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Abstract

Predictability tests with long memory regressors entail both size distortion and potential regression im-

balance. Addressing both problems simultaneously, this paper proposes a two-step procedure that rebalances

the predictive regression by fractionally differencing the predictor based on a first-stage estimation of the

memory parameter. A full set of asymptotic results are provided. The second-stage t-statistic used to test

predictability has a standard normal limiting distribution. Extensive simulations indicate that our procedure

has good size, is robust to estimation error in the first stage, and can yield improved power over cases in

which an integer order is assumed for the regressor. We use our procedure to provide a valid test of forward

rate unbiasedness that allows for a long memory forward premium.
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1 Introduction

A common aspect of many predictive regressions is the highly persistent behavior of the regressor. Examples

include stock return predictability tests using dividend-price ratios, earning-price ratios or interest rates as

regressors, tests of the permanent income hypothesis, and tests of forward rate unbiasedness. It has been

understood since Mankiw and Shapiro (1986) that this persistence may lead to size distortion. The extant

literature has also focused on the potential for regression imbalance (i.e. stationary dependent variable, near

nonstationary regressor) in excess returns regressions, where returns typically exhibit little or no persistence.

The problem of size distortion has led to a large empirical literature and the development of techniques

designed to address these issues, with much of the literature concentrated in the context of local-to-unity

models (Cavanagh et al. 1995, Jansson and Moreira 2006). However, persistence can also manifest itself in the

form of long memory, which has been documented in many predictive regressors including the forward premium

(Baillie and Bollerslev 1994, Maynard and Phillips 2001), volatility (Baillie and Bollerslev 2000) and dividend

yields (Koustas and Serletis 2005).

With a few exceptions (Campbell and Dufour 1997), the econometric literature on predictive regressions

has focused on the case of near unit root regressors. The most common approach has been to maintain the

same regression specification, but to adjust the critical values in order to preserve correct test size. This may

be attractive in some applications when economic theory suggests this form of the alternative. Moreover, if the

largest root of the regressor is merely close, but not equal to unity, then the original regression specification may

still be compatible with a stationary return series for the dependent variable. Thus, while size distortion is of

central importance in predictive regressions with near unit roots, it has sometimes been argued that problems

of regression imbalance may be avoided. This is no longer true when predictive regressors have long memory,

since imbalance may exist when a short memory variable is regressed on a long memory regressor.

In this paper we propose a simple, intuitive two-stage rebalancing procedure that addresses both the regres-

sion imbalance and size distortion discussed above, while allowing for (without imposing) long memory behavior

in the predictive regressor. In the first stage, either a semi-parametric or parametric estimator may be used

to estimate the degree of long memory in the regressor. Then, in the second stage, the predictive regression is

rebalanced by fractionally differencing the regressor. This rebalances the alternative hypothesis, while leaving

the null hypothesis unchanged and thus allowing for a valid test of predictability. By fractionally differencing

the regressor, we also remove the source of size distortion, yielding a t-statistic in the second-stage regression

with correct size.

We derive the large sample theory for our proposed technique and demonstrate its applicability by a detailed

Monte Carlo study. The simulation study confirms the potential for size distortion in the absence of rebalancing

(or other size adjustment), while showing that our two-stage procedure works well. We also find that estimation

and inference in the second stage are robust to estimation error or even modest misspecification in the first
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stage. We see this as an important practical benefit, since the memory parameter can be difficult to estimate

in small samples (see Nielsen and Frederiksen (2005), for a survey).

As an empirical application of our two-step method, we consider tests of the forward rate unbiasedness

hypothesis (FRUH). This hypothesis may be re-written as a test of the predictability of excess foreign exchange

rate returns using the information in the lagged forward premium. While excess returns are arguably stationary,

beginning with Baillie and Bollerslev (1994), several studies have documented long memory in the forward

premium and have underlined the potential importance of the resulting imbalance for understanding the strong

and rather paradoxical rejection of the FRUH resulting from these regressions (Baillie and Bollerslev 2000,

Maynard and Phillips 2001).

Our method provides a reliable test of FRUH in the presence of the presence of a long memory forward

premium. This contrasts with standard tests, which may either overstate the evidence against FRUH due to

size distortions or understate this evidence due to the power reductions inherent in an imbalanced alternative

model. We fail to reject unbiasedness for two of five currencies, providing some support to the contention

that the evidence against unbiasedness may be overstated due to the long-memory characteristics of the data.

Nonetheless, our tests reconfirm the validity of earlier rejections of FRUH for the remaining currencies.

The rest of the paper is organized as follows. In Section 2, we provide background on the FRUH, highlighting

the relevant econometric issues underlying our analysis. Section 3 outlines the proposed two-step predictability

test using long memory regressors, provides its large sample properties, and discusses fist-stage estimation of the

long memory parameter. Extensive simulation evidence is provided in Section 4. Section 5 contains the results

of our empirical investigation of the FRUH, and Section 6 provides a summary of our results. An appendix

contains the proofs affiliated with the asymptotic properties of our two-step procedure.

2 Background

While the methodology we propose applies to any predictability test with long memory regressors, we motivate

our procedure with a discussion of the forward rate unbiasedness hypothesis (FRUH). The empirical results

from tests of the FRUH have provided the stylized facts underpinning what is often referred to as the forward

discount anomaly. The FRUH states that the current (log) forward exchange rate (ft) should provide an

unbiased forecast of next period’s (log) spot exchange rate (st), i.e. Etst+1 = ft. This implies the orthogonality

or non-predictability condition

Et[st+1 − ft] = 0, (1)

in which next period’s forecast error (st+1−ft) is unpredictable using any information available at time t. Thus,

the FRUH can be thought of as a test of excess return predictability.

The classic predictability regression

st+1 − ft = c1 + b1(ft − st) + e1t+1 (2)

3



provides a simple specification in which to formulate the alternative hypothesis, along with the testable restric-

tion b1 = 0. This regression is equivalent to a spot return/forward premium regression

st+1 − st = c2 + b2(ft − st) + e2t+1, (3)

where b2 = b1+ 1=1 under the FRUH. While these two equivalent regressions are the most common in the

literature, it will be important to our analysis below to note that only the form of the null hypothesis in (1) is

implied by the FRUH. Theory does not dictate the exact form of the alternative hypothesis and the regressions

given above are simply convenient specifications.

The empirical results from the predictability regressions in (2) and (3) are quite puzzling. Not only is

unbiasedness strongly rejected (i.e. b1 6= 0 ; b2 6= 1), but the estimates of b2 are invariably negative. In other

words, the forward premium is not only found to be a biased predictor, it is also a perverse predictor, even

mispredicting the direction of change in exchange rates.

Recently it has been recognized that the forward premium has long memory characteristics (Baillie and

Bollerslev 1994) and that this calls into question the statistical validity of standard tests of FRUH (Baillie

and Bollerslev 2000, Maynard and Phillips 2001). Nevertheless, to date few studies have specifically attempted

to design predictability tests that allow for long memory regressors.1 In this paper, we provide a valid test

for predictability in the context of long memory. A second issue that arises with long memory regressors in

predictive regressions, such as (2), is a possible statistical imbalance, since the return variables on the LHS

are generally short memory. For example, under the FRUH, the forecast error (st+1 − ft) must not only have

short memory, but must also be serially uncorrelated in order to meet the restriction in (1). Empirically, its

short memory characteristics are apparent in the data. For example, a plot of the log of excess returns for

Canada from June 1973 to March 2000 is depicted in Figure 1. By contrast, a time series plot of the forward

premium for Canada for the same time period, in Figure 2, exhibits very different and much more persistent

behavior. The autocorrelations for these two series are depicted in Figure 3. These figures clearly indicate that

the forward premium has much stronger memory characteristics than the excess returns, which show very little

autocorrelation.

[FIGURES 1-3 ABOUT HERE]

Although it may cause size distortion, the apparent imbalance between the components in (2) is not in-

consistent with the FRUH, which implies b1 =0, in which case st+1 –ft and ft –st are free to exhibit different

orders of integrations. If test size were the only issue, corrections to the critical values could feasibly be derived.

However, the apparent imbalance in (2) can cause fundamental problems under the alternative hypothesis as
1Proposed corrections have generally been undertaken employing an autoregressive or near unit root model. For corrections in

the stock return predictability literature see Stambaugh (1999), Rapach and Wohar (2006), Torous et al. (2005), and the references

within.
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characterized by this regression specification. In fact, if the order of integration of the RHS variable exceeds

0.5, such that it is non-stationary, then the regression attempts to relate a stationary dependent variable to a

non-stationary regressor. Since the RHS variable has a tendency to wander off, whereas the LHS variable does

not, b2 =0 is the only possible parameter value consistent with this statistical imbalance and show that the

OLS estimate of b2 converges to zero with a nonstandard distribution.2

Note that our ultimate interest lies in testing the non-predictability of the forward rate forecast error in

(1) and not simply the parameter restriction in the convenient but rather simple regression specification given

by (2). In other words, the parameter restriction b1 =0 is only necessary, but not sufficient for the FRUH.

From this perspective, the imbalance in (2) (short- memory excess returns, long memory forward premium)

does not necessarily imply that the null hypothesis in (1) holds but rather indicates that (2) does not provide

a meaningful parametric specification in which to couch the alternative. In particular, it does not allow for

a rejection of unbiasedness due to the presence of a stationary short-memory risk premium. This imbalance

thus calls for a test that not only maintains correct size but also allows alternative specifications in which the

dependent and independent variable are both integrated of the same order.

Although there has been much previous interest on this question, our application is the first we know of to

provide an asymptotically justified regression-based test of the FRUH that is valid for long-memory regressors.

Baillie and Bollerslev (2000), and Maynard and Phillips (2001) provide simulation evidence and asymptotic

theory that demonstrate the problems inherent in traditional tests but do not offer or employ any empirical

tests. Liu and Maynard (2005) and Rossi (2005) , test the FRUH using local-to-unity based procedures, which

do not allow for long-memory regressors. Departing from the standard regression approach, Maynard (2006)

tests for sign predictability using the nonparametric procedure of Campbell and Dufour (1997), which remains

valid under long memory assumptions. However, additional symmetry conditions are required to equate a lack

of sign predictability with unbiasedness, and it is not clear that the sign test specifically addresses the question

of regression imbalance considered here.3

Thus, as discussed in the previous literature, long memory regressors, such as the forward premium pose

substantial difficulties for predictive regression tests. While the previous literature discussed above has clearly

delineated these obstacles, few solutions to this testing problem have been proposed. We contribute to this

literature by providing a simple intuitive two-step predictability test in the presence of long memory regressors
2Maynard and Phillips (2001) make a very similar argument, except that they focus on the imbalance in (3), whereas we focus

on (2). Only an imbalance in (2) is compatible with the FRUH. In other words, since it is impossible to impose the null in their

setting, the FRUH cannot be tested in the framework of Maynard and Phillips (2001).
3Simulations in Maynard (2006, Table 6) show that the procedure of Campbell and Dufour (1997) has good power against

standard regressions but somewhat lower power against the type of rebalanced alternatives considered here. The covariance test of

Maynard and Shimotsu (forthcoming) does have power against rebalanced alternatives of this type but has only been developed for

use with I(0), I(1), and local-to-unity regressors. Likewise, the tests of Jansson and Moreira (2006) exclude long-memory regressors

and do not rebalance.
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that remains valid under the null hypothesis and well balanced under the alternative hypothesis.

3 Econometric Methodology

Our two-step procedure is intended to rebalance predictive regressions that may have long memory regressors

with dependent variables that are short memory. In this section, we consider the implications of not knowing

the true integration order, d, of the regressor. In the first stage, the value of d is estimated, and the regressor,

xt, is fractionally differenced with the estimated value. In the second stage, the regression is run with this

fractionally differenced variable. In Section 3.1, we validate our procedure, showing that the estimate of the

slope coefficient from the rebalanced regression is consistent. Further, in instances where the null hypothesis of

predictability can be re-written as a zero restriction on the slope coefficient, we show that the t-statistic from

the rebalanced regression achieves a standard normal asymptotic distribution. In Section 3.3, we discuss the

estimation alternatives for d that are available in the first stage.

3.1 Two-Stage Test Procedure

We model yt+1 as a linear function of the fractionally differenced predictor xt, where4

yt+1 = β0 + β1 (1 − L)d xt + ε1,t+1. (4)

Further, the process xt is modeled as a type II fractionally integrated process (see Tanaka (1999) and Marinucci

and Robinson (1999)):

xt = (1 − L)−d (u2,t1{t>0}) (5)

where 1{t>0} is an indicator function and in which, following Phillips and Solo (1992), u2,t is modeled as a

general linear process of the form5

u2,t = C2 (L) εt =
∞∑

j=0

C2jεt−j where (6)

εt =

 ε1,t

ε2,t

 ∼ i.i.d (0, Σ) and
∞∑

j=0

j
1
2 ‖C2j‖ < ∞. (7)

Note that C2(L) is a 2-dimensional row vector, and thus for generality we allow u2t to be linearly related to

both ε1t and ε2t. An ARFIMA(p, d, q) model for xt results when C2(L) = [ 0 θ(L)/φ(L) ], where θ(L) and

4Note that β1 in (4) and b1 are parameters on two different regressors (one in levels, one in fractional differences) and are thus

only equal under the null hypothesis when both are zero.
5The moment conditions of Maynard and Phillips (2001, assumption V, p. 682) are stronger than those used here. Their conditions

were needed to establish weak convergence to fractional Brownian motion. The limiting behavior of the rebalanced regression, is

fundamentally unlike the unbalanced regression studied by Maynard and Phillips (2001) and does not rely on convergence to

fractional Brownian motion.
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φ(L) are moving average and autoregressive polynomials in the lag operator L, such that all roots to φ(L) and

θ(L) = 0 lie outside the unit circle.

Our main interest lies in tests of the hypothesis H0:β1 = 0. The first stage of our two-step method consists

of obtaining a consistent estimate (d̂) for (d), with convergence rate Tα, for α > 1/4. Using d̂, we then regress

yt+1 on the fractional difference of xt in the second-stage regression:

yt+1 = β0 + β1 (1 − L)d̂ xt + ε1,t+1. (8)

This provides a feasible version of (4) with which to rebalance the relation between yt+1 and xt. The standard

t-test is then used to test the hypothesis that β1 = 0. The following theorem establishes the large sample

properties of our proposed two-step procedure, where, for any discrete random variable xt, we define xt = xt− x̄.

