ticks
for each instance of these sets are presented.

Table 3. Solution time in seconds (sCPLEX and sMKCA) and number of ticks (tCPLEX and tMKCA) obtained when AMKCA

is tested with instances in problem set mknapcb3 from the OR-Library (500 variables and 5 constraints).

δ # zMKP ∗ Time Ticks

CPLEX |M ′| =0 |M ′| =1 |M ′| =2 CPLEX |M ′| =0 |M ′| =1 |M ′| =2

0.25

1 120,148 36,934 28,368 34,018 25,977 963,584 651,123 605,318 551,337
2 117,879 533 493 272 380 43,538 41,037 30,669 33,835
3 121,131 3,795 3,823 3,887 4,711 193,531 224,182 224,300 239,284
4 120,804 2,822 2,701 1,746 3,007 195,990 192,826 176,250 189,761
5 122,319 651 622 639 586 67,145 65,835 68,847 65,573
6 122,024 983 963 868 905 150,098 117,044 110,274 111,720
7 119,127 57,114 55,726 55,172 52,208 607,606 669,035 782,955 596,255
8 120,568 366 418 404 373 80,258 79,576 77,837 75,227
9 121,586 8,394 8,653 8,333 7,796 602,556 670,157 632,483 481,723
10 120,717 6,954 7,291 4,949 7,251 319,905 346,621 240,408 356,204

Average 11,855 10,906 11,029 10,319 322,421 305,744 294,934 270,092

0.50

11 218,428 281 230 222 221 73,447 64,293 62,036 61,718
12 221,202 243 177 177 216 64,651 44,336 45,425 50,654
13 217,542 2,240 983 989 699 2,049,860 387,531 345,191 154,428
14 223,560 1,139 1,104 1,028 1,043 177,378 175,958 172,310 173,538
15 218,966 53 44 46 44 19,209 15,880 16,270 15,923
16 220,530 425 343 310 313 117,202 98,356 92,540 92,072
17 219,989 155 128 129 131 49,432 42,629 43,148 44,074
18 218,215 326 274 102 96 41,195 45,074 29,803 28,503
19 216,976 364 350 358 350 102,715 104,596 107,187 103,102
20 219,719 392 760 477 404 114,352 134,245 124,088 119,136

Average 562 439 384 352 280,944 111,290 103,800 84,315

0.75

21 295,828 8 8 8 8 2,284 2,529 2,595 2,476
22 308,086 91 75 73 92 28,000 23,586 23,327 27,662
23 299,796 38 32 34 33 11,555 9,991 10,659 10,247
24 306,480 214 167 163 163 60,935 50,357 48,948 49,501
25 300,342 50 53 54 53 13,553 14,425 14,889 14,535
26 302,571 101 48 95 57 27,565 13,905 26,959 16,463
27 301,339 849 1,139 1,098 1,129 42,530 52,504 53,088 53,363
28 306,454 62 18 29 45 15,435 4,532 6,118 11,775
29 302,828 94 54 66 70 24,493 14,201 16,740 19,819
30 299,910 185 163 171 172 49,818 46,547 48,909 48,801

Average 169 176 179 182 27,617 23,258 25,223 25,464

Tables 3 and 4 provide the solution time and number of ticks for instances in
problems set mknapcb3 and mknapcb5. Let # denote which particular instance
refers to the data set. Table 5 presents ∆time and ∆ticks for all 10 instances in each
problem set tested in this study with δ = 0.25, δ = 0.50, and δ = 0.75. Recall that
|N | is the total number of variables and |R| is the total number of constraints in
each problem set. For mknapcb3, the average percentage improvement in solution
time is 9.9% when |M ′| = 0, 15.5% when |M ′| = 1, and 13.3% when |M ′| = 2.
Number of ticks are improved on average by 11.3% when |M ′| = 0, 12.2% when
|M ′| = 1, and 12.4% when |M ′| = 2. For mknapcb5, solution time is improved
on average by 1.9%, 3.6%, and 2.5% when |M ′| = 0, |M ′| = 1, and |M ′| = 2,

12

January 18, 2020 Optimization gOPTguide

respectively. Furthermore, the average percentage improvement in the number of
ticks is 1.1% for |M ′| = 0, 1.9% for |M ′| = 1, and 0.8% for |M ′| = 2.

Table 4. Solution time in seconds (sCPLEX and sMKCA) and number of ticks (tCPLEX and tMKCA) obtained when AMKCA is

tested with instances in problem set mknapcb5 from the OR-Library (250 variables and 10 constraints).

δ # zMKP ∗ Time Ticks

CPLEX |M ′| =0 |M ′| =1 |M ′| =2 CPLEX |M ′| =0 |M ′| =1 |M ′| =2

0.25

1 59,187 13,356 14,426 14,727 14,825 1,655,035 1,799,932 1,837,299 1,849,424
2 58,781 5,383 4,870 3,918 4,761 293,903 290,739 236,981 284,223
3 58,097 4,388 4,871 4,652 4,926 278,116 288,010 287,053 296,163
4 61,000 20,413 20,112 21,916 22,867 2,594,848 2,483,525 2,615,185 2,694,179
5 58,092 56,474 59,365 61,138 61,057 6,995,591 7,343,748 7,565,223 7,597,400
6 58,824 7,528 6,544 6,777 6,399 416,930 339,391 334,522 324,025
7 58,704 6,667 5,321 5,417 5,449 278,173 259,731 260,490 260,758
8 58,936 40,499 47,902 49,937 47,827 5,609,246 6,662,269 6,930,348 6,638,090
9 59,387 7,179 7,036 7,055 7,058 623,819 620,053 621,679 621,956
10 59,208 14,683 15,931 15,323 16,652 1,329,861 1,432,828 1,377,768 1,506,192

Average 17,657 18,638 19,086 19,182 2,007,552 2,152,023 2,206,655 2,207,241

0.50

11 110,913 10,336 13,086 11,860 12,515 840,879 1,054,597 954,854 1,008,154
12 108,717 13,784 11,822 11,787 11,196 1,212,435 1,099,852 1,155,044 1,077,073
13 108,932 8,859 7,670 7,669 7,579 1,014,826 890,074 889,910 879,614
14 110,086 33,651 33,616 33,292 33,597 4,115,762 4,094,506 4,030,001 4,076,060
15 108,485 5,942 5,124 5,246 5,175 457,495 402,188 411,568 406,124
16 110,845 14,029 13,703 13,510 13,302 1,375,114 1,326,986 1,318,684 1,333,611
17 106,077 16,051 13,796 14,370 14,166 1,639,047 1,440,350 1,446,479 1,446,363
18 106,686 9,434 10,270 10,225 10,239 1,077,533 1,162,989 1,179,287 1,180,920
19 109,829 9,530 9,282 9,268 9,326 1,021,183 1,005,362 1,003,806 1,010,045
20 106,723 7,214 6,343 6,340 6,432 377,800 312,434 329,835 330,633

Average 12,883 12,471 12,357 12,353 1,313,208 1,278,934 1,271,947 1,274,860

0.75

21 151,809 3,537 4,088 4,201 4,231 247,678 269,718 269,878 275,707
22 148,772 8,590 9,419 9,127 9,140 649,820 751,309 749,183 749,183
23 151,909 3,201 3,009 2,948 2,711 195,756 181,553 181,720 181,087
24 151,324 2,311 2,261 2,201 2,151 161,687 154,049 157,484 157,484
25 151,966 8,243 6,182 5,887 5,771 511,072 318,843 322,124 320,081
26 152,109 1,619 1,527 1,521 1,531 136,431 127,645 127,110 127,988
27 153,131 248 226 193 204 23,155 22,117 20,460 20,658
28 153,578 9,572 10,220 10,042 10,024 1,163,710 1,254,598 1,232,946 1,230,807
29 149,160 1,984 1,515 1,570 1,584 125,201 116,879 118,869 117,710
30 149,704 1,747 2,005 1,716 1,872 129,039 159,085 146,597 152,603

Average 4,105 4,045 3,941 3,922 334,355 335,580 332,637 333,331

When considering the overall average described in Table 5, solution time is im-
proved on average by 8.0% when |M ′| = 0, 8.3% when |M ′| = 1, and 8.5% when
|M ′| = 2. Improvement in the number of ticks are 4.9% for |M ′| = 0, 4.5% for
|M ′| = 1, and 5.1% for |M ′| = 2. Observe that on average, computational results
of approximate merged knapsack cover inequalities implemented with |M ′| = 0,
|M ′| = 1, and |M ′| = 2 are somewhat similar for the cases reported in this paper,
and no conclusions can be made on which overlapping strategy is more efficient.

3.2. Computational Experiments for EMKCA

Exact merged knapsack cover inequalities were generated by EMKCA and also
tested with benchmark instances from the OR-Library. In such a case, EMKCA’s
input was the same knapsack constraint and cover inequality used by AMKCA, and
the set of merging indices M returned by AMKCA. Surprisingly, each benchmark
instance solved with EMKCA had α∗ = α. Consequently, AMKCA generated exact
merged knapsack cover inequalities for all the cases.

To investigate why EMKCA did not have any α∗ > α, the authors tracked the
array d from EMKCA and noticed that d had the majority, if not all, of its indices

13

January 18, 2020 Optimization gOPTguide

Table 5. ∆time and ∆ticks of all 10 instances for each problem set tested from the OR-Library.

Name |N | |R| δ
Time Ticks

|M ′| =0 |M ′| =1 |M ′| =2 |M ′| =0 |M ′| =1 |M ′| =2

mknapcb1 100 5
0.25 4.7% -0.4% 3.4% -1.1% -3.9% -2.7%
0.50 4.6% -2.1% 6.2% -0.5% 2.3% 1.7%
0.75 10.7% 12.9% 12.7% -1.8% -2.3% 1.7%

Average 6.7% 3.5% 7.4% -1.1% -1.3% 1.2%

mknapcb2 250 5
0.25 18.7% 12.9% 12.7% -1.8% -2.3% 4.5%
0.50 10.8% 13.7% 13.2% 11.0% 11.6% 11.1%
0.75 -3.8% -6.5% -8.4% -7.5% -10.3% -11.4%

Average 8.6% 6.8% 7.7% 5.2% 2.4% 3.7%

mknapcb3 500 5
0.25 2.1% 12.9% 5.5% 1.9% 7.9% 8.9%
0.50 8.6% 22.1% 24.1% 14.4% 19.5% 20.8%
0.75 19.1% 11.5% 10.2% 17.5% 9.2% 7.5%