Theorem 1 Assuming (4), (5), (6), and (7), where d̂ is a Tα consistent first-stage estimator of d for α > 1/4,

the regression coefficient in (8) satisfies:

√
T

(
β̂1 − β1

)
− β1BT →d N

(
0, (var [u2,t])

−1 Σ11

)
where (9)

BT =
(
T−1

∑T−1
t=1 û2

2,t

)−1
T−1/2

∑T−1
t=1

(
u2t − û2,t

)
û2,t = Op

(
T 1/2−α

)
,

u2,s = u2,s − T−1
∑T−1

t=1 u2,t and û2,t = (1 − L)d̂ xt.

The theorem shows that β̂1 is consistent for β1 with a convergence rate given by

β̂1 − β1 =

 Op

(
T−1/2

)
, . . . if β1 = 0 (standard limiting behavior)

Op (T−α) , . . . ifβ1 6= 0 (contamination from first stage estimation) .
(10)

In general, the limit distribution in the second stage is contaminated by the estimation error in the first stage,

leading to the additional term (BT ) of order Op(T 1/2−α). However, this contamination disappears in the special

case when β1 = 0, and thus no predictive relation exists for any value of d. In this case, the second-stage limit

distribution obtained by estimating d in the first stage is the same as the distribution that would be obtained

if d were known.

The asymptotic properties of the second-stage t-statistic for a predictability test (β1 = 0) are established in

Corollary 3, which shows that the test statistic is standard normal under the null (β1 = 0) and diverges at rate

T 1/2 under the alternative (β1 6= 0). It thus provides a solid basis for predictability testing with long memory

regressors. First, Corollary 2 shows that the residual variance is estimated consistently.

Corollary 2 σ̂2 = T−1
∑T−1

t=1 ε̂2
1t+1 →p Σ11, where ε̂1t+1 = yt+1 − β̂0 − β̂1û2,t.

Corollary 3 (a) If the null hypothesis β1 = 0 holds, then t →p N (0, 1). (b) If the alternative β1 6= 0 holds

then T−1/2t →p Σ−1/2
11 var[u2,t]1/2β1, with t = σ̂−1

(
T−1

∑T−1
t=1 û2

2,t

)1/2
T 1/2β̂1.
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The results of the theorem show that the two-stage procedure results in a consistent estimate of β1 for

all values of this parameter. Further, if the test can be formulated in terms of a zero restriction on β1, then

the asymptotic distribution of the usual t-test is standard normal, and thus achieves the same asymptotic

distribution that would have been obtained had d been known. This occurs because the effects of the first

stage estimation of d are asymptotically negligible under the null hypothesis, so that in this case the two-step

estimator β̂1 is asymptotically equivalent to the infeasible estimator that would result from the regression in

(4) with known d.

Under the alternative hypothesis when β1 6= 0, the equivalence between the feasible and infeasible estimator

no longer holds. The effect of the first-stage is captured by the term β1BT in (9) and depends on the specifics

of the first-stage estimator for d, particularly its rate of convergence (α). This implies an efficiency and power

loss relative to the infeasible estimator, which would be asymptotically equivalent to maximum likelihood when

d is known. An alternative feasible procedure would be to estimate both β1 and d jointly in (4) by maximum

likelihood. However, in this case the value of d, would be unidentified under the null hypothesis that β1 = 0.

Results matching ours are not directly available in the literature. As noted above, Maynard and Phillips

(2001) derive asymptotic properties for a unbalanced regression in which the dependent variable is stationary,

while the regressor is a non-stationary fractional process. In that case, there is no rebalancing, and thus no

first stage estimation of the differencing parameter, resulting in a limiting distribution that is non-standard.

Our results are perhaps closest to those of Dolado et al. (2002), who use a two step procedure to estimate the

differencing parameter in the context of a fractional Dickey Fuller test for unit roots. For example, for a time

series process, xt, under the null hypothesis that d =1, their procedure regresses ∆xt on (1−L)daxt−1 and lags

of ∆xt, where da is the estimated value of d obtained under the alternative. Note that their results are not

entirely analogous, as the order of integration of the dependent variable differs from the regressor of interest,

(1 − L)daxt−1, under the null. Nonetheless, there results are comparable, since they set up a null hypothesis

of a zero restriction on the slope coefficient on (1 − L)daxt−1 using a two step procedure. Further, similar to

the asymptotic theory developed here, Dolado et al. (2002) show that the t-statistic of the slope coefficient on

(1 − L)daxt−1 is standard normal by virtue of the consistency of their estimate of d.

In Section 4, we demonstrate the robust small sample properties of the two-stage estimator advocated here.

Before doing so, we provide a generalization to the case in which the dependent variable also has long memory

and then briefly discuss the choice of the estimator for d.

3.2 Allowing long-memory in yt

We next generalize our model to allow yt and xt to exhibit different orders of integration under both the null

and alternative and to allow fractional integration in yt. More specifically, we maintain the same model (5) for

8



xt but model its relation with yt as

(1 − L)dyyt+1 =

 β0 + β1(1 − L)dxxt + ε1t+1, for t > 0

0 for t ≤ 0
(11)

The role of the initialization becomes apparent in solving for yt:

yt+1 = β1(1 − L)dx−dyxt + (1 − L)−dy
(
[β0 + ε1t+1] 1{t>0}

)
(12)

When β1 = 0 and 0 < dy < 1 this implies yt is the sum a type II fractionally integrated process and a

non-linear time trend. In fact, using the MA(∞) representation (1 − L)−dy =
∑∞

j=0 ψj , where ψj = Γ(j +

dy)/ [Γ(dy)Γ(j + 1)] and Γ denotes the Gamma function, we may re-express (12) as

yt = β1(1 − L)dx−dyxt + β0g(t − 1) +
t−1∑
j=0

ψjεt+1−j

where g(t − 1) =
∑t−1

j=0 ψj is a non-linear time trend for 0 < dy < 1 and
∑t−1

j=0 ψjεt+1−j is a type II fractionally

integrated process.

The specification in (11) also suggests a feasible rebalanced regression specification of the form

(1 − L)d̂yyt+1 = β̂0 + β̂1(1 − L)d̂xxt + ε̂1t+1 (13)

with the regression coefficient given by

β̂1 =

∑T−1
t=1 (1 − L)d̂xxt(1 − L)d̂yyt+1∑T−1

t=1 w
(
(1 − L)d̂xt

)2 =

∑T−1
t=1 û2,t(1 − L)d̂yyt+1∑T−1

t=1 û2
2,t

(14)

To implement this, we require first-stage estimates of both fractional parameters, dx and dy. We make the same

assumptions as before on d̂x and now let d̂y denote an αy consistent estimator for dy for 1/4 < αy ≤ 1/2 with

limit distribution Gyd̂:

Tαy

(
d̂y − dy

)
→d Gy,d̂ for 1/4 < αy ≤ 1/2 (15)

Thus, we extend our earlier two step procedures by estimating the degree of long-memory in both xt and yt in

the first step and then regressing the fractionally differenced yt on fractionally differenced xt.

The properties of such an estimator have not, to our knowledge, been previously investigated. The limit

theory under the null hypothesis that β1 = 0 is derived in the theorem below. To simplify notation we assume

β0 = 0.

Theorem 4 [Preliminary] Assuming β0 = β1 = 0, (5), (6), (7), and (11), where d̂x is a Tαx consistent

first-stage estimator of dx for αx > 1/4 and d̂y is a Tαy consistent estimator satisfying (15). Then the limiting
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behavior of regression coefficient in (14) satisfies:

Tαy

(
β̂1 − β1

)
→d var [u2,t]

−1 Aξδy + 1{αy=1/2}ξβ for |A| < ∞ where (16)

ξδy ∼ Gy,d̂, (17)

ξβ ∼ N
(
0, (var [u2,t])

−1 Σ11

)
, and (18)

A = limT→∞T−1
T−1∑
t=1

E [u2,tε̃1,t+1] = −limT→∞T−1
T−1∑
t=1

t−1∑
j=0

1
j + 1

C2,jΣ.,1 (19)

When A = 0 and αy = 1/2 then the distribution of β̂1 above specializes to T 1/2
(
β̂ − β

)
→d

N
(
0, (var [u2,t])

−1 Σ11

)
, the same distribution found in Theorem 1. This is also the distribution of the infeasible

estimator when both dy and dx are known. In this special case, critical values may again be calculated in the

usual way, ignoring the effect of the first stage estimation of dx and dy.

Unfortunately, this equivalence does not hold more generally. When A 6= 0 and a root-T estimator is

employed for dy (i.e. αy = 1/2) the first-stage estimation of dy complicates the limit distribution via the term

Aξδy . If d̂y is asymptotically unbiased then this term will have mean-zero, but will contribute to (or detract

from) the variance of the estimator, invalidating the normal standard errors which do not account for it. The

exact distribution of Aξδy and its covariance with ξβ depend on the estimator employed for d̂y. Depending on

this covariance, the standard errors may either overestimate or underestimate the variance in β̂1.

When A 6= 0 and αy < 1/2 the distribution of β̂1 is dominated by its first term, Tαy

(
β̂1 − β1

)
→d Aξδy .

This implies a reduced rate of convergence for the estimator, due to the additional noise resulting from the

estimation of dy. Since the normal standard errors are based on the assumption of
√

T convergence to the

second term ξβ , they fail to account for this reduced convergence rate and are likely to vastly under-estimate

the variance of estimator. In a testing context this suggests large size distortion.

As the above discussion makes clear, the critical values for the distribution in (16) depends on the method

of estimation for dy. The vast majority of proposed estimators satisfy:

Tα
(
d̂y − dy

)
→d ξδy ∼ N (0, Vδ,δ) for 1/4 < αy ≤ 1/2 (20)

and have available a consistent variance estimator V̂δ,δ for Vδ,δ satisfying V̂δ,δ →p Vδ,δ.

On a case by case basis, it may be further established for many estimators that ξδy and ξβ are jointly

asymptotically normally distributed with covariance Vδ,β , where the form of Vδ,β depends on the estimator

employed for dy.6 In this case, setting Vβ,β = var [u2,t]
−1 Σ11 we have: ξδy

ξβ

 ∼ N (0, V ) for V =

 Vδ,δ Vδ,β

Vδ,β Vβ,β


and the distribution in (16) simplifies to

Tαy

(
β̂1 − β1

)
→d N

(
0, q′V q

)
for q′ =

[
var [u2,t]

−1 A, 1{αy=1/2}

]
.

6Note that the separate normality assumptions in (18) and (20) are necessary, but not sufficient, to establish joint normality.
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Then, employing a consistent estimators q̂ for q and V̂ for V we can define t= Tαy β̂1/(q̂′V̂ q̂)1/2 and, under the

null hypothesis that β1 = 0, we have t →d N (0, 1) .

This approximation should work reasonably for αy = 1/2. When αy is slightly less than one-half, it ignores

the second term in (16), even though this term is only of slightly lower order. A finite sample adjustment that

reflects this lower order term is given by t̃ = Tαy β̂1/(q̃′T V̂ q̃T )1/2, where q̃′T = ( [v̂ar(u2,t]−1Â, Tαy−1/2 ). Since

Tαy−1/2 = 1 for αy = 1/2 and converges to zero for αy < 1/2 it is apparent that t̃ →d N(0, 1) under the null

hypothesis H0 : β1 = 0.

3.3 First-Stage Estimation of d

To utilize our two-step procedure a consistent estimate of d must be obtained for a long memory model, which

for our analysis is the ARFIMA model. Fortunately, a plethora of techniques exist for the first-stage estimation

of d, which range from parametric MLE, both in the time domain and frequency domain (e.g. Sowell (1992)

and Fox and Taqqu (1986)) to semi-parametric, and wavelet based estimators. To highlight the feasibility of

our approach, we use two estimators, one being a parametric estimator in the time domain (the constrained

sum of squares, CSS, estimator) and one being a semi-parametric estimator in the frequency domain (the bias

reduced log periodogram regression, BRLPR, based estimator).

In the time domain, the CSS estimator has become popular because of its relative simplicity and robustness

to non-stationarity. For a sample of size T , the CSS estimates are the set of parameters that maximize the

approximate maximum likelihood function, ψ, which is given by

ψ(µ, φ′,θ′,d, σ2) = −T
2 log(2π) − T

2 logσ2 − 1
2σ2

∑T
t=2 a2

t ,

at = φ(L)
θ(L) (1 − L)d(xt − µ),

(21)

where at is a martingale difference sequence and φ(L) and θ(L) are autoregressive and moving average polynomi-

als with all roots to φ(L) = 0 and θ(L) = 0 lying outside the unit circle.7 It is necessary to initialize pre-sample

values, which is usually accomplished by setting them equal to 0. The properties of the CSS estimator have been

established by Beran (1995), who shows that the estimator of d converges at rate T 1/2 and is asymptotically

normal for d > -1/2. Although, in the current context, any of the time domain based estimators will likely

work well, we choose to utilize the CSS estimator given its relative simplicity and robustness to non-stationary

processes.

While the CSS estimator has good small sample properties when the ARFIMA model is correctly spec-

ified (Chung and Baillie (1993), and Nielsen and Frederiksen (2005)), it is well known that the estimator

is inconsistent when the number of autoregressive and/or moving average parameters are incorrectly chosen

(Robinson 1995). A number of semi-parametric estimators that avoid the concerns of misspecification have
7The CSS estimator also has the advantage that it can be modified to accommodate other distributions such as the t-distribution

(see Baillie et al. (1996)). Further, heteroskedastic effects can also be considered by replacing σ2 in (21) with σ2
t .
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been developed. These estimators include log periodogram regression (LPR) based estimators (Geweke and

Porter-Hudak 1983, Robinson 1995, Andrews and Guggenberger 2003), and Whittle type estimators, including

the local Whittle estimator (Robinson 1995), and the exact Whittle estimator (Phillips 1999, Shimotsu and

Phillips 2005). The exact Whittle estimator is an attractive alternative, as (Shimotsu and Phillips 2005) show

that it is asymptotically normal for any value of d.