Average 9.9% 15.5% 13.3% 11.3% 12.2% 12.4%

mknapcb4 100 10
0.25 11.1% 10.3% 10.0% 4.9% 4.1% 3.9%
0.50 10.0% 9.6% 9.5% 9.3% 8.8% 9.5%
0.75 3.4% 4.1% 3.6% 3.5% 3.1% 3.9%

Average 8.1% 8.0% 7.7% 5.9% 5.3% 5.8%

mknapcb5 250 10
0.25 -0.5% -0.2% -2.8% -1.3% -0.4% -3.0%
0.50 3.7% 4.7% 4.7% 3.5% 3.6% 3.6%
0.75 2.4% 6.2% 5.8% 1.2% 2.6% 2.0%

Average 1.9% 3.6% 2.5% 1.1% 1.9% 0.8%

mknapcb7 100 30
0.25 17.3% 15.9% 17.2% 8.1% 7.3% 9.1%
0.50 12.9% 13.1% 11.8% 6.1% 5.2% 4.8%
0.75 8.4% 7.7% 7.8% 7.5% 6.3% 6.2%

Average 12.9% 12.2% 12.3% 7.3% 6.3% 6.7%

Overall Average 8.0% 8.3% 8.5% 4.9% 4.5% 5.1%

marked with a 1. Hunsaker and Tovey [62] show that when knapsack instances are
randomly generated, there exists a set G ⊆ N with probability approaching 1 such
that

∑
j∈G ajxj = b. Consequently, many random knapsack instances eliminate

gaps in d and so α∗ = α.
To identify instances in which EMKCA produces inequalities that dominate the

inequalities generated by AMKCA, observe that if all ai,j are random between
1 and some amax, then several small and one large number can be combined to
create numerous combinations between 1 and 2 × amax. Therefore, EMKCA may
be useful if ai,j is between some amin and amax, where amin is at least 50% of
amax. Since there does not exist any publicly available benchmark instances that
follow this criterion, new instances were randomly generated to test EMKCA. This
paper attempted two sets of problems where amin is 50% and 60% of amax. These
instances follow the same form proposed by Chu and Beasley [32] but instead, they
have constraint coefficients from 2, 500 to 5, 000 (lb = 2, 500 and ub = 5, 000) and
from 3, 000 to 5, 000 (lb = 3, 000 and ub = 5, 000). Additional experiments where
amin is 90% of amax are also provided in Vitor [59].

Since the knapsack coefficients of the newly generated random instances are
greater than the knapsack coefficients of the instances from the OR-Library, prob-
lems of the same size (100, 250, and 500 variables vs. 5, 10, and 30 constraints)
are computationally challenging and could not be solved within 24 hours. Con-
sequently, only the following variations of variables and constraints were tested:
40 × 5, 60 × 5, 80 × 5, and 100 × 5. Similar to the OR-Library, 30 instances were
generated for each of these problems set where 10 instances have δ = 0.25, 10
instances have δ = 0.50, and 10 instances have δ = 0.75.

14

January 18, 2020 Optimization gOPTguide

On average, instances with 40 variables and 5 constraints were solved in less
than 30 seconds, 60 variables and 5 constraints were solved within 15 minutes, 80
variables and 5 constraints were solved in less than 30 minutes, and instances with
100 variables and 5 constraints were solved within 2 hours. For simplicity, only
instances that are more significant (80 × 5 and 100 × 5) have the solution time
and number of ticks reported in this paper. In addition, only the solution time and
number of ticks from MKPs where lb = 3, 000 and ub = 5, 000 are presented since
the time and number of ticks required to solve instances where lb = 2, 500 and
ub = 5, 000 are in the same order of magnitude.

Table 6 describes the results for instances with 80 variables and 5 constraints,
and Table 7 presents the results for instances with 100 variables and 5 constraints
when lb = 3, 000 and ub = 5, 000. Table 8 shows ∆time and ∆ticks for MKPs where
lb = 2, 500 and ub = 5, 000, while Table 9 describes the results for MKPs with
lb = 3, 000 and ub = 5, 000.

Table 6. Solution time in seconds (sCPLEX and sMKCA) and number of ticks (tCPLEX and tMKCA) obtained when EMKCA

is tested with the newly generated random instances (80 variables and 5 constraints, lb = 3, 000 and ub = 5, 000).

δ # zMKP ∗ Time Ticks

CPLEX |M ′| =0 |M ′| =1 |M ′| =2 CPLEX |M ′| =0 |M ′| =1 |M ′| =2

0.25

1 306,856 13 14 12 12 1,483 1,591 1,429 1,416
2 305,174 412 308 317 330 34,013 25,872 29,003 27,606
3 302,659 274 153 147 179 16,094 14,492 14,314 15,909
4 305,681 240 64 62 75 10,452 7,941 8,043 8,721
5 305,412 1,119 873 784 778 137,329 123,051 120,288 122,359
6 304,329 444 328 331 320 31,470 28,846 28,561 29,076
7 307,051 345 188 185 188 21,002 17,116 17,206 17,617
8 305,596 252 98 102 95 11,907 9,628 10,240 9,758
9 304,410 414 337 282 268 28,012 22,456 23,102 22,454
10 307,926 280 85 83 82 11,312 9,087 9,249 9,035

Average 379 245 230 233 30,307 26,008 26,144 26,395

0.50

11 612,457 11 8 7 11 1,151 1,037 1,062 1,269
12 609,312 804 635 526 522 79,464 90,415 75,540 76,624
13 604,381 869 555 521 528 86,548 73,147 74,140 73,818
14 610,098 4,782 3,039 3,165 3,326 849,785 654,599 662,967 708,887
15 610,287 828 495 647 655 83,604 63,987 72,838 70,892
16 607,745 1,367 959 901 866 176,228 141,850 145,215 142,257
17 610,020 1,538 1,035 1,081 1,028 233,426 190,440 202,157 180,326
18 608,220 73 49 47 48 3,933 4,392 4,362 4,443
19 614,610 381 243 244 223 28,805 22,464 21,971 20,657
20 615,434 2,980 1,083 1,081 1,090 521,019 187,990 192,793 190,608

Average 1,363 810 822 830 206,396 143,032 145,305 146,978

0.75

21 915,422 228 89 89 87 13,058 10,553 10,486 10,417
22 911,537 403 440 505 447 28,973 35,164 38,479 35,391
23 904,455 249 95 97 94 9,328 10,778 11,034 10,737
24 913,181 561 449 442 451 47,547 42,785 41,207 41,421
25 913115 1,957 1,146 1,142 1,166 332,707 227,867 230,703 234,761
26 909,672 169 63 61 61 6,777 7,291 7,451 7,506
27 917,076 1,575 1,164 1,371 1,419 236,014 187,904 201,840 200,749
28 912,923 423 290 418 252 31,820 23,991 28,066 20,614
29 909,901 437 342 326 341 33,535 32,020 31,301 32,783
30 919,204 596 360 364 384 44,869 37,674 35,485 40,203

Average 660 444 482 470 78,463 61,603 63,605 63,458

Overall, the average percentage improvement in solution time for MKPs where
lb = 2, 500 and ub = 5, 000 (Table 8) is 12.8% when |M ′| = 0, 13.2% when |M ′| = 1,
and 15.6% when |M ′| = 2. Furthermore, the number of ticks are reduced on average
by 5.1% when |M ′| = 0, 5.3% when |M ′| = 1, and 7.1% when |M ′| = 2. For MKPs
where lb = 3, 000 and ub = 5, 000 (Table 9), solution time is improved on average
by 16.3%, 16.1%, and 14.6% when |M ′| = 0, |M ′| = 1, and |M ′| = 2, respectively.

15

January 18, 2020 Optimization gOPTguide

Moreover, the average percentage improvement in the number of ticks is 5.1%,
4.3%, and 3.8% when |M ′| = 0, |M ′| = 1, and |M ′| = 2, respectively.

Table 7. Solution time in seconds (sCPLEX and sMKCA) and number of ticks (tCPLEX and tMKCA) obtained when EMKCA is
tested with the newly generated random instances (100 variables and 5 constraints, lb = 3, 000 and ub = 5, 000).

δ # zMKP ∗ Time Ticks

CPLEX |M ′| =0 |M ′| =1 |M ′| =2 CPLEX |M ′| =0 |M ′| =1 |M ′| =2

0.25

1 409,485 1,000 1,152 1,244 1,168 132,061 151,905 139,139 132,295
2 405,262 19,677 21,848 22,516 23,147 3,458,479 3,378,492 3,552,690 3,586,408
3 407,570 935 846 830 857 67,511 62,109 60,525 61,998
4 409,966 3,680 4,266 4,375 4,356 784,194 838,738 822,419 827,682
5 406,789 9,693 9,561 9,361 9,771 1,820,472 1,764,526 1,771,318 1,818,242
6 408,716 25,470 26,976 26,657 25,768 4,835,167 5,090,715 4,981,446 4,716,287
7 406,266 5,672 5,141 5,113 4,852 898,976 850,390 852,056 793,220
8 409,210 1,770 1,636 1,692 1,587 230,707 221,115 235,992 223,520
9 410,335 10,871 12,015 12,290 12,014 2,426,846 2,256,937 2,330,600 2,276,982
10 410,206 6,139 5,527 5,535 5,638 1,027,278 958,257 947,974 945,826

Average 8,491 8,897 8,961 8,916 1,568,169 1,557,318 1,569,416 1,538,246

0.50

11 810,884 1,264 1,078 1,117 1,095 178,991 158,193 171,134 163,621
12 812,400 7,355 6,518 6,645 6,528 1,644,317 1,479,536 1,494,633 1,481,837
13 814,371 279 300 274 274 20,521 23,309 20,489 20,295
14 817,131 3,633 3,923 4,418 4,446 785,714 760,945 836,401 826,337
15 814,120 5,402 6,087 7,089 7,106 1,179,329 1,202,764 1,498,645 1,469,905
16 805,030 869 863 853 849 94,711 91,784 91,954 91,581
17 814,805 5,494 3,719 3,914 3,968 1,012,339 653,912 687,046 699,573
18 817,795 2,680 2,511 2,503 2,544 429,913 409,150 412,954 413,551
19 820,410 2,896 3,503 3,602 3,693 611,374 711,224 728,024 730,709
20 809,899 2,433 2,458 2,473 2,517 407,233 439,357 446,258 430,681