The appeal of the LPR based estimators lie in their incredible simplicity. These estimators are based on the

properties of the log of the spectral density function of a long memory fractional process (including an ARFIMA

process), which satisfies,

logf(ω) ∼ log[g(ω)] − 2dlog(ω) (22)

where “∼ ” denotes asymptotic equivalence as ω → 0, and g (ω ) is an even function that is continuous at zero and

finite. The original LPR based estimator of Geweke and Porter-Hudak (1983) replaces log[g(ω)] with a constant

and regresses the log periodogram at the first m frequencies on a constant and −2log(ωj), j = 1, . . . ,m. Here,

m is the user selected bandwidth, and ωj denotes the Fourier frequencies given by, ωj = 2πj/T , j = 1, . . . ,m.

The approximation of log[g(ω)] with a constant may not be innocuous and can in fact lead to a sizeable small

sample bias as shown by Agiakloglou et al. (1993). Andrews and Guggenberger (2003) have suggested that a

decrease in the small sample bias can be obtained by approximating the term first term in (22) with a constant

and the polynomial
∑R

r=0 ω2r
j , j = 1,....,m. Recently, Nielsen and Frederiksen (2005) have shown that the use of

the biased reduced LPR (BRLPR) estimator of Andrews and Guggenberger (2003) does substantially mitigate

the small sample bias relative to other frequency based estimators. Based on this bias reduction, coupled with

its simplicity, we chose to utilize the BRLPR estimator in our analysis below. Following Nielsen and Frederiksen

(2005) we also set R =1 throughout.8

4 Monte Carlo Evidence

The simulation experiments in this section serve several purposes. First, we wish to demonstrate the potential

pitfalls that exist when long memory regressors are used in predictive regressions. To this end, we allow the

regressors to follow long memory ARFIMA(0,d,0) and ARFIMA(1,d,0) processes, while allowing the dependent

variables to be white noise. We show that without rebalancing, estimates of the slope coefficient are substantially

biased with t-statistics that are large in absolute value yielding an empirical test that is oversized. Second, we

wish to evaluate the effectiveness of our proposed solution to this problem, and thus we report extensive

simulation results based on our two-step estimation procedure using both a time domain and frequency based
8When d ∈ (−1/2, 1/2), Andrews and Guggenberger (2003) show that their estimator is consistent and asymptotically normal.

Although it appears likely that it remains consistent for d < 1, given the potential for non-stationarity, we follow others using

LPR based estimators (e.g. Sun and Phillips (2003)), and apply the linear filter (1 − L)0.50 prior to using the BRLPR estimation

technique. The final estimate of d results by adding 0.50 to this value.
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estimator to filter the long memory regressor prior to running the predictive regressions. We offer further

evidence of the robustness of our approach by demonstrating the applicability of our procedure using the CSS

estimator when the model is misspecified. Finally, we close with a brief power experiment to further highlight

the validity of our two-step procedure.

Our simulations are based on the following model

yt+1 = β0 + β1(1 − L)dxt + ε1t+1

xt = (1 − L)−du2t, u2t = (1 − φL)−1ε2t

εt =
(

ε1t, ε2t

)′
∼ i.i.d. N(0, Σ)

, (23)

where |φ| < 1, and Σ is a positive definite matrix with potentially non-zero off diagonal elements. To generate

data, we first draw the residual vector εt, whose elements are correlated with correlation coefficient equal to

ρ = Σ12

/√
Σ11Σ22. To be consistent with our theoretical construct, xt is created as a type II fractional process

using the recursive structure of the operator (1-L)−d. For example, following Tanaka (1999), we have

(1 − L)−du2t =
t−1∑
k=0

ψku2t−k, (24)

where ψ0 =1, ψk =(k + d -1)ψk−1 /k with k ≥ 1. Typically, β1 is set equal to zero, although in our discussion

of the power of our test, we allow β1 to take on values between 0 and 1. Based on the empirical example in our

paper, we chose a sample size of 350 and perform 3000 simulations. Finally, we allow the correlation coefficient

across the residuals to vary from -0.95 to 0.95.9

Tables 1-2 motivate the problem by demonstrating the size distortion that results when long memory re-

gressors are included in predictive regressions. The tables show simulation results under the null hypothesis

(b1 =0) for a standard predictability regression, where our two-step procedure is not applied. In our empirical

application, this would correspond to the traditional tests of the FRUH when the forward premium displays

long memory. Our objective here is to observe the consequences of not adequately accounting for long memory.

Table 1 contains our results when the regressor follows an ARFIMA(0,d,0) specification. The values in the

first column of Table 1 give the integration order (d) of the regressor, while the correlation coefficients between

the simulated residuals (ρ) are reported across the top of the table. Table 1a shows rejection rates under the

null hypothesis for a predictability test when the regressor is I(d). The test becomes oversized in the presence

of residual correlation when the value of d exceeds 0.50. The size distortion increases with both the absolute

value of the correlation coefficient and the persistence of the regressor, with rejection rates as high as 29% in a

nominal 5% test. These results are similar to those of Mankiw and Shapiro (1986), who analyze size distortion

in predictive regressions with near unit root regressors. Tables 1b and 1c contain the simulated biases and
9We considered a couple of cases for the standard deviations of ε1t and ε2,t, including setting them equal to unity. Many

predictive regressions, including the FRUH regressions, are characterized by a volatile dependent variable relative to the regressor,

and thus we also allowed the standard deviations to differ based on our empirical example below. To conserve space, we report only

the results based on the case where the standard deviations differ. See the notes to Table 1 for additional details.
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variances of b̂1. The estimator is negatively (positively) biased when the correlation between the residuals

is positive (negative) and this bias can be substantial. Finally, it is interesting to note that the variance of

b̂1 declines as the regressor becomes more persistent, which is expected given the non-stationarity, and thus

divergent variances, for most of the processes considered.

We next consider the effects of adding short run dynamics to the system in Table 2, where we allow xt

to follow various ARFIMA(1,0.80,0) specifications. The results are similar to those in Table 1, although it is

interesting to note that the inclusion of short term dynamics can influence the tests. For example, rejection

rates increase as the process becomes more persistent through the stable short run components. Note, rejection

rates of the true null of no predictability can be as high as 26% with a nominal 5% test, whereas the highest

rejection rate we encounter in Table 1 for an ARFIMA(0,0.80,0) process is 19%. This implies that short memory

dynamics exacerbate the rejection rates associated with regression imbalance as documented in Table 1. Finally,

we reach the same conclusion in Table 2 as we did in Table 1 regarding the mean bias and variance of b̂1.

The results of Tables 1-2 demonstrate the potential pitfall of using long memory regressors in predictive

regressions. Tables 3-7 demonstrate the applicability of our suggested two-step approach. We consider both

time and frequency domain estimators, while allowing for the possibility of misspecification using our time

domain estimator. Tables 3-4 contain our results using the correctly specified CSS estimator in the first-step

estimation of d, when xt follows both a fractional noise process (Table 3) and an ARFIMA (1,0.80,0) process

(Table 4).10 The results for our two-step procedure are quite promising and contrast quite nicely to those found

above when long memory regressors are employed in standard regressions without differencing. In each case,

the empirical size of the test is approximately equal to the nominal size, with only one exception. In Table 4,

when xt is an ARFIMA(1,0.80,0) process with φ = 0.99, we see that β = 0 is rejected too frequently when the

residual correlation differs from 0. This is to be expected as the correctly differenced process is a near unit root

variable and is thus persistent even though it is not long memory. The results of Table 3b also indicate that the

bias in the first table is dramatically reduced by rebalancing. There are still some cases in Table 4 where the

mean estimate of β1 is not centered precisely at 0. Nonetheless, the resulting biases are usually smaller than

those reported in Table 2.

Table 5 presents our results using the semi-parametric BRLPR estimator for first-stage calculation of d.11

Here, we only analyze the case where xt follows an ARFIMA(1,d,0) process to conserve space. Throughout,

we allow the value of φ to vary from -0.99 to 0.99, but fix d to be equal to 0.80. The last panel of the table

documents the exceptional performance of the BRLPR estimator. The bias here is consistent with previous
10Starting with Table 4, we present the bias in estimating d with each of the estimators we employ. The CSS estimator of d is

remarkably accurate when there are no ARMA components, and thus, for brevity, we omit the bias of the estimated value of d from

Table 3. These results are available upon request.
11As discussed above, a bandwidth parameter must be selected. We considered several bandwidths, ranging from m=T 0.55 to

m = T 0.85. Here, for brevity, we report the results for m = T 0.75, which is the same bandwidth Maynard and Phillips (2001) use

with their modified LPR results. Results are unchanged with other values of m.
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results associated with this estimator including Nielsen and Frederiksen (2005) and Andrews and Guggenberger

(2003). Unless a very large and positive autoregressive parameter is present, the estimated value of d is very

near the true value. When strong autoregressive dynamics are present, the spectral density function near the

origin is contaminated with both short and long memory components. The result is a substantial positive bias

in the differencing parameter, which interestingly wipes out all of the activity near the origin, resulting in a

correctly sized second-stage t-test. In other words, when φ ≥ 0.80, d is over-estimated resulting in xt being

slightly over-differenced. The result of this over-differencing is a mitigation of the over-all persistence of the

process due to both autoregressive and long memory components, and thus a correctly sized second-stage t-test

for all values of φ. Finally, there is a substantial bias reduction relative to the results in Table 2.

Tables 6 and 7 demonstrate that our second-stage test performs well even when the model in the first stage

is misspecified or over-parameterized. Table 6 considers the case where xt follows an ARFIMA(1,d,0) process

but an ARFIMA(0,d,0) process is estimated using the CSS estimator. We fix d = 0.80 and allow φ to vary from

−0.99 to 0.99. The value of d is not estimated well under the misspecification, a fact familiar to practitioners

using parametric long memory estimators. For large negative values of φ, a substantial negative bias results for

d, while d is dramatically over-estimated for large positive values of φ. In this case, d is burdened with the role of

accounting for both short and long memory components. Nonetheless, the second-stage test has the correct size

throughout, and the mean estimate of β1 is very near 0. Table 7 considers the opposite scenario, in which the

true process is fractional noise, but an ARFIMA(1,d,0) model is estimated. It is clear, from the last panel of the

table, that d is frequently underestimated, as the algorithm will routinely select large autoregressive parameters

rather than the correct value of d. However, the bias is reasonable, resulting in an accurate second-stage test,

with an empirical size of about 5%.

As discussed above, the Monte Carlo results were obtained here based on the truncated type II fractional

process to remain consistent with our theoretical results. We also considered results that are available upon

request based on a type I fractional process, where the truncation is not applied, but where the data are

generated using the autocovariances of the process. The conclusions are consistently the same as above, where

empirical sizes are large without rebalancing with excessive biases, while our rebalancing procedure corrects the

distortion and mitigates the biases. It should be noted, however, that the size distortion without rebalancing

and the associated biases tend to be even larger when the data are generated without the truncation assumption.

We close this section by commenting on power. Under the null that β1 = 0, moderately imprecise estimation

of d does not result in a large size distortion. This does not suggest, however, that over-differencing is appro-

priate. Indeed, our approach does not force the researcher to take any a-priori stand on the order of integration

of the regressor, be it I(0), I(d), I(1) or even I(2), for example. In addition, our procedure yields a consistent

second-stage estimator for any value of β1, an important property for test power. To highlight the performance

of our two-step procedure under the alternative, we ran a brief power study. Based on equation (23), we allowed

the true value of β1 to vary from 0 to 1 with a step size of 0.10, and tested the hypothesis that β1 = 0. For
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brevity, we chose a value of ρ = 0.80 and set the standard deviations of both disturbance sequences equal to

unity. We allowed the regressor, xt, to be a fractional noise process and also allowed d to vary from 0 to 1, with

a step size of 0.20. The results clearly show that substantial power loss will generally occur unless the two-step

procedure is used relative to cases in which no differencing is employed or over-differencing is utilized.12 As an

example, consider Figure 4, which depicts the power related to the use of our two-step procedure, application

of a simple first difference, and the use of no differencing when xt is a fractional variable with d =0.40 and yt+1

is related to xt with the value of β1 ranging from 0 to 0.30 depicted along the x-axis. As above, the sample size

is set equal to 350, and we employ 3000 simulations. When β1 = 0, the statistic displayed corresponds to the

size of the test. The power is always greatest for our two-step procedure. Substantial power loss occurs for the

case when nothing is done to rebalance the equation, even though the processes considered here are stationary.

Over-differencing results in higher power relative to no differencing, but is clearly dominated by the application

of our two-step procedure for all values of β1.13

The results of our simulation section show that care must be taken in regressions involving short memory

dependent variables and long memory regressors. In particular, the t-statistics are too large in absolute value

and can result in substantial over-rejection. Our simulation results indicate that our two-step procedure results

in a rebalanced regression whose t-statistic has the correct size. It is also robust, both with respect to the

selected estimator and the potential for misspecification. Further, substantial power gains result when d is first

estimated relative to the cases in which no differencing occurs or a simple first difference is used. We now apply

our two-step procedure in the context of the FRUH.

5 Application to the FRUH

As discussed above, the FRUH is typically tested by the regression depicted in equation (3), where the change in

the spot rate is regressed on the forward premium. Constructing a test based on equation (3) that accounts for

the long memory behavior of the forward premium is difficult. In particular, in its present form, if the change

in the spot rate is I(0), the finding of a non-stationary long memory forward premium implies an automatic

rejection of the FRUH. A more natural way to test the FRUH, while allowing for long memory in the forward

premium, is based on the matching regression depicted in (2). In particular, we base our test on the following

regression:

st+1 − ft = β0 + β1(1 − L)d(ft − st) + ε1t+1. (25)
12Extremely small power gains were detected when the true value of d was 0 and unity with no differencing and the application

of simple first difference, respectively, relative to our two-step procedure.
13The remaining power results are available upon request. To summarize, for d < 0.40, the power gain from differencing with

the estimated d is even greater relative to the case where a simple first difference is used but decreases relative to the case with

no differencing. The opposite occurs as the value of d rises, with the power generally remaining highest for the case in which our

two-step procedure is employed.
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If excess returns are I(0), as both intuition and empirical evidence suggest, then the regression in (25) contains

components that are all integrated of the same order. The test for unbiasedness is then given by a simple t-test

of the hypothesis β1 = 0.