Average 3,231 3,096 3,289 3,302 636,444 593,017 638,754 632,809

0.75

21 1,215,759 2,024 1,530 1,587 1,524 428,431 240,878 254,296 239,567
22 1,212,670 2,725 3,049 2,741 2,725 511,120 542,932 518,563 511,920
23 1,224,965 1,061 950 980 931 134,792 125,789 132,225 126,773
24 1,213,710 2,757 3,089 3,078 3,139 587,512 622,368 615,261 621,154
25 1,221,249 821 748 779 811 98,047 85,380 86,961 92,394
26 1,225,155 6,412 5,926 5,880 5,967 1,255,618 1,179,438 1,170,891 1,209,091
27 1,225,627 3,379 3,591 3,758 3,773 774,516 739,747 753,734 781,725
28 1,218,795 485 478 465 476 32,451 30,950 30,095 30,810
29 1,218,137 1,648 1,572 1,655 1,771 253,518 256,369 283,357 309,545
30 1,218,358 987 910 881 873 179,770 171,268 169,532 168,094

Average 2,230 2,184 2,180 2,199 425,578 399,512 401,492 409,107

Table 10 describes the percentage improvement in α∗ for all newly generated
random instances tested with EMKCA. Table 10 was obtained by implementing
both EMKCA and AMKCA on each instance and comparing the returned merging
coefficients, α∗ and α. Percentage improvement in α∗ is defined for each instance as
∆α∗ =

(
α∗−α
α

)
× 100%, and ∆α∗ is defined similarly as ∆time and ∆ticks. Overall,

implementing EMKCA instead of AMKCA results in an α∗ that is on average
8.5%, 3.3%, and 1.8% greater than the α from AMKCA for |M ′| = 0, |M ′| = 1,
and |M ′| = 2, respectively.

When combining both sets of newly generated random multiple knapsack in-
stances (lb = 2, 500 and ub = 5, 000 plus lb = 3, 000 and ub = 5, 000), the average
percentage improvement in solution time is 14.6% when |M ′| = 0, 14.7% when
|M ′| = 1, and 15.1% when |M ′| = 2. Furthermore, the average percentage improve-
ment in the number of ticks is 5.1%, 4.8%, and 5.5% when |M ′| = 0, |M ′| = 1, and
|M ′| = 2, respectively. Since improvement in solution time and number of ticks for
each of the three overlapping strategies is somewhat similar, conclusions on which
strategy is more efficient cannot be determined based only on the experiments per-
formed for this paper. On the other hand, improvements in α∗ appears to be more
significant when |M ′| = 0 than when |M ′| = 1 and |M ′| = 2. Consequently, one can

16

January 18, 2020 Optimization gOPTguide

infer that even a small improvement in α∗ can result in substantial improvements
in solution time when implementing EMKCA against CPLEX at default settings.

Table 8. ∆time and ∆ticks of all 10 problems from the newly generated random instances with
lb = 2, 500 and ub = 5, 000.

|N | |R| δ
Time Ticks

|M ′| =0 |M ′| =1 |M ′| =2 |M ′| =0 |M ′| =1 |M ′| =2

40 5
0.25 12.6% 4.8% 10.2% -0.6% -1.9% -1.6%
0.50 12.0% 11.9% 10.4% 5.8% 6.3% 5.8%
0.75 21.0% 23.8% 22.5% -5.4% -4.1% 2.1%

Average 15.2% 13.5% 14.4% -0.1% 0.1% 2.1%

60 5
0.25 1.3% 2.7% 9.2% -1.6% -1.8% 1.4%
0.50 -7.6% -5.1% 16.7% -2.6% -4.3% 12.3%
0.75 10.5% 11.0% 12.2% 3.2% 3.2% 5.5%

Average 1.4% 2.9% 12.7% -0.3% -1.0% 6.4%

80 5
0.25 38.4% 38.4% 38.5% 18.8% 19.5% 17.5%
0.50 41.6% 42.6% 41.6% 17.9% 17.9% 16.5%
0.75 32.1% 33.6% 31.1% 13.2% 12.5% 11.2%

Average 37.3% 38.2% 37.1% 16.7% 16.6% 15.1%

100 5
0.25 -4.7% -4.5% -5.3% 0.4% 1.3% -1.7%
0.50 5.5% 5.9% 7.5% 17.6% 19.0% 18.9%
0.75 -9.0% -7.5% -7.2% -6.0% -3.9% -3.3%

Average -2.7% -2.0% -1.7% 4.0% 5.5% 4.6%

Overall Average 12.8% 13.2% 15.6% 5.1% 5.3% 7.1%

Table 9. ∆time and ∆ticks of all 10 problems from the newly generated random instances with

lb = 3, 000 and ub = 5, 000.

|N | |R| δ
Time Ticks

|M ′| =0 |M ′| =1 |M ′| =2 |M ′| =0 |M ′| =1 |M ′| =2

40 5
0.25 14.1% 24.1% 23.2% -0.6% 1.9% 7.2%
0.50 0.9% 7.4% 5.9% -4.2% -0.7% -0.9%
0.75 27.6% 28.0% 24.4% 9.6% 9.9% 5.3%

Average 14.2% 19.8% 17.8% 1.6% 3.7% 3.9%

60 5
0.25 22.7% 15.6% 13.5% 7.8% 5.0% 2.1%
0.50 5.9% 7.1% 7.8% -2.9% -1.7% -2.3%
0.75 12.1% 5.3% -4.9% 0.4% -5.7% -10.9%

Average 13.6% 9.3% 5.5% 1.8% -0.8% -3.7%

80 5
0.25 38.0% 41.6% 39.8% 14.7% 14.2% 13.4%
0.50 35.5% 36.5% 33.2% 17.0% 16.9% 16.1%
0.75 35.6% 30.1% 34.5% 8.2% 5.6% 7.7%