We consider exchange rate data for Canada, France, Germany, Japan, and the UK vis-à-vis the US from

July 1973 to March 2000. The data are obtained from Data Resources International. We use the one month

forward and spot US dollar price of the foreign currency, where the data are recorded on the last day of each

month. See Liu and Maynard (2005) for precise details.14 As a benchmark, Table 8 yields regression results

for the standard FRUH equations shown in (2) and (3). We also report the probability values associated with

the Ljung-Box Q statistics for the residuals and squared residuals. Under unbiasedness, we expect b1 =0 and

b2 =1. Using the probability values for these hypotheses, we encounter a strong rejection of the unbiasedness

hypothesis. In every case the estimated coefficient is negative, and when the change in the spot rate appears

as the dependent variable, we reject the hypothesis of a unity slope coefficient at the 1% level for 3 of the 5

countries, while we are able to reject this hypothesis at the 5% level for every country in our sample. Precisely

the same finding regarding unbiasedness emerges when we use excess returns. The results from the Ljung-Box

Q-statistics show that the returns are free of serial correlation and generally homoscedastic. In particular, the

squared residuals from the excess returns equation for the UK indicate the likely presence of heteroskedastic

effects, while there is some evidence of higher order GARCH effects for Japan. The remaining countries do not

appear to exhibit substantial volatility clustering.

The standard test results presented above cannot be fully relied on given the long-memory characteristics

of the regressor, which can give rise to problems with both size and power. In principle, they could either

exaggerate evidence against FRUH due to size distortion or alternatively they could understate the rejection

on account of power loss arising from an imbalanced alternative. By employing our two-stage rebalancing

procedure we can provide a more reliable test of FRUH. Table 9 presents our results using the CSS estimator.

It is interesting to note that our findings are very much in line with previous research in that we find significant

evidence of long memory dynamics in the forward premium. Using the numerical standard errors as our guide,

we are able to reject the hypothesis that d is either 0 or 1 at the 5% level for every country in our sample, except

Germany, where we fail to reject a unit root in the forward premium. After filtering the forward premium using

the estimated value of d in the first stage, we run the regression associated with equation (25). First we note
14While daily data may contain more information than monthly data, its use would complicate the analysis in several respects.

First there is no hard rule for the exact number of business days in each month. Yet returns must still be calculated on a monthly

basis when using forward rates with a one month maturity. Secondly, sampling the monthly returns on a daily basis induces a large

moving average process in the residuals. Under the traditional assumption that the horizon length is fixed or small relative to the

sample size this can be handled via the use of robust standard errors. However, (Richardson and Stock 1989), and more recently

(Valkanov 2003), show that the normal asymptotic distribution based on the assumption of fixed horizon lengths can provide poor

approximations to finite sample behavior.
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that there is one case where the sign switches from negative to positive (for Japan). Secondly, the probability

values associated with the hypothesis of unbiasedness always exceed the same values in Table 8. We continue to

reject the hypothesis that β1 = 0 at the 1% level in three cases (Canada, France, and the UK). Now, however, we

fail to reject the hypothesis at the 10% level for Germany and Japan. Thus, rebalancing makes a difference for

two countries in our sample, and we conclude that when our two-step procedure is implemented, less evidence

against unbiasedness is uncovered. As a robustness check, we also utilized the BRLPR estimator with several

bandwidths. The results are quantitatively identical to those reported here. Further, the estimates of d are in

ranges consistent with those reported in Table 9.

Finally, in terms of serial correlation and heteroskedasticity in the residuals, we reach the same conclusions

as above where there is no evidence of serial correlation for any country, strong evidence of heteroskedasticity

for the UK and mild evidence of potentially higher order GARCH effects for Japan. Interestingly, Baillie and

Bollerslev (2000) analyze the effects of long memory in the conditional variance of spot returns in daily data.

Using monthly data, we encounter no evidence supporting potential long memory in the conditional variance

of the residuals of the excess returns series. However, we did consider heteroskedastic effects by estimating a

GARCH model based on equation (25) with the inclusion of a GARCH-in-mean term. In no case, were the

resulted altered. The inclusion of long memory GARCH effects in daily data possibly presents an interesting

extension to our analysis.

6 Summary and Conclusion

A substantial literature exists on predictive regressions with near unit root regressors, but far less attention has

been paid to a second empirically relevant case in which predictive regressors display long memory behavior. In

both cases, size distortion can be problematic. However, the remedies employed in the context of near unit roots

do not necessarily carry over to the long memory case. Moreover, while problems of regression imbalance are

arguably of concern in the near unit root case (Maynard and Shimotsu forthcoming), they become unavoidable

when regressors are fractionally integrated, particularly if returns are stationary, but the predictive regressors

are integrated of order d > 0.5, as in tests of the forward rate unbiasedness hypothesis (FRUH).

In this paper we have suggested a two-stage predictive regression test in which the dependent variable

is stationary, but which allows for, without imposing, long memory behavior in the predictor. The first stage

involves obtaining a consistent estimate of the long memory parameter. Then in the second stage, the predictive

regression is rebalanced by fractionally differencing the regressor with the estimated value of d from the first

stage. A full set of asymptotic results are provided. The t-statistic in the second-stage predictability test has

a standard normal limiting distribution. Likewise, extensive simulations suggest that the two-step procedure

works remarkably well in practice. It has good size, is highly robust to estimation error in the first stage, and

can yield improved power over cases in which either no differencing or over-differencing is employed. As an
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empirical application, we consider the puzzle affiliated with the forward rate unbiasedness hypothesis. We find

that the forward premium is typically subject to long memory, while the standard regressands in the forward

rate unbiasedness hypothesis regressions appear to be I(0), making it well suited to our two-stage test. We

reverse a strong rejection of unbiasedness for two of the five currencies in our sample, while reconfirming the

validity of previous rejections in the other three cases.

A Appendix

1.A Lemmas

Lemma 5 . Define δ̄ > 0, and let |δ∗T | < δ̄. Defining ũ2,t = ln(1 − L)u2,t1{t>0}, ˜̃u2,t = ln(l − L)ũ2,t, and

u∗
2,t,T = (1 − L)δ∗T ˜̃u2,t, we have

maxt≤T Eũ2
2,t < ‖Σ‖

( ∞∑
k=1

‖c2k‖

)2 ( ∞∑
v=1

1
v2

)
< ∞, (A.1)

maxt≤T E ˜̃u2
2,t = O(ln(T )2), (A.2)

maxt≤T E(u∗
2,t,T )2 = O

((
ln(T )T δ̄

)2
)

. (A.3)

Lemma 6 Using the same definitions in the statement of Theorem 1 and Lemma 5, the following convergence

rates apply

a) T−1/2
T−1∑
t=1

ũ2,tε1,t+1 = Op (1) ,(A.4)

b)T−1
T−1∑
t=1

ũ2,tu2,t = Op (1) (A.5)

c)T−1
T−1∑
t=1

ũ2
2,t = Op (1) , (A.6)

d) T−1
T−1∑
t=1

u∗
2,t,T ε1,t+1 = Op

(
ln (T ) T δ̄

)
(A.7)

e) T−1
T−1∑
t=1

u∗
2,t,T u2,t = Op

(
ln (T ) T δ̄

)
(A.8)

f) T−1
T−1∑
t=1

u∗
2,t,T ũ2,t = Op

(
ln (T ) T δ̄

)
(A.9)

g) T−1
T−1∑
t=1

(
u∗

2,t,T

)2 = Op

(
ln (T )2 T 2̄δ

)
. (A.10)

Lemma 7 Define δ̄y > 0, and let |δy∗
T | < δ̄y.
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Defining ε̃1,t+1 = ln(1 − L)
(
ε1,t+11{t>0}

)
, ˜̃ε1,t+1 = ln(l − L)ε̃1,t+1, and ε∗1,t+1,T = (1 − L)δ̂∗T ˜̃ε1,t+1,

maxt≤T Eε̃2
1,t+1 < Σ1,1

∞∑
v=1

1
v2

< ∞, (A.11)

maxt≤T E ˜̃ε2
1,t+1 = O

(
ln(T )2

)
, and (A.12)

maxt≤T E
(
ε∗1,t+1,T

)2 = O

((
ln(T )T δ̄y

)2
)

. (A.13)

The proof of Lemma 7 is omitted because it follows very closely the proof of Lemma 5.

Lemma 8 The following convergence rates apply, where A is given by (19),

a) T−1
T−1∑
t=1

u2,tε̃1,t+1 →p A (A.14)

b) T−1
T−1∑
t=1

ε̃1,t+1ũ2,t = Op(1), (A.15)

c) T−1
T−1∑
t=1

ε̃1,t+1u
∗
2,t,T = Op

(
ln(T )T δ̄x

)
, (A.16)

d) T−1
T−1∑
t=1

ε∗1,t+1,T u2,t = Op

(
ln(T )T δ̄y

)
(A.17)

e) T−1
T−1∑
t=1

ε∗1,t+1,T ũ2,t = Op

(
ln(T )T δ̄y

)
(A.18)

f) T−1
T−1∑
t=1

ε∗1,t+1,T u∗
2,t,T = Op

(
ln(T )2T (δ̄y+δ̄x)

)
(A.19)

1.B Proofs

Proof of Lemma 5

(A.1) follows by (7) and the series expansion ln(x) =
∑∞

j=1(−1)j−1 (x−1)j

j :

ũ2,t = ln(1 − L)u2,t1{t>0} = −
t−1∑
j=1

1
j
Lju2,t = −

∞∑
k=0

C2k

k+t−1∑
r=k+1

(
1

r − k

)
εt−r,

maxt≤T Eũ2
2,t = maxt≤T

∞∑
k=0

∞∑
j=0

k+t−1∑
r=k+1

j+t−1∑
s=j+1

(
1

r − k

)(
1

s − j

)
C2jE[εt−rε

′
t−s]C

′
2k

≤ ‖Σ‖

( ∞∑
k=0

‖C2k‖

)2 ( ∞∑
v=1

(
1
v

)2
)

< ∞.

Next, since ũ2,t = 0, t ≤ 0 and
∑T−1

j=1
1
j = O (ln (T )) (Gradstein and Ryzhik 1994, eqn. 0.131),

maxt≤T
˜̃u2
2,t = maxt≤T

t−1∑
j=1

t−1∑
k=1

1
k

1
j
E |ũ2,t−j ũ2,t−k| ≤ maxt≤T E|ũ2,t|2

T−1∑
j=1

1
j

2

= O(ln(T )2),
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showing (A.2). Let ψδ∗T,j
and ψδ̄j

, j =0,1,2,. . . denote the Maclaurin coefficients in the expansion of (1 − L)δ∗T

and (1 − L)δ̄T , respectively. Noting that ũ2,t = 0, t ≤ 0, |ψδ∗T,j
| ≤ |ψδ̄j

|, where ψδ̄j
is non-random, and

u∗
2,t,T =

∑t−1
j=0 ψδ∗T,j

˜̃u2t−j , (A.3) then follows since

maxt≤T E(u∗
2,t,T )2 = maxt≤T E

∣∣∣∣∣∣
t−1∑
j=0

t−1∑
k=0

ψδ∗T,j
˜̃u2,t−jψδ∗T,k

˜̃u2,t−k

∣∣∣∣∣∣ ≤ maxt≤T

t−1∑
j=0

∣∣∣ψδ∗T,j

∣∣∣ t−1∑
k=0

∣∣∣ψδ∗T,k

∣∣∣ E
∣∣˜̃u2,t−j

˜̃u2,t−k

∣∣
≤ E|˜̃u2,t|2

T−1∑
j=0

|ψδ̄,j |

2

= O

((
ln(T )T δ̄

)2
)

,

since
∑T−1

j=0 ψδ̄,j ≈
∑T−1

j=0 j δ̄−1 = O(T δ̄) (Gradstein and Ryzhik 1994, eqn. 0.121).

Proof of Lemma 6

First, (A.6) follows by Markov’s inequality and E
∣∣∣T−1

∑T−1
t=1 ũ2

2,t

∣∣∣ < ∞, which holds since

T−1
T−1∑
t=1

ũ2
2,t = T−1

T−1∑
t=1

ũ2
2,t −

(
T−1

T−1∑
t=1

ũ2,t

)2

> 0 and therefore

E

(
T−1

T−1∑
t=1

ũ2,t

)2
 ≤ T−1

T−1∑
t=1

Eũ2
2,t ≤ maxt≤T Eũ2

2,t < ∞. (A.20)

Employing the Cauchy-Schwartz inequality, similar argument shows (A.5). For (A.4) write

T−1/2
T−1∑
t=1

ũ2,tε1,t+1 = T−1/2
T−1∑
t=1

ũ2,tε1,t+1 −

(
T−1

T−1∑
t=1

ũ2,t

)
T−1/2

T−1∑
t=1

ε1,t+1. (A.21)

The second term on the RHS is Op (1) by (A.20) and application of the standard central limit theorem. For

the first term, since u2,t is predetermined, by the Law of Iterative Expectations,

E

[
T−1/2

T−1∑
t=1

ũ2,tε1,t+1

]2

= T−1
T−1∑
t=1

T−1∑
s=1

E [ũ2,tũ2,sε1,t+1ε1,s+1] = T−1
T−1∑
t=1

E
[
ũ2

2,tε
2
1,t+1

]
≤ maxt≤T E

[
ũ2

2,t

]
Σ11 < ∞.

Next, (A.10) follows by similar argument as (A.6) since

E

(
T−1

T−1∑
t=1

u∗
2,t,T

)2
 ≤ T−1

T−1∑
t=1

E
[(

u∗
2,t,T

)2
]
≤ maxt≤T E

[(
u∗

2,t,T

)2
]

= O
(
ln (T )2 T 2δ̄

)
. (A.22)

(A.7) follows from the application of the Cauchy-Schwarz inequality since

E

∣∣∣∣∣T−1
T−1∑
t=1

u∗
2,t,T ε1,t+1

∣∣∣∣∣ ≤

[
T−1

T−1∑
t=1

E
(
u∗

2,t,T

)2

]1/2 [
E

(
T−1

T−1∑
t=1

ε2
1,t+1

)]1/2

≤
[
maxt≤T

(
u∗

2,t,T

)2
]1/2

Σ1/2
1,1 = O(ln(T )T δ̄).

Parts (A.8) and (A.9) follow by similar argument.
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Proof of Lemma 8

For (A.33): Since convergence in probability is implied by MSE convergence, we need only show that

limT→∞E

[
T−1

T−1∑
t=1

u2,tε̃1,t+1

]
= A and that limT→∞var

(
T−1

T−1∑
t=1

u2,tε̃1,t+1

)
= 0.