Average 36.4% 36.1% 35.9% 13.3% 12.2% 12.4%

100 5
0.25 -2.1% -3.7% -2.4% 0.9% 1.2% 3.0%
0.50 1.5% -1.8% -2.3% 2.8% -1.0% 0.2%
0.75 3.5% 3.4% 2.6% 7.0% 5.8% 4.2%

Average 1.0% -0.7% -0.7% 3.6% 2.0% 2.5%

Overall Average 16.3% 16.1% 14.6% 5.1% 4.3% 3.8%

In summary, approximate merged knapsack cover inequalities improved the so-
lution time and number of ticks by nearly 8% and 5%, respectively, while exact
merged knapsack cover inequalities improved the solution time by 15% and the
number of ticks by 5%. Based on the computational results presented in this paper,
both AMKCA and EMKCA help reduce the effort to solve multiple knapsack in-
stances. The authors recommend implementing EMKCA to solve MKPs in which

17

January 18, 2020 Optimization gOPTguide

the knapsack coefficients are restricted to the cases where the minimum knap-
sack coefficient is at least 50% of the maximum knapsack coefficient. Otherwise,
AMKCA should be implemented.

Table 10. ∆α∗ of all 10 problems from the newly generated random instances with lb = 2, 500

and ub = 5, 000, and lb = 3, 000 and ub = 5, 000.

|N | |R| δ
lb = 2, 500 and ub = 5, 000 lb = 3, 000 and ub = 5, 000

|M ′| =0 |M ′| =1 |M ′| =2 |M ′| =0 |M ′| =1 |M ′| =2

40 5
0.25 9.4% 5.4% 4.2% 15.8% 4.9% 1.3%
0.50 3.5% 6.7% 3.2% 11.4% 6.1% 3.4%
0.75 4.7% 9.6% 2.5% 14.8% 4.5% 0.9%

Average 5.9% 7.2% 3.3% 14.0% 5.1% 1.9%

60 5
0.25 5.8% 3.0% 2.5% 10.5% 4.1% 2.5%
0.50 8.3% 0.5% 3.9% 11.1% 2.6% 0.8%
0.75 4.9% 6.2% 1.0% 9.9% 3.5% 1.9%

Average 6.3% 3.2% 2.5% 10.5% 3.4% 1.7%

80 5
0.25 1.8% 0.5% 3.1% 10.2% 0.5% 0.2%
0.50 2.6% 1.2% 2.8% 11.2% 0.8% 0.8%
0.75 4.0% 2.0% 0.7% 10.2% 1.4% 0.3%

Average 2.8% 1.3% 2.2% 10.5% 0.9% 0.4%

100 5
0.25 4.3% 3.2% 1.9% 19.8% 5.5% 1.3%
0.50 7.2% 0.1% 0.1% 9.8% 2.3% 2.0%
0.75 3.5% 0.4% 0.5% 8.8% 4.3% 1.8%

Average 5.0% 1.2% 0.8% 12.8% 4.0% 1.7%

Overall Average 5.0% 3.2% 2.2% 12.0% 3.4% 1.4%

4. Conclusions and Future Research

Merged knapsack cover inequalities are a new class of cutting planes for multi-
ple knapsack problems. These inequalities merge the variables of a knapsack con-
straint with the variables of a cover inequality. This paper presents an algorithm
that requires O(n log n) effort, where n is the number of variables, to generate
valid approximate merged knapsack cover inequalities. Furthermore, a dynamic
programming technique, which runs in pseudo-polynomial time, improves these
approximate inequalities into an exact version.

Computational experiments tested the effectiveness of both approximate and
exact merged knapsack cover inequalities versus CPLEX at default settings. In
the studied benchmark multiple knapsack instances, approximate merged knap-
sack cover inequalities improved the solution time on average by nearly 8% and
the number of ticks by 5%. Moreover, exact merged knapsack cover inequalities
improved the solution time and number of ticks of the newly generated random
instances by 15% and 5%, respectively.

Future research topics include identifying new classes of inequalities that can be
merged to create strong cutting planes and perform computational experiments
to show the effectiveness of these new inequalities. Examining new overlapping
strategies other than the ones presented in this paper is also a potential future
research topic. Computationally comparing the methods described in this paper
to other algorithms to solve multiple knapsack problems [33, 35, 49] would also be
beneficial to merged knapsack cover inequalities. Finally, one could view merging
as a new type of lifting, called inequality lifting. Exploring methods to quickly
perform inequality lifting could create new and useful classes of cutting planes.

18

January 18, 2020 Optimization gOPTguide

References

[1] Pinto RLV, Rustem B. Solving a mixed-integer multiobjective bond portfoliomodel
involving logical conditions. Ann Oper Res. 1998;81(0):497–514.

[2] Bertsimas D, Darnell C, Soucy R. Portfolio construction through mixed-integer pro-
gramming at Grantham, Mayo, Van Otterloo and Company. Interfaces. 1999;29(1):49–
66.

[3] Carrion M, Arroyo JM. A computationally efficient mixed-integer linear formulation
for the thermal unit commitment problem. IEEE Transactions on Power Systems.
2006;21(3):1371–1378.

[4] Zhan Y, Zheng QP. A multistage decision-dependent stochastic bilevel programming
approach for power generation investment expansion planning. IISE Transactions.
2018;50(8):720–734.

[5] Finn FJ. Integer programming, linear programming and capital budgeting. Abacus.
1973;9(2):180–192.

[6] Iwamura K, Liu B. Dependent-chance integer programming applied to capital bud-
geting. J Oper Res Soc Jpn. 1999;42(2):117–127.

[7] Arunapuram S, Mathur K, Solow D. Vehicle routing and scheduling with full truck-
loads. Transport Sci. 2003;37(2):170–182.

[8] Ruiz R, Maroto C, Alcaraz J. A decision support system for a real vehicle routing
problem. Eur J Oper Res. 2004;153(3):593–606.

[9] Sinha AK, Davich T, Krishnamurthy A. Optimisation of production and subcontract-
ing strategies. International Journal of Production Research. 2016;54(8):2377–2393.

[10] Gifford T, Opicka T, Sinha A, Brink DV, Gifford A, Randall R. Dispatch optimization
in bulk tanker transport operations. INFORMS Journal on Applied Analytics. 2018;
48(5):403–421.

[11] Albashabsheh NT, Heier Stamm JL. Optimization of lignocellulosic biomass-to-biofuel
supply chains with mobile pelleting. Transportation Research Part E: Logistics and
Transportation Review. 2019;122(1):545–562.

[12] Delli U, Sinha AK. Parallel computation framework for optimizing trailer routes in
bulk transportation. Journal of Industrial Engineering International. 2019;:1–11.

[13] Subramanian R, Scheff RP, Quillinan JD, Wiper DS, Marsten RE. Coldstart: Fleet
assignment at Delta Air lines. Interfaces. 1994;24(1):104–120.

[14] Easton K, Nemhauser G, Trick M. Solving the travelling tournament problem: A
combined integer programming and constraint programming approach. In: Burke E,
Causmaecker PD, editors. Practice and theory of automated timetabling iv. Vol. 2740
of Lecture Notes in Computer Science; Berlin Heidelberg: Springer; 2003. p. 100–109.

[15] Lee EK, Fox T, Crocker I. Integer programming applied to intensity-modulated radi-
ation therapy treatment planning. Ann Oper Res. 2003;119(1):165–181.

[16] Lee EK, Zaider M. Mixed integer programming approaches to treatment planning
for brachytherapy application to permanent prostate implants. Ann Oper Res. 2003;
119(1):147–163.

[17] Muggy L, Heier Stamm JL. Dynamic, robust models to quantify the impact of decen-
tralization in post-disaster health care facility location decisions. Operations Research
for Health Care. 2017;12(1):43–59.

[18] Heier Stamm JL, Serban N, Swann J, Wortley P. Quantifying and explaining ac-
cessibility with application to the 2009 H1N1 vaccination campaign. Health Care
Management Science. 2017;20(1):76–93.

[19] Karp RM. Reducibility among combinatorial problems. In: Miller RE, Thatcher JW,
Bohlinger JD, editors. Complexity of computer computations. The IBM Research
Symposia Series; New York: Plenum; 1972. p. 85–103.

[20] Land AH, Doig AG. An automatic method of solving discrete programming problems.
Econometrica. 1960;28(3):497–520.

[21] Puchinger J, Raidl GR, Pferschy U. The multidimensional knapsack problem: Struc-
ture and algorithms. INFORMS J Comput. 2010;22(2):250–265.

19

January 18, 2020 Optimization gOPTguide

[22] Florios K, Mavrotas G, Diakoulaki D. Solving multiobjective, multiconstraint knap-
sack problems using mathematical programming and evolutionary algorithms. Eur J
Oper Res. 2010;203(1):14–21.

[23] Lust T, Teghem J. The multiobjective multidimensional knapsack problem: a sur-
vey and a new approach. International Transactions in Operational Research. 2012;
19(4):495–520.

[24] Mavrotas G, Florios K, Figueira JR. An improved version of a core based algorithm
for the multi-objective multi-dimensional knapsack problem: A computational study
and comparison with meta-heuristics. Appl Math Comput. 2015;270(1):25–43.

[25] Dawande M, Kalagnanam J, Keskinocak P, Salman FS, Ravi R. Approximation al-
gorithms for the multiple knapsack problem with assignment restrictions. J Comb
Optim. 2000;4(2):171–186.

[26] MBretthauer K, Shetty B, Syam S, Vokurka RJ. Production and inventory manage-
ment under multiple resource constraints. Math Comput Model. 2006;44(1-2):85–95.

[27] Chang P, Lee J. A fuzzy DEA and knapsack formulation integrated model for project
selection. Comput Oper Res. 2012;39(1):112–125.

[28] Babaioff M, Immorlica N, Kempe D, Kleinberg R. A knapsack secretary problem with
applications. In: Charikar M, Jansen K, Reingold O, Rolim JD, editors. Approxima-
tion, randomization, and combinatorial optimization. Vol. 4627 of Lecture Notes in
Computer Science; Berlin Heidelberg: Springer; 2007. p. 16–28.

[29] Kolliopoulos SG, Steiner G. Partially ordered knapsack and applications to scheduling.
Discrete Appl Math. 2007;155(8):889–897.

[30] Kellerer H, Strusevich VA. Fully polynomial approximation schemes for a symmet-
ric quadratic knapsack problem and its scheduling applications. Algorithmica. 2010;
57(4):769–795.

[31] Tsai J, Wang P, Lin M. A global optimization approach for solving three-dimensional
open dimension rectangular packing problems. Optimization. 2014;64(12):2601–2618.