Substituting u2,t =
∑∞

j=0 C2jεt−j from (6) and ε̃1,t+1 = ln(1 − L)
(
ε1,t+11{t+1>0}

)
= −

∑t
j=1

1
j ε1,t+1−j and

noting that E [εt−jε1,t−k] = 0 for j 6= k,

E [εt−jε2,t−j ] = E


 ε1,t−j

ε2,t−j

 ε2,t−j

 =

 Σ12

Σ22

 ≡ Σ.,1,

and limT→∞E
[
T−1

∑T−1
t=1 ū2ε̃1,t+1

]
= 0 by (A.11) and because ū2 →p E [u2,t] = 0, we obtain

limT→∞E

[
T−1

T−1∑
t=1

u2,tε̃1,t+1

]
= limT→∞E

[
T−1

T−1∑
t=1

u2,tε̃1,t+1

]

= limT→∞T−1
T−1∑
t=1

E [u2,tε̃1,t+1] =

= limT→∞T−1
T−1∑
t=1

E

 ∞∑
j=0

C2,jεt−j

(
−

t−1∑
k=0

1
k + 1

ε1,t−k

) =

= −limT→∞T−1
T−1∑
t=1

∞∑
j=0

C2,j

t−1∑
k=0

1
k + 1

E [εt−jε1,t−k]

= −limT→∞T−1
T−1∑
t=1

t−1∑
j=0

1
j + 1

C2,jΣ.,1 ≡ A

and this limit is finite since its argument is bounded:∣∣∣∣∣∣T−1
T−1∑
t=1

t−1∑
j=0

1
j + 1

C2,jΣ.,1

∣∣∣∣∣∣ ≤ T−1
T−1∑
t=1

t−1∑
j=0

∣∣∣∣ 1
j + 1

C2,jΣ.,1

∣∣∣∣ ≤ T−1
T∑

t=1

T∑
j=0

∣∣∣∣ 1
j + 1

C2,jΣ.,1

∣∣∣∣
=

T∑
j=0

∣∣∣∣ 1
j + 1

C2,jΣ.,1

∣∣∣∣ =
T∑

j=0

∥∥∥∥ 1
j + 1

C2,jΣ.,1

∥∥∥∥ ≤
T∑

j=0

1
j + 1

‖C2,j‖ ‖Σ.,1‖ (A.23)

which is finite by (7), where ‖·‖ denotes a matrix norm.

Next we turn to the variance. Using Cauchy-Schwarz and Holder’s Inequality:

E

∣∣∣∣∣T−1
T−1∑
t=1

u2,tε̃1,t+1

∣∣∣∣∣
2
 = E

∣∣∣∣∣T−1
T−1∑
t=1

u2,tε̃1,t+1

∣∣∣∣∣
2


≤ E

[(
T−1

T−1∑
t=1

u2
2,t

)(
T−1

T−1∑
t=1

ε̃2
1,t+1

)]

≤

E

∣∣∣∣∣T−1
T−1∑
t=1

u2
2,t

∣∣∣∣∣
2


1/2 E

∣∣∣∣∣T−1
T−1∑
t=1

ε̃2
1,t+1

∣∣∣∣∣
2


1/2

,
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where by the argument of (A.20) E
∣∣∣T−1

∑T−1
t=1 u2

2,t

∣∣∣2 , E
∣∣∣T−1

∑T−1
t=1 ε̃2

1,t+1

∣∣∣2 < ∞

The proof of (A.15) is omitted since it follows by the same arguments as the proofs of (A.5) and (A.6).

Likewise, the proofs of (A.16)-(A.19) follow closely those of (A.7)-(A.10).

Proof of Theorem 1

Define δ̂T = (d̂ − d), where −δ̂T is the integration order of the second-stage regressor. By assumption

Tαδ̂T = Tα(d̂ − d) = Op(1). (A.24)

Using demeaned fitted and true models y
t+1

= β̂1û2,t + ε̂1t+1 and y
t+1

= β1u2,t + ε1t+1,

√
T (β̂1 − β1) =

(
T−1

T−1∑
t=1

û2
2,t

)−1 (
T−1/2

T−1∑
t=1

û2,tε1,t+1 + β1T
−1/2

T−1∑
t=1

(u2,t − û2,t)û2,t

)
. (A.25)

Let δ̄ > 0 and let the indicator Iδ̄ take the value 1 if |δ̂T | < δ̄ and zero otherwise. Let η > 0. Since d̂ →p d, for

large T , P (Iδ̄ =0)=P (|δ̂T | > δ̄) < η. Thus, Iδ̄ →p 1 and

√
T (β̂1 − β1) = Iδ̄

√
T (β̂1 − β1) + (1 − Iδ̄)

√
T (β̂1 − β1) = Iδ̄

√
T (β̂1 − β1) + op(1),

where the last term is op (1) since (1− Iδ̄)
√

T (β̂1 − β1) =0 when Iδ̄ = 1, and P (Iδ̄ = 1) → 1. Therefore in what

follows below we will assume |δ̂T | < δ̄ without loss of generality.

Next, applying an exact second order Taylor series expansion to the function (1 − L)δ̂T with argument δ̂T

about zero and where δ∗T lies between 0 and δ̂T gives

(1 − L)δ̂T = 1 + δ̂T ln(1 − L) +
1
2
δ̂2
T ln(1 − L)2(1 − L)δ∗T and

û2,t = (1 − L)δ̂T u2,t1{t>0} = u2,t1{t>0} + δ̂T ũ2,t +
1
2
δ̂2
T u∗

2,t,T (A.26)

where u∗
2,t,T , ˜̃u2,t, and ũ2,t are defined in Lemma 5.

Next, we turn to the first term in the numerator of
√

T (β̂1 − β1) in (A.25). Using (A.26) to substitute for

û2,t, we have

T−1/2
T−1∑
t=1

û2,tε1,t+1 = T−1/2
T−1∑
t=1

u2,tε1,t+1 + R1,T →d N(0, var[u2,t]Σ11) (A.27)

by Davidson (2000, Theorem 6.2.3, p. 124), since utε1t+1 is a strictly stationary Martingale difference Se-

quence,15 and since, by Lemma 6 (A.4) and (A.7),

R1,T = δ̂T T−1/2
T−1∑
t=1

ũ2,tε1,t+1 +
1
2
δ̂2
T T−1/2

T−1∑
t=1

u∗
2,t,T ε1,t+1 = O(T−α) + Op(ln(T )T 1/2−2α+δ̄) = op(1)

for α > 1
4(1 + 2δ̄), again with δ̄ arbitrarily small.

15Note that u2,t is a pre-determined short-memory linear process and ε1t+1 is an i.i.d. series so that the asymptotic normality

result employed here is quite standard.
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The behavior of the second term in the numerator of
√

T (β̂1 − β1) in (A.25) is given by

β1T
−1/2

T−1∑
t=1

(u2,t − û2,t)û2,t = −β1T
−1/2

T−1∑
t=1

(
δ̂T ũ2,t +

1
2
δ̂2
T u∗

2,t,T

)(
u2,t + δ̂T ũ2,t +

1
2
δ̂2
T u∗

2,t,T

)

= β1T
−1/2δ̂T

T−1∑
t=1

ũ2,tu2,t + β1R2,T = β1Op(T 1/2−α),

giving the order of magnitude of the contamination term BT in (9), where R2,T is defined as,

R2,T = T−1/2

[
δ̂2
T

T−1∑
t=1

ũ2
2,t +

1
2
δ̂2
T

T−1∑
t=1

u∗
2,t,T u2,t + δ̂3

T

T−1∑
t=1

u∗
2,t,T ũ2,t +

1
4
δ̂4
T

T−1∑
t=1

(u∗
2,t,T )2

]
.

For α > 1
4(1 + 2δ̄), and by Lemma 6, we have R2,T = op (1).

For the denominator of
√

T (β̂1 − β1) in equation (A.25) we have

T−1
T−1∑
t=1

û2
2,t = T−1

T−1∑
t=1

u2
2,t + R3,T →p var[u2,t] (A.28)

by standard argument, since by Lemma 6,

R3,T = δ̂2
T T−1

T−1∑
t=1

ũ2
2,t +

1
4
δ̂4
T T−1

T−1∑
t=1

(
u∗

2,t,T

)2 + 2δ̂T T−1
T−1∑
t=1

ũ2,tu2,t + δ̂2
T T−1

T−1∑
t=1

u∗
2,t,T u2,t

+ δ̂3
T T−1

T−1∑
t=1

u∗
2,t,T ũ2,t = Op(T−2α) + Op

(
T 2δ̄−4αln(T )2

)
+ Op(T−α)

+ Op

(
T δ̄−2αln(T )

)
+ Op

(
T δ̄−3αln(T )

)
= op(1),

for α > δ̄. Combining the above results shows Theorem 1.

Proof of Corollary 2

y
t+1

= β̂1û2,t + ε̂1t+1 and û2,t = u2,t + δ̂T ũ2,t + 1
2 δ̂2

T u∗
2,t,T . Therefore,

ε̂1t+1 = y
t+1

− β̂1û2,t = ε1t+1 − (β̂1 − β1)u2,t − δ̂T β̂1ũ2,t −
1
2
δ̂2
T β̂1u

∗
2,t,T

σ̂2 = T−1
T−1∑
t=1

ε̂2
1t+1 = T−1

T−1∑
t=1

ε2
1t+1 + R4,T

by standard argument since, for α > δ̄
2 , by (A.24), Lemma 6 (A.4) - (A.10), and (10)

R4,T = (β̂1 − β1)2T−1
T−1∑
t=1

u2
2,t + β̂2

1 δ̂2
T T−1

T−1∑
t=1

ũ2
2,t +

1
4
β̂2

1 δ̂4
T T−1

T−1∑
t=1

(u∗
2,t,T )2

− 2(β̂1 − β1)T−1
T−1∑
t=1

u2,tε1t+1 − 2δ̂T β̂1T
−1

T−1∑
t=1

ũ2,tε1t+1 − δ̂2
T β̂1T

−1
T−1∑
t=1

u∗
2,t,T ε1t+1

+ 2δ̂T (β̂1 − β1)β̂1T
−1

T−1∑
t=1

u2,tũ2,t + δ̂2
T

(
β̂1 − β1

)
β̂1T

−1
T−1∑
t=1

u2,tu
∗
2,t,T

+ δ̂3
T β̂2

1T−1
T−1∑
t=1

ũ2,tu
∗
2,t,T = op(1).
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Proof of Corollary 3

Result (a) follows from Theorem 1 and Corollary 2 by standard arguments (note that the contamination term

BT is not present under the null Ho : β1 = 0). For (b) note that under HA : β1 6= 0, we have β̂1−β1 = Op(T−α)

by (10). Therefore

T−1/2t = σ̂−1

(
T−1

T−1∑
t=1

û2
2,t

)1/2

β̂1 = σ̂−1

(
T−1

T−1∑
t=1

û2
2,t

)1/2

T 1/2β1 + σ̂−1

(
T−1

T−1∑
t=1

û2
2,t

)1/2

(β̂1 − β1)

→ pΣ
−1/2
11 var[u2,t]1/2β1

since the second term is op (1) on account of the consistency of β̂1 for β1.

Proof of Theorem 4

Define δ̂y
T = d̂y −dy and let δ̄ > 0. By the arguments of Theorem 1 assume d̂x, d̂y < δ̄ without loss of generality.

The denominator of β̂1 in (14) is unchanged relative to Theorem 1. Using (12) to substitute for yt+1, that

T (αy−1) times the numerator is given by

T (αy−1)
T−1∑
t=1

(1 − L)d̂yyt+1û2,t =
T−1∑
t=1

(1 − L)d̂y−dy
(
ε1t+11{t>0}

)
û2,t.

Following Theorem 1, take an exact second order Taylor series expansion of δ̂y
T , with 0 ≤ δ∗yT ≤ δ̂y

T , to obtain

(1 − L)δ̂y
T = 1 + δ̂y

T ln(1 − L) +
1
2
(δ̂y

T )2 [ln(1 − L)]2 (1 − L)δ∗y
T . (A.29)

Then, employing the definitions of Lemma 7,

(1 − L)d̂y−dy
(
ε1t+11{t>0}

)
û2,t =

(
ε1t+1 + δ̂y

T ε̃1,t+1 + (δ̂y
T )2ε∗1,t+1,T

)
û2,t.

Therefore, T (αy−1) times the numerator is given by the three terms:

T (αy−1)
T−1∑
t=1

[(1 − L)d̂y−dyε1t+1û2,t] = T (αy−1)
T−1∑
t=1

ε1t+1û2,t + δ̂y
T T (αy−1)

T−1∑
t=1

ε̃1,t+1û2,t

+ (δ̂y
T )2T (αy−1)

T−1∑
t=1

ε∗1,t+1,T û2,t. (A.30)

The behavior of the first term in (A.30) is derived in (A.27), from which we can see that

T (αy−1)
T−1∑
t=1

ε1t+1û2,t →d 1{αy=1/2}var [u2,t] ξβ (A.31)

where ξβ is specified in (18).

Substituting (A.26) for u2,t, the second term in (A.30) is given by

δ̂y
T T (αy−1)

T−1∑
t=1

ε̃1,t+1û2,t = δ̂y
T T (αy−1)

T−1∑
t=1

ε̃1,t+1u2,t + δ̂y
T δ̂T T (αy−1)

T−1∑
t=1

ε̃1,t+1ũ2,t + δ̂y
T δ̂2

T T (αy−1)
T−1∑
t=1

ε̃1,t+1u
∗
2,t,T

(A.32)
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For the first term, using Lemma 8 (A.33), and noting that |A| < ∞ by (A.23),

T−(1−α)δ̂y
T

T−1∑
t=1

ε̃1,t+1u2,t = Tαδ̂y
T T−1

T−1∑
t=1

ε̃1,t+1u2,t →d Aξδy ,

where the distribution of ξδy is specified in (15) and (17) respectively. By (A.15) and (A.16), the remaining two

terms in (A.32) are Op (T−αx) and Op

(
T (δ̄x−2αx)ln (T )

)
= op (1) respectively.

Then the third main term in (A.30) is given by:

(
δ̂y
T

)2
T (αy−1)

T−1∑
t=1

ε∗1,t+1,T û2,t =
(
δ̂y
T

)2
T (αy−1)

T−1∑
t=1

ε∗1,t+1,T u2,t +
(
δ̂y
T

)2
δ̂T T (αy−1)

T−1∑
t=1

ε∗1,t+1,T ũ2,t

+
1
2

(
δ̂y
T

)2
δ̂2
T T (αy−1)

T−1∑
t=1

ε∗1,t+1,T u∗
2,t,T (A.33)

By (A.17), (A.18), and (A.19) the three terms in (A.33) are Op

(
T (δ̄y−αy)ln (T )

)
= op(1), Op

(
T (δ̄y−αy−αx)ln (T )

)
=

op(1), and Op

(
T (δ̄y+δ̄x−αy−2αx)ln (T )2

)
= op (1), respectively.
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Figure 1: Log of Excess Returns for the Canadian Dollar vis-à-vis the US Dollar (1973-2000)
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Figure 2: Log of the Forward Premium for the Canadian Dollar vis-à-vis the US Dollar (1973-2000)

Figure 3: Sample Autocorrelations for Canadian Excess Returns and Forward Premium With 95% Confidence

Intervals about Zero
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Table 1
Unbalanced Regression without Differencing

Regressor is Fractional Noise; Dependent Variable is Short Memory
Table 1a

Proportion of Rejections in a 5% Nominal Test of the Null Hypothesis that b1 =0
True Value of b1 =0, Sample Size=350

ρ /d -0.95 -0.90 -0.80 -0.40 0.00 0.40 0.80 0.90 0.95
0.40 0.0600 0.0577 0.0593 0.0520 0.0450 0.0420 0.0470 0.0507 0.0507
0.50 0.0703 0.0700 0.0647 0.0533 0.0443 0.0473 0.0550 0.0627 0.0690
0.60 0.0983 0.0943 0.0883 0.0550 0.0427 0.0507 0.0757 0.0890 0.0960
0.70 0.1357 0.1240 0.1080 0.0587 0.0440 0.0557 0.1117 0.1247 0.1343
0.80 0.1883 0.1647 0.1400 0.0677 0.0457 0.0667 0.1450 0.1707 0.1867
0.90 0.2273 0.2033 0.1727 0.0760 0.0517 0.0777 0.1807 0.2197 0.2423
0.95 0.2553 0.2317 0.1860 0.0780 0.0483 0.0847 0.2000 0.2457 0.2710
1.000 0.2770 0.2533 0.2017 0.0800 0.0473 0.0857 0.2167 0.2633 0.2913

Table 1b
Bias of the Estimate of b1

True Value of b1 =0, Sample Size=350
ρ /d -0.95 -0.90 -0.80 -0.40 0.00 0.40 0.80 0.90 0.95
0.40 0.7001 0.6662 0.5960 0.3080 0.0203 -0.2677 -0.5630 -0.6405 -0.6809
0.50 0.8845 0.8390 0.7466 0.3757 0.0091 -0.3551 -0.7255 -0.8212 -0.8706
0.60 0.9882 0.9351 0.8289 0.4096 -0.0020 -0.4077 -0.8204 -0.9263 -0.9806
0.70 0.9766 0.9223 0.8156 0.3982 -0.0106 -0.4097 -0.8176 -0.9230 -0.9763
0.80 0.8645 0.8145 0.7194 0.3492 -0.0142 -0.3665 -0.7282 -0.8237 -0.8709
0.90 0.6975 0.6565 0.5797 0.2807 -0.0130 -0.2961 -0.5898 -0.6692 -0.7079
0.95 0.6081 0.5724 0.5056 0.2448 -0.0115 -0.2567 -0.5146 -0.5850 -0.6189
1.000 0.5208 0.4902 0.4332 0.2098 -0.0100 -0.2177 -0.4408 -0.5020 -0.5310

Table 1c
Variance of the Estimate of b1

True Value of b1 =0, Sample Size=350
ρ /d -0.95 -0.90 -0.80 -0.40 0.00 0.40 0.80 0.90 0.95
0.40 2.29422 2.31768 2.35168 2.38560 2.33915 2.27288 2.22209 2.21883 2.22216
0.50 1.71949 1.73744 1.76483 1.79524 1.76253 1.71194 1.67128 1.66344 1.66440
0.60 1.21465 1.22060 1.22929 1.22687 1.20446 1.17843 1.18086 1.18033 1.18525
0.70 0.81844 0.81071 0.80037 0.76638 0.75296 0.74634 0.79357 0.81039 0.82101
0.80 0.52854 0.51057 0.48965 0.44447 0.43467 0.43862 0.50608 0.53609 0.55052
0.90 0.32904 0.31239 0.29019 0.24245 0.23006 0.24059 0.30314 0.33540 0.35056
0.95 0.25544 0.24076 0.22198 0.17576 0.16194 0.17378 0.22907 0.25962 0.27290
1.000 0.19685 0.18333 0.16811 0.12547 0.11203 0.12333 0.17105 0.19841 0.20938
Notes: The table shows simulation results from the standard predictability regression without rebalancing under
the null hypothesis (b1 = 0) based on the following regression:

yt+1 = c1 + b1xt + e1t+1 (34)

The regressor xt is integrated of order d and given by

(1 − L)dxt = c2 + eyt, (35)

where et =
`

e1t e2t

´′ ∼ i.i.d. N(0, Σ), and ρ = Σ12

‹√
Σ11Σ22 denotes the residual correlation.

Notes for tables 1-2:
Throughout, the true value of b1 is equal to 0. Values for c1 and c2 are set equal to 0, while the standard
deviations of the innovations in equations (34) and (35) above, have been estimated from the exchange rate data
for Germany where the forward premium has been fractionally differenced with d = 0.80. The resulting values for
the standard deviations of ε1t and ε2t are 0.03294 and 0.000942, respectively. To calculate correlated residuals
we use the Cholesky factorization of the desired correlation matrix.
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Table 2
Unbalanced Regression without Differencing
Regressor is an ARFIMA(1,0.80,0) Process

Table 2a
Proportion of Rejections in a 5% Nominal Test of the Null Hypothesis that b1 =0

True Value of b1 =0, Sample Size=350
ρ /φ -0.95 -0.90 -0.80 -0.40 0.00 0.40 0.80 0.90 0.95
-0.99 0.0197 0.0213 0.0287 0.0397 0.0497 0.0463 0.0267 0.0230 0.0220
-0.95 0.0913 0.0850 0.0800 0.0537 0.0517 0.0553 0.0770 0.0823 0.0907
-0.80 0.1213 0.1127 0.1037 0.0643 0.0467 0.0557 0.1010 0.1147 0.1247
-0.40 0.1703 0.1533 0.1277 0.0657 0.0453 0.0647 0.1317 0.1553 0.1710
0.00 0.1883 0.1647 0.1400 0.0677 0.0457 0.0667 0.1450 0.1707 0.1867
0.40 0.1943 0.1770 0.1470 0.0700 0.0440 0.0707 0.1460 0.1827 0.2013
0.80 0.2110 0.1903 0.1603 0.0717 0.0520 0.0810 0.1633 0.1993 0.2160
0.95 0.2203 0.2120 0.1637 0.0727 0.0510 0.0817 0.1733 0.2163 0.2270
0.99 0.2560 0.2323 0.1903 0.0833 0.0470 0.0810 0.1857 0.2273 0.2553

Table 2b
Bias of the Estimate of b1

True Value of b1 =0, Sample Size=350
ρ /φ -0.95 -0.90 -0.80 -0.40 0.00 0.40 0.80 0.90 0.95
-0.99 0.0325 0.0305 0.0262 0.0052 -0.0068 -0.0127 -0.0283 -0.0338 -0.0358
-0.95 0.7950 0.7501 0.6617 0.3159 -0.0153 -0.3365 -0.6684 -0.7546 -0.7979
-0.80 1.0554 0.9959 0.8797 0.4244 -0.0165 -0.4449 -0.8868 -1.0016 -1.0592
-0.40 1.1106 1.0472 0.9253 0.4494 -0.0167 -0.4691 -0.9341 -1.0563 -1.1169
0.00 0.8645 0.8145 0.7194 0.3492 -0.0142 -0.3665 -0.7282 -0.8237 -0.8709
0.40 0.5526 0.5202 0.4589 0.2215 -0.0114 -0.2363 -0.4670 -0.5283 -0.5584
0.80 0.2083 0.1958 0.1724 0.0826 -0.0057 -0.0899 -0.1765 -0.1998 -0.2112
0.95 0.1158 0.1088 0.0958 0.0460 -0.0032 -0.0498 -0.0978 -0.1111 -0.1175
0.99 0.0239 0.0225 0.0200 0.0096 -0.0006 -0.0099 -0.0199 -0.0229 -0.0241

Table 2c
Variance of the Estimate of b1

True Value of b1 =0, Sample Size=350
ρ /φ -0.95 -0.90 -0.80 -0.40 0.00 0.40 0.80 0.90 0.95
-0.99 0.13639 0.14753 0.16445 0.22524 0.25382 0.22961 0.16235 0.13853 0.12816
-0.95 0.58076 0.60825 0.65784 0.80035 0.84368 0.78585 0.64009 0.59124 0.56670
-0.80 0.84047 0.85316 0.88078 0.96557 0.97829 0.92816 0.86841 0.84784 0.83704
-0.40 0.87308 0.85362 0.83286 0.79103 0.77707 0.76959 0.84981 0.88344 0.89903
0.00 0.52854 0.51057 0.48965 0.44447 0.43467 0.43862 0.50608 0.53609 0.55052
0.40 0.21792 0.20832 0.19693 0.17212 0.16816 0.17251 0.20512 0.22076 0.22919
0.80 0.03266 0.03059 0.02807 0.02321 0.02233 0.02335 0.02938 0.03234 0.03417
0.95 0.01070 0.00990 0.00893 0.00717 0.00668 0.00710 0.00916 0.01032 0.01094
0.99 0.00073 0.00066 0.00065 0.00040 0.00035 0.00040 0.00055 0.00070 0.00074
Notes: The table shows simulation results from the standard predictability regression without rebalancing under
the null hypothesis (b1 = 0) based on the following regression:

yt+1 = c1 + b1xt + e1t+1.

The regressor xt is integrated of order d = 0.80 throughout and given by

(1 − φL)(1 − L)dxt = c2 + eyt,

where εt = (ε1t, ε2t)
′ ∼ i.i.d.N(0, Σ). The values under the heading ρ/φ are the corresponding autoregressive

coefficients (φ), while the values to the right of this heading yield the residual correlation coefficients (ρ).
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Table 3
Original Process is Fractional Noise

Table 3a
Proportion of Rejections in a 5% Nominal Test of the Null Hypothesis that β1 = 0

Sample Size=350, True Value of β1 = 0
ρ /d -0.95 -0.90 -0.80 -0.40 0.00 0.40 0.80 0.90 0.95
0.40 0.05933 0.05400 0.05367 0.04967 0.04867 0.04867 0.04667 0.04967 0.05033
0.50 0.05867 0.05667 0.05500 0.05133 0.04900 0.04867 0.04767 0.04933 0.05000
0.60 0.05833 0.05400 0.05533 0.05167 0.05000 0.05067 0.04800 0.04900 0.05167
0.70 0.06033 0.05467 0.05633 0.05067 0.05133 0.05000 0.04833 0.04967 0.05200
0.80 0.05633 0.05400 0.05367 0.05100 0.05400 0.04933 0.04700 0.05033 0.04967
0.90 0.05633 0.05367 0.05533 0.05133 0.05367 0.05033 0.04700 0.05067 0.05200
0.95 0.05500 0.05600 0.05467 0.05200 0.05467 0.05000 0.04733 0.04867 0.05100
1.000 0.05367 0.05267 0.05300 0.05367 0.05367 0.05133 0.05300 0.04733 0.04967

Table 3b
Bias of the Estimate of β1 using the Two-Step Procedure

Sample Size=350, True Value of β1 = 0
ρ /d -0.95 -0.90 -0.80 -0.40 0.00 0.40 0.80 0.90 0.95
0.40 0.1531 0.1507 0.1422 0.0932 0.0370 -0.0245 -0.0946 -0.1156 -0.1277
0.50 0.1503 0.1482 0.1401 0.0936 0.0391 -0.0212 -0.0910 -0.1119 -0.1241
0.60 0.1430 0.1416 0.1348 0.0928 0.0424 -0.0150 -0.0829 -0.1035 -0.1158
0.70 0.1375 0.1369 0.1316 0.0946 0.0474 -0.0079 -0.0751 -0.0958 -0.1081
0.80 0.1302 0.1309 0.1278 0.0967 0.0540 0.0009 -0.0645 -0.0846 -0.0968
0.90 0.1169 0.1196 0.1198 0.0951 0.0586 0.0112 -0.0484 -0.0662 -0.0774
0.95 0.1084 0.1120 0.1136 0.0908 0.0581 0.0155 -0.0384 -0.0543 -0.0645
1.000 0.0993 0.1037 0.1060 0.0826 0.0544 0.0177 -0.0286 -0.0417 -0.0503

Table 3c
Variance of the Estimate of β1 using the Two-Step Procedure

Sample Size=350, True Value of β1 = 0
ρ /d -0.95 -0.90 -0.80 -0.40 0.00 0.40 0.80 0.90 0.95
0.40 3.59836 3.60396 3.59999 3.51075 3.42144 3.39318 3.44707 3.48076 3.50570
0.50 3.57555 3.58211 3.57901 3.49147 3.40264 3.37472 3.42513 3.45733 3.48142
0.60 3.53193 3.53852 3.53572 3.45165 3.36702 3.34177 3.38954 3.41916 3.44155
0.70 3.43130 3.43802 3.43818 3.36923 3.29336 3.27361 3.31432 3.33653 3.35345
0.80 3.23513 3.23913 3.23852 3.19041 3.13405 3.12308 3.15497 3.16652 3.17656
0.90 2.88472 2.87871 2.86471 2.83797 2.80650 2.80929 2.83142 2.82905 2.83516
0.95 2.64168 2.62779 2.60618 2.58968 2.56308 2.57730 2.58937 2.57956 2.58617
1.000 2.35700 2.33481 2.30983 2.30710 2.27721 2.30580 2.30102 2.28715 2.29478
Notes: The table shows results based on a 2-step estimation procedure with the true model given as:

yt+1 = β0 + β1(1 − L)dxt + ε1t+1 (36)

(1 − L)dxt = c2 + ε2t (37)