[32] Chu PC, Beasley JE. A genetic algorithm for the multidimensional knapsack problem.
J Heuristics. 1998;4(1):63–86.

[33] Vasquez M, Vimont Y. Improved results on the 0-1 multidimensional knapsack prob-
lem. Eur J Oper Res. 2005;165(1):70–81.

[34] Ahuja RK, Cunha CB. Very large-scale neighborhood search for the k-constraint mul-
tiple knapsack problem. J Heuristics. 2005;11(5-6):465–481.

[35] Boussier S, Vasquez M, Vimont Y, Hanafi S, Michelon P. A multi-level search strategy
for the 0-1 multidimensional knapsack problem. Discrete Appl Math. 2010;158(2):97–
109.

[36] Zeng B, Richard JP. A polyhedral study on 0-1 knapsack problems with disjoint cardi-
nality constraints: Strong valid inequalities by sequence-independent lifting. Discrete
Optim. 2011;8(2):259–276.

[37] Gomory RE. Some polyhedra related to combinatorial problems. Linear Algebra Appl.
1969;2(4):451–558.

[38] Balas E, Zemel E. Facets of the knapsack polytope from minimal covers. SIAM J Appl
Math. 1978;34(1):119–148.

[39] Zemel E. Easily computable facets of the knapsack polytope. Math Oper Res. 1989;
14(4):760–764.

[40] Balas E. Disjunctive programming. In: Hammer P, Johnson E, Korte B, editors. Dis-
crete optimization II. Vol. 5 of Annals of Discrete Mathematics; Amsterdam: North-
Holland Publishing Company; 1979. p. 3–51.

[41] Chvátal V. Edmonds polytopes and a hierarchy of combinatorial problems. Discrete
Math. 1973;4(4):305–337.

[42] Gomory RE. Outline of an algorithm for integer solutions to linear programs. B Am
Math Soc. 1958;64(5):275–278.

[43] Wolsey LA. Valid inequalities and superadditivity for 0-1 integer programs. Math
Oper Res. 1977;2(1):66–77.

[44] Gomory RE. On the relation between integer and non-integer solutions to linear pro-
grams. P Natl Acad Sci USA. 1965;53(2):260–265.

20

January 18, 2020 Optimization gOPTguide

[45] Nemhauser GL, Wolsey LA. Integer and combinatorial optimization. New York: John
Wiley and Sons; 1999.

[46] Easton T, Gutierrez T. Sequential lifting of general integer variables for integer pro-
grams. Ind Eng Manage. 2015;4(2):7pp.

[47] Balas E. Facets of the knapsack polytope. Math Program. 1975;8(1):146–164.
[48] Zemel E. Lifting the facets of zero-one polytopes. Math Program. 1978;15(1):268–277.
[49] Gu Z, Nemhauser GL, Savelsbergh MWP. Sequence independent lifting in mixed

integer programming. J Comb Optim. 2000;4(1):109–129.
[50] Hammer PL, Johnson EL, Peled UN. Facet of regular 0-1 polytopes. Math Program.

1975;8(1):179–206.
[51] Cho DC, Padberg MW, Rao MR. On the uncapacitated plant location problem II:

Facets and lifting theorems. Math Oper Res. 1983;8(4):590–612.
[52] Atamtürk A. On the facets of the mixedinteger knapsack polyhedron. Math Program.

2003;98(1):145–175.
[53] Easton T, Hooker K. Simultaneously lifting sets of binary variables into cover inequal-

ities for knapsack polytopes. Discrete Optim. 2008;5(2):254–261.
[54] Hickman R, Easton T. Merging valid inequalities over the multiple knapsack polyhe-

dron. International Journal of Operational Research. 2015;24(2):214–227.
[55] Hickman R, Easton T. On merging cover inequalities for multiple knapsack problems.

Open Journal of Optimization. 2015;4(4):141–155.
[56] Dey SS, Richard JP. Sequential-merge facets for two-dimensional group problems. In:

Fischetti M, Williamson DP, editors. Integer programming and combinatorial opti-
mization. Vol. 4513 of Lecture Notes in Computer Science; Berlin Heidelberg: Springer;
2007. p. 30–42.

[57] Dey SS, Wolsey LA. Two row mixed-integer cuts via lifting. Math Program. 2010;
124(1):143–174.

[58] Vitor F, Easton T. Merged knapsack cover inequalities for the multiple knapsack prob-
lem. In: Yang H, Kong Z, Sarder M, editors. Proceedings of the 2016 Industrial and
Systems Engineering Research Conference; may. Institute of Industrial and Systems
Engineers; 2016. p. 607–612.

[59] Vitor FT. Improving the solution time of integer programs by merging knapsack
constraints with cover inequalities [master’s thesis]. Kansas State University; 2015.

[60] IBM. CPLEX Optimizer. Version 12.7. 2016; Available from:
https://www.ibm.com/analytics/cplex-optimizer.

[61] Beasley JE. OR-Library: distributing test problems by electronic mail. The Journal
of the Operational Research Society. 1990;41(11):1069–1072.

[62] Hunsaker B, Tovey CA. Simple lifted cover inequalities and hard knapsack problems.
Discrete Optim. 2005;2(3):219–228.

21

	Approximate and Exact Merging of Knapsack Constraints with Cover Inequalities
	Recommended Citation

	tmp.1594738265.pdf.InzzQ