Here, the CSS estimator is used in the first step to estimate the parameter d. In the second step, yt+1 is regressed
on the fractional difference of xt using the estimated value of d obtained in step 1.
Notes for tables 3-7 :
Throughout, the true value of β1 is equal to 0. Values for β0 and c2 are set equal to 0, while the standard
deviations of the innovations in equations (36) and (37) above, have been estimated from the exchange rate data
for Germany where the forward premium has been fractionally differenced with d = 0.80. The resulting values for
the standard deviations of ε1t and ε2t are 0.03294 and 0.000942, respectively. To calculate correlated residuals
we use the Cholesky factorization of the desired correlation matrix.
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Table 4 
2-step Procedure Using CSS Estimator where the Original Process is an ARFIMA(1,d,0) process 

Table 4a 
Proportion of Rejections of the True Null Hypothesis β=0 

ρ/φ -0.95 -0.90 -0.80 -0.40 0.00 0.40 0.80 0.90 0.95 
-0.99 0.0470 0.0460 0.0490 0.0450 0.0457 0.0513 0.0477 0.0503 0.0487 
-0.95 0.0447 0.0477 0.0483 0.0493 0.0503 0.0440 0.0443 0.0443 0.0423 
-0.80 0.0457 0.0480 0.0493 0.0490 0.0477 0.0450 0.0423 0.0423 0.0440 
-0.40 0.0470 0.0493 0.0467 0.0510 0.0500 0.0510 0.0470 0.0453 0.0410 
0.00 0.0540 0.0510 0.0497 0.0540 0.0547 0.0523 0.0507 0.0487 0.0497 
0.40 0.0550 0.0567 0.0547 0.0523 0.0547 0.0530 0.0560 0.0553 0.0520 
0.80 0.0473 0.0490 0.0507 0.0483 0.0503 0.0513 0.0597 0.0563 0.0573 
0.95 0.0537 0.0567 0.0570 0.0493 0.0493 0.0517 0.0547 0.0577 0.0590 
0.99 0.1387 0.1260 0.1093 0.0763 0.0593 0.0647 0.1153 0.1383 0.1503 

Table 4b 
Mean Estimated Value of β using two step-procedure 

ρ/φ -0.95 -0.90 -0.80 -0.40 0.00 0.40 0.80 0.90 0.95 
-0.99 -0.1888 -0.1796 -0.1623 -0.0838 -0.0020 0.0795 0.1611 0.1805 0.1897 
-0.95 -0.1712 -0.1646 -0.1503 -0.0850 -0.0131 0.0626 0.1365 0.1546 0.1640 
-0.80 -0.1295 -0.1265 -0.1185 -0.0756 -0.0231 0.0344 0.0919 0.1070 0.1153 
-0.40 0.0263 0.0195 0.0103 -0.0158 -0.0329 -0.0456 -0.0501 -0.0490 -0.0470 
0.00 0.1700 0.1568 0.1336 0.0521 -0.0260 -0.0976 -0.1577 -0.1709 -0.1773 
0.40 0.2416 0.2293 0.1993 0.0920 -0.0169 -0.1182 -0.2118 -0.2353 -0.2480 
0.80 0.2546 0.2385 0.2113 0.1005 -0.0075 -0.1150 -0.2240 -0.2515 -0.2612 
0.95 0.3033 0.2889 0.2588 0.1310 0.0025 -0.1286 -0.2596 -0.2904 -0.3068 
0.99 0.4550 0.4307 0.3849 0.2012 0.0100 -0.1855 -0.3739 -0.4236 -0.4497 

Table 4c 
Variance Estimated Value of β using two step-procedure 

ρ/φ -0.95 -0.90 -0.80 -0.40 0.00 0.40 0.80 0.90 0.95 
-0.99 0.1549 0.1520 0.1478 0.1319 0.1245 0.1313 0.1504 0.1535 0.1541 
-0.95 0.6954 0.6965 0.7001 0.7066 0.7150 0.7087 0.6910 0.6864 0.6862 
-0.80 1.2362 1.2419 1.2515 1.2799 1.2975 1.2865 1.2358 1.2221 1.2180 
-0.40 2.8195 2.8390 2.8705 2.9546 2.9881 2.9549 2.8472 2.8135 2.7966 
0.00 3.4081 3.4209 3.4463 3.5145 3.5635 3.5640 3.4820 3.4536 3.4350 
0.40 3.0321 3.0172 3.0064 3.0215 3.0633 3.0794 3.0823 3.0578 3.0590 
0.80 1.3795 1.3701 1.3633 1.3592 1.3754 1.4260 1.4281 1.4261 1.4225 
0.95 0.8057 0.8017 0.7874 0.7684 0.7694 0.7846 0.8180 0.8258 0.8294 
0.99 0.2248 0.2162 0.2089 0.1920 0.1867 0.1933 0.2141 0.2240 0.2304 

Table 4d 
Mean Estimated Value of d using two step-procedure 

ρ/φ -0.95 -0.90 -0.80 -0.40 0.00 0.40 0.80 0.90 0.95 
-0.99 0.7926 0.7926 0.7925 0.7920 0.7917 0.7919 0.7925 0.7925 0.7925 
-0.95 0.7953 0.7953 0.7953 0.7950 0.7946 0.7947 0.7953 0.7953 0.7953 
-0.80 0.7949 0.7950 0.7950 0.7946 0.7941 0.7942 0.7948 0.7950 0.7951 
-0.40 0.7967 0.7969 0.7967 0.7965 0.7958 0.7957 0.7971 0.7973 0.7974 
0.00 0.7999 0.7998 0.7997 0.7994 0.7986 0.7988 0.8005 0.8008 0.8010 
0.40 0.8059 0.8057 0.8068 0.8060 0.8045 0.8055 0.8071 0.8072 0.8075 
0.80 0.8122 0.8120 0.8117 0.8127 0.8125 0.8128 0.8133 0.8128 0.8131 
0.95 0.8061 0.8060 0.8056 0.8067 0.8069 0.8062 0.8071 0.8070 0.8065 
0.99 0.7951 0.7950 0.7949 0.7947 0.7948 0.7943 0.7940 0.7941 0.7944 

Notes: The results here are based on a 2-step procedure with the true model given as:  
yt+1 = c1 + β(1-L)0.80xt+ε11+1,               (1-φL)(1-L)0.80xt = c2+ε2t 

Here, d has been obtained from estimation of an ARFIMA(1,d,0) model using the CSS estimator. 
 



Table 5
2-step Procedure Using Semi-Parametric Estimator

where the Original Process is an ARFIMA(1,0.80,0) process.
Table 5a: Proportion of Rejections in a 5% Nominal Test of the Null Hypothesis that β1 = 0
ρ /φ -0.95 -0.90 -0.80 -0.40 0.00 0.40 0.80 0.90 0.95
-0.99 0.0527 0.0497 0.0503 0.0460 0.0513 0.0540 0.0493 0.0453 0.0470
-0.95 0.0493 0.0487 0.0487 0.0557 0.0613 0.0560 0.0480 0.0457 0.0440
-0.80 0.0490 0.0497 0.0493 0.0570 0.0543 0.0560 0.0510 0.0493 0.0487
-0.40 0.0517 0.0560 0.0563 0.0517 0.0537 0.0520 0.0483 0.0487 0.0500
0.00 0.0530 0.0540 0.0587 0.0530 0.0523 0.0497 0.0497 0.0490 0.0470
0.40 0.0513 0.0513 0.0483 0.0560 0.0507 0.0487 0.0463 0.0500 0.0513
0.80 0.0553 0.0523 0.0503 0.0553 0.0557 0.0553 0.0460 0.0473 0.0483
0.95 0.0523 0.0560 0.0567 0.0613 0.0557 0.0557 0.0490 0.0497 0.0513
0.99 0.0587 0.0593 0.0583 0.0573 0.0560 0.0540 0.0590 0.0547 0.0540

Table 5b: Bias of the Estimate of β1 using the Two-Step Procedure
ρ /φ -0.95 -0.90 -0.80 -0.40 0.00 0.40 0.80 0.90 0.95
-0.99 -0.1597 -0.1510 -0.1338 -0.0684 0.0010 0.0697 0.1332 0.1470 0.1547
-0.95 -0.1407 -0.1343 -0.1201 -0.0615 0.0017 0.0664 0.1224 0.1362 0.1427
-0.80 -0.0999 -0.0957 -0.0847 -0.0407 0.0049 0.0512 0.0889 0.0985 0.1033
-0.40 0.0485 0.0499 0.0533 0.0410 0.0240 0.0077 -0.0200 -0.0286 -0.0323
0.00 0.1875 0.1852 0.1789 0.1107 0.0397 -0.0257 -0.1111 -0.1384 -0.1552
0.40 0.2708 0.2649 0.2492 0.1500 0.0489 -0.0460 -0.1664 -0.2049 -0.2305
0.80 0.1567 0.1505 0.1406 0.0956 0.0432 -0.0045 -0.0728 -0.1004 -0.1177
0.95 0.0863 0.0771 0.0774 0.0576 0.0314 0.0078 -0.0134 -0.0312 -0.0422
0.99 0.0253 0.0261 0.0071 0.0003 0.0045 -0.0120 -0.0072 -0.0120 -0.0035

Table 5c: Variance of the Estimate of β1 using the Two-Step Procedure
ρ /φ -0.95 -0.90 -0.80 -0.40 0.00 0.40 0.80 0.90 0.95
-0.99 0.1320 0.1272 0.1203 0.1105 0.1077 0.1067 0.1181 0.1175 0.1211
-0.95 0.6792 0.6824 0.6871 0.7076 0.7172 0.7125 0.6824 0.6731 0.6720
-0.80 1.2122 1.2253 1.2433 1.2744 1.2748 1.2630 1.2158 1.1964 1.1896
-0.40 2.7153 2.7253 2.7464 2.7775 2.7069 2.6937 2.7069 2.6913 2.6805
0.00 3.1164 3.1267 3.1536 3.1518 3.0743 3.0546 3.0963 3.0913 3.0767
0.40 2.5361 2.5530 2.5592 2.5335 2.5040 2.4821 2.4817 2.4769 2.4769
0.80 1.4127 1.4001 1.3764 1.4066 1.4280 1.3959 1.3551 1.3227 1.3360
0.95 0.9257 0.9104 0.9057 0.9200 0.9398 0.8992 0.8575 0.8321 0.8376
0.99 0.1224 0.1232 0.1227 0.1320 0.1555 0.1330 0.1225 0.1239 0.1424

Table 5d: Bias of the Estimate of d
ρ /φ -0.95 -0.90 -0.80 -0.40 0.00 0.40 0.80 0.90 0.95
-0.99 0.0228 0.0227 0.0225 0.0239 0.0239 0.0238 0.0234 0.0238 0.0243
-0.95 0.0324 0.0331 0.0326 0.0326 0.0328 0.0333 0.0330 0.0342 0.0340
-0.80 0.0326 0.0332 0.0332 0.0329 0.0334 0.0340 0.0336 0.0346 0.0345
-0.40 0.0309 0.0314 0.0316 0.0319 0.0320 0.0325 0.0322 0.0333 0.0332
0.00 0.0291 0.0297 0.0302 0.0307 0.0301 0.0309 0.0305 0.0321 0.0321
0.40 0.0638 0.0644 0.0649 0.0652 0.0643 0.0656 0.0660 0.0670 0.0673
0.80 0.3109 0.3110 0.3121 0.3129 0.3141 0.3172 0.3161 0.3152 0.3145
0.95 0.4106 0.4116 0.4129 0.4169 0.4192 0.4211 0.4158 0.4141 0.4130
0.99 0.3209 0.3197 0.3187 0.3203 0.3245 0.3251 0.3191 0.3210 0.3225

Notes: The results reported above are based on a 2-step estimation procedure with the true model given as:

yt+1 = β0 + β1(1 − L)0.80xt + ε1t+1, (1 − φL)(1 − L)0.80xt = c2 + ε2t

Here we use the log periodogram regression based estimator of Andrews and Guggenberger (2003) to obtain d.
We apply a taper equal to (1 − L)0.50xt, and set m = T 0.75.
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Table 6
2-step Procedure Using CSS Estimator

where the Original Process is an ARFIMA(1,d ,0) process.
A Misspecified ARFIMA(0,d ,0) Model is Fit Instead

Table 6a: Proportion of Rejections in a 5% Nominal Test of the Null Hypothesis that β1 = 0
ρ /φ -0.95 -0.90 -0.80 -0.40 0.00 0.40 0.80 0.90 0.95
-0.99 0.0580 0.0557 0.0560 0.0497 0.0520 0.0533 0.0543 0.0570 0.0583
-0.95 0.0647 0.0627 0.0583 0.0543 0.0497 0.0570 0.0560 0.0560 0.0573
-0.80 0.0607 0.0603 0.0580 0.0553 0.0520 0.0513 0.0570 0.0547 0.0567
-0.40 0.0617 0.0613 0.0583 0.0523 0.0507 0.0520 0.0463 0.0447 0.0510
0.00 0.0563 0.0540 0.0537 0.0510 0.0540 0.0493 0.0470 0.0503 0.0497
0.40 0.0567 0.0560 0.0500 0.0523 0.0510 0.0523 0.0460 0.0473 0.0470
0.80 0.0583 0.0580 0.0543 0.0583 0.0550 0.0570 0.0500 0.0490 0.0513
0.95 0.0547 0.0577 0.0583 0.0627 0.0610 0.0570 0.0510 0.0480 0.0517
0.99 0.0603 0.0583 0.0587 0.0617 0.0587 0.0550 0.0570 0.0547 0.0557

Table 6b: Bias of the Estimate of β1 using the Two-Step Procedure
ρ /φ -0.95 -0.90 -0.80 -0.40 0.00 0.40 0.80 0.90 0.95
-0.99 0.04373 0.04141 0.0367 0.01202 -0.0056 -0.01894 -0.04031 -0.04953 -0.05184
-0.95 0.24854 0.23349 0.20518 0.09622 -0.00514 -0.09974 -0.20299 -0.23235 -0.24714
-0.80 0.28688 0.27085 0.24026 0.11969 0.00249 -0.11163 -0.23311 -0.26615 -0.28338
-0.40 0.22077 0.21329 0.19634 0.11879 0.03239 -0.06098 -0.16072 -0.18787 -0.20266
0.00 0.13018 0.13089 0.12778 0.09667 0.05402 0.00088 -0.06445 -0.08462 -0.09681
0.40 0.07516 0.08023 0.08545 0.0865 0.07487 0.04487 -0.00466 -0.0216 -0.03279
0.80 0.03648 0.0377 0.04501 0.05669 0.06702 0.05627 0.02617 0.01226 0.00351
0.95 0.02759 0.02369 0.03183 0.03497 0.04544 0.03257 0.03208 0.02132 0.01359
0.99 0.02199 0.02255 0.0036 -0.00131 0.00409 -0.00956 -0.00429 -0.0052 -0.00011

Table 6c: Variance of the Estimate of β1 using the Two-Step Procedure
ρ /φ -0.95 -0.90 -0.80 -0.40 0.00 0.40 0.80 0.90 0.95
-0.99 0.24955 0.24892 0.24678 0.25670 0.26589 0.25530 0.24477 0.23383 0.23192
-0.95 1.18432 1.18581 1.19177 1.21323 1.21843 1.19456 1.16523 1.16062 1.16447
-0.80 1.84372 1.85378 1.86892 1.86181 1.83358 1.79712 1.78885 1.79446 1.80431
-0.40 3.10619 3.11243 3.11170 3.04014 2.96201 2.94127 2.99533 3.02120 3.03980
0.00 3.23513 3.23913 3.23852 3.19041 3.13405 3.12308 3.15497 3.16652 3.17656
0.40 2.78884 2.78663 2.77597 2.75323 2.73689 2.73924 2.75371 2.74969 2.75169
0.80 1.59337 1.58225 1.55409 1.57588 1.58700 1.57021 1.56168 1.54124 1.54587
0.95 0.99162 0.97326 0.96443 0.97360 0.96264 0.94104 0.92604 0.90271 0.90023
0.99 0.12944 0.12912 0.12368 0.14531 0.16119 0.13928 0.12705 0.12963 0.15215

Table 6d: Bias of the Estimate of d
ρ /φ -0.95 -0.90 -0.80 -0.40 0.00 0.40 0.80 0.90 0.95
-0.99 -0.83737 -0.83715 -0.83710 -0.83714 -0.83738 -0.83692 -0.83749 -0.83827 -0.83829
-0.95 -0.56793 -0.56763 -0.56764 -0.56722 -0.56697 -0.56616 -0.56645 -0.56698 -0.56739
-0.80 -0.46677 -0.46665 -0.46672 -0.46640 -0.46591 -0.46497 -0.46543 -0.46599 -0.46644
-0.40 -0.22631 -0.22624 -0.22610 -0.22568 -0.22518 -0.22440 -0.22469 -0.22520 -0.22556
0.00 0.00028 0.00022 0.00012 0.00026 0.00072 0.00139 0.00159 0.00146 0.00129
0.40 0.28915 0.28882 0.28846 0.28848 0.28941 0.29045 0.29100 0.29089 0.29062
0.80 0.55457 0.55493 0.55548 0.55815 0.55995 0.56047 0.55742 0.55582 0.55511
0.95 0.53212 0.53245 0.53380 0.53870 0.54085 0.53861 0.53420 0.53161 0.53068
0.99 0.34042 0.34045 0.34213 0.34307 0.34551 0.34709 0.34220 0.34279 0.34307

Notes: The results reported above are based on a 2-step estimation procedure with the true model given as:

yt+1 = β0 + β1(1 − L)0.80xt + ε1t+1, (1 − φL)(1 − L)0.80xt = c2 + ε2t

Note that the true model is an ARFIMA(1,0.80,0), where the values of φ and ρ appear under the heading ρ / φ. The CSS
estimator is used to incorrectly estimate a misspecified ARFIMA(0,d,0) model.

36



Table 7
2-Step Procedure Using CSS Estimator

where the Original Process is Fractional Noise
An Over-specified ARFIMA(1,d ,0) Model has been Fit to the Original Process

Table 7a: Proportion of Rejections in a 5% Nominal Test of the Null Hypothesis that β1 = 0
ρ /d -0.95 -0.90 -0.80 -0.40 0.00 0.40 0.80 0.90 0.95
0.40 0.0570 0.0550 0.0547 0.0493 0.0480 0.0473 0.0453 0.0470 0.0490
0.50 0.0543 0.0547 0.0557 0.0510 0.0490 0.0470 0.0480 0.0460 0.0483
0.60 0.0560 0.0563 0.0560 0.0520 0.0490 0.0457 0.0480 0.0480 0.0490
0.70 0.0550 0.0557 0.0573 0.0517 0.0490 0.0477 0.0493 0.0473 0.0500
0.80 0.0540 0.0527 0.0570 0.0503 0.0517 0.0497 0.0460 0.0480 0.0500
0.90 0.0527 0.0537 0.0550 0.0507 0.0537 0.0507 0.0450 0.0463 0.0487
0.95 0.0520 0.0543 0.0547 0.0513 0.0543 0.0497 0.0453 0.0483 0.0490
1.00 0.0520 0.0527 0.0510 0.0533 0.0547 0.0500 0.0510 0.0503 0.0503

Table 7b: Bias of the Estimate of β1 using the Two-Step Procedure
ρ /d -0.95 -0.90 -0.80 -0.40 0.00 0.40 0.80 0.90 0.95
0.40 0.1794 0.1776 0.1660 0.1061 0.0395 -0.0357 -0.1149 -0.1375 -0.1522
0.50 0.2094 0.2048 0.1909 0.1203 0.0405 -0.0446 -0.1398 -0.1666 -0.1822
0.60 0.2509 0.2439 0.2245 0.1371 0.0421 -0.0578 -0.1682 -0.2023 -0.2200
0.70 0.2793 0.2721 0.2509 0.1543 0.0442 -0.0670 -0.1919 -0.2265 -0.2471
0.80 0.3080 0.2998 0.2748 0.1668 0.0465 -0.0747 -0.2083 -0.2503 -0.2714
0.90 0.2846 0.2798 0.2613 0.1663 0.0496 -0.0621 -0.1908 -0.2255 -0.2453
0.95 0.2612 0.2579 0.2416 0.1571 0.0505 -0.0511 -0.1676 -0.1990 -0.2166
1.00 0.2348 0.2321 0.2184 0.1387 0.0471 -0.0393 -0.1429 -0.1726 -0.1882

Table 7c: Variance of the Estimate of β1 using the Two-Step Procedure
ρ /d -0.95 -0.90 -0.80 -0.40 0.00 0.40 0.80 0.90 0.95
0.40 3.5254 3.5332 3.5409 3.4855 3.4065 3.3631 3.3851 3.4066 3.4310
0.50 3.4957 3.5096 3.5228 3.4570 3.3710 3.3268 3.3600 3.3932 3.4090
0.60 3.4419 3.4584 3.4661 3.4056 3.3153 3.2681 3.2983 3.3268 3.3463
0.70 3.3231 3.3359 3.3467 3.2908 3.2127 3.1555 3.1954 3.2126 3.2273
0.80 3.0637 3.0764 3.0996 3.0939 3.0467 2.9985 2.9837 2.9896 2.9943
0.90 2.7097 2.7204 2.7207 2.7524 2.7305 2.6889 2.6661 2.6550 2.6580
0.95 2.4844 2.4852 2.4759 2.5089 2.4998 2.4694 2.4586 2.4360 2.4377
1.00 2.2266 2.2214 2.2062 2.2458 2.2234 2.2160 2.2029 2.1685 2.1630

Table 7d: Bias of the Estimate of d
ρ /d -0.95 -0.90 -0.80 -0.40 0.00 0.40 0.80 0.90 0.95
0.40 -0.0068 -0.0072 -0.0076 -0.0078 -0.0077 -0.0079 -0.0067 -0.0065 -0.0068
0.50 -0.0396 -0.0402 -0.0401 -0.0404 -0.0405 -0.0404 -0.0402 -0.0398 -0.0396
0.60 -0.0657 -0.0664 -0.0662 -0.0667 -0.0674 -0.0668 -0.0658 -0.0653 -0.0647
0.70 -0.0869 -0.0871 -0.0868 -0.0869 -0.0864 -0.0858 -0.0854 -0.0858 -0.0859
0.80 -0.0926 -0.0923 -0.0914 -0.0919 -0.0921 -0.0918 -0.0909 -0.0916 -0.0914
0.90 -0.0790 -0.0790 -0.0793 -0.0802 -0.0788 -0.0792 -0.0785 -0.0777 -0.0771
0.95 -0.0762 -0.0768 -0.0770 -0.0777 -0.0763 -0.0771 -0.0753 -0.0753 -0.0742
1.00 -0.0804 -0.0814 -0.0814 -0.0816 -0.0807 -0.0814 -0.0798 -0.0808 -0.0803

Notes: The results reported above are based on a 2-step estimation procedure with the true model given as:

yt+1 = β0 + β1(1 − L)0.80xt + ε1t+1, (1 − L)0.80xt = c2 + ε2t

The true model is an ARFIMA(0,d,0), where the true value of d appears under the heading ρ /d. Here an over-
parametrized ARFIMA(1,d,0) model is estimated instead of an ARFIMA (0,d,0) model using the CSS estimator.
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Table 8
OLS Estimates from the FRUH Regressions

No Differencing Applied
Sample (1973-2000): Canada France Germ. Japan UK

Dependent Variable
(st+1 − ft) ĉ1 -0.0021 -0.0028 0.0019 0.0030 -0.0046

[0.0087] [0.1615] [0.3819] [0.1921] [0.0365]
b̂1 -2.1356 -1.8457 -1.7150 -1.0215 -2.4554

[0.00000] [0.0007] [0.0139] [0.0245] [0.0001]
P-Value Q (5) 0.6536 0.3263 0.4990 0.6949 0.7448
P-Value Q (10) 0.4505 0.4247 0.3699 0.3927 0.8352
P-Value Q (20) 0.1819 0.7184 0.3379 0.3884 0.1694
P-Value Q2 (1) 0.4604 0.1538 0.0679 0.2713 0.0002
P-Value Q2 (5) 0.8043 0.6157 0.4921 0.0323 0.0051
P-Value Q2 (10) 0.9754 0.8866 0.5621 0.1454 0.0598

Kurtosis 5.0991 3.8087 3.5706 4.5902 4.8989
Skewness -0.4996 -0.2928 -0.0753 0.4510 -0.1917

Jarque-Bera 72.2844 13.3337 4.6578 44.7048 50.1924
ĉ2 -0.0021 -0.0028 0.0019 0.0030 -0.0046

Dependent Variable [0.0087] [0.0020] [0.3819] [0.1921] [0.0365]
∆ st+1 b̂2 -1.1356 -0.8457 -0.7150 -0.0215 -1.4554

[0.00000] [0.0007] [0.0139] [0.0245] [0.0001]
P-Value Q (5) 0.6536 0.3263 0.4990 0.6949 0.7448
P-Value Q (10) 0.4505 0.4247 0.3699 0.3927 0.8352
P-Value Q (20) 0.1819 0.7184 0.3379 0.3884 0.1694
P-Value Q2 (1) 0.4604 0.1538 0.0679 0.2713 0.0002
P-Value Q2 (5) 0.8043 0.6157 0.4921 0.0323 0.0051
P-Value Q2 (10) 0.9754 0.8866 0.5621 0.1454 0.0598

Kurtosis 5.0991 3.8087 3.5706 4.5902 4.8989
Skewness -0.4996 -0.2928 -0.0753 0.4510 -0.1917

Jarque-Bera 72.2844 13.3337 4.6578 44.7048 50.1924
Notes: The independent variables throughout are a constant and the forward premium. The OLS
estimates of the constant and the slope parameter are given by ĉi and b̂i, respectively where i = 1, 2.
The quantities appearing in brackets are p-values. When the dependent variable is the change in
the spot rate, we use a two-sided test of the null hypothesis that b1 = 1. The remaining p-values
are associated with the null hypothesis that the given coefficient is equal to zero.
P-Value Q (j) refers to the p-value associated with the Ljung-Box Q statistic based on the hypothesis
that the first j autocorrelations of the estimated residuals are zero. P-Value Q2(j) refers to the same
thing for the squared residuals.

38



Table 9
OLS Estimates of the FRUH-type Regressions with Fractional Differencing:

CSS Estimator used to Estimate d
Table 9

Sample (1973-2000): Canada France Germ. Japan UK
β̂0 -0.0004 0.0000 -0.0010 0.0004 0.0001

Dependent Variable [0.5993] [0.9596] [0.9803] [0.5987] [0.8415]
(st+1 − ft) β̂1 -4.2539 -2.1508 -2.4152 0.0142 -3.3031

[0.00001] [0.0104] [0.2190] [0.9784] [0.0038]
d̂ 0.7152 0.5837 0.9734 0.5865 0.4362

{0.1284} {0.0637} {0.1126} {0.0918} {0.2070}
P-Value Q (5) 0.7828 0.1229 0.3049 0.2551 0.6338
P-Value Q (10) 0.5104 0.2642 0.2454 0.1628 0.8063
P-Value Q (20) 0.2074 0.5626 0.2086 0.1720 0.1629
P-Value Q2 (1) 0.1687 0.2085 0.1267 0.2654 0.0016
P-Value Q2 (5) 0.6178 0.7034 0.5365 0.0157 0.0127
P-Value Q2 (10) 0.9214 0.9464 0.5943 0.0814 0.0961

Kurtosis 4.4661 3.6490 3.4670 4.4756 4.3616
Skewness -0.4197 -0.3048 -0.0837 0.3462 -0.1271

Jarque-Bera 38.1733 10.6039 3.2921 35.5359 25.6618
Notes: The independent variables throughout are a constant and the fractional difference of the forward premium.
The OLS estimates of the constant and the slope parameter are given by β̂0 and β̂1 , respectively. The quantities
appearing in brackets are p-values associated with the hypothesis that the given coefficient is zero. The first-
stage estimate of d is obtained via the CSS estimator for an ARFIMA(p,d,q) model. The quantities appearing in
braces under the estimates of d are numerical standard errors calculated from the outer product of the numerical
gradient vector.
P-Value Q(j) refers to the p-value associated with the Ljung-Box Q statistic based on the hypothesis that the
first j autocorrelations of the estimated residuals are zero. P-Value Q2(j) refers to the same thing for the squared
residuals.
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Figure 4: Power to Reject the Null Hypothesis that β1 = 0. Dependent Variable is Short Memory with a Long

Memory Regressor (d = 0.40)
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