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COMPOSITION OPERATORS ON

HARDY SPACES OF A HALF-PLANE

Valentin Matache

The University of Kansas

Abstract. We consider composition operators on Hardy spaces of a half-plane. We
mainly study boundedness and compactness. We prove that on these spaces there

are no compact composition operators.

1. Introduction

A lot of work has been done studying composition operators acting on Hardy
spaces of functions holomorphic on the open unit disk D = {z ∈ C : |z| < 1}.
Composition operators on Hardy spaces of functions holomorphic on a half-plane
enjoyed considerably less attention. This paper considers composition operators
on the Hardy spaces Hp(P), 0 < p < ∞ where P = {z ∈ C : Imz > 0} denotes
the upper half-plane. Characterizing the compact composition operators acting on
Hardy spaces of the open, unit disk was a rather difficult job begun in a 1973 paper
by J. H. Shapiro and J. H. Taylor and finished by J. H. Shapiro in a 1987 paper.
The details concerning this subject can be found in [1] and [8]. The principal goal of
this paper is to solve the same problem for Hardy spaces of a half-plane. The main
result is Theorem 3.1 where we prove by contradiction that compact, composition
operators acting on these spaces do not exist. The problem was first raised in the
late seventies and early eighties in such papers as [9], [12], and [13] but remained
unsolved until now. Section 2 in this paper is dedicated to setting up the notations
and studying the boundedness of composition operators. Theorem 2.1 is an older
result of this author [6], published in a little circulated journal. We decided to
review it in this section in order to make this paper as self contained as possible.
Section 3 is dedicated to proving the main result.

2. Boundedness

We begin this section by introducing some notations we shall use in the sequel.
For each f : P→ C holomorphic on P, ||f ||p is defined by

(1) ||f ||p = sup
y>0

(∫
R

|f(x+ iy)|pdx
) 1
p

1991 Mathematics Subject Classification. Primary 47B38, Secondary 47B10.

Key words and phrases. composition operator, Hardy space, compact operator.

Typeset by AMS-TEX

1



2 VALENTIN MATACHE

Recall that Hp(P) consists of all functions f , holomorphic on P for which ||f ||p is
finite, that for p ≥ 1, || ||p is a Banach space norm (even a Hilbert space norm if
p = 2), and that for 0 < p < 1

(2) d(f, g) = ||f − g||pp f, g ∈ Hp(P)

defines a Fréchet space distance on Hp(P). For any fixed selfmapping of P, ψ : P→
P the composition operator induced by ψ, Cψ is the linear operator on the space of
all C-valued functions on P, CP given by

(3) Cψf = f ◦ ψ f ∈ CP

We are interested in the situation when for some p, 0 < p < ∞, Hp(P) is left
invariant by Cψ i.e. CψHp(P) ⊆ Hp(P). We wish to observe that, due to the closed
graph principle and the well-known inequality

(4) |f(w)| ≤
(

2
πImw

) 1
p

||f ||p f ∈ Hp(P), w ∈ P

this means that the restriction of Cψ to Hp(P) is a bounded, linear operator on
Hp(P). This restriction operator will be equally denoted by Cψ, and in such a
situation we say that ψ induces a bounded composition operator on Hp(P). The
conformal mapping γ given by

(5) γ(z) = i
1 + z

1− z

transforms D onto P and has inverse

(6) γ−1(w) =
w − i
w + i

Observe that if dθ is the arc-length Lebesgue measure on the unit circle T = {z ∈
C : |z| = 1} and dx is the Lebesgue measure on R, then if we denote γ(eiθ) =
i(1 + eiθ)/(1− eiθ) = x, we have eiθ = (x− i)/(x+ i) and hence

(7) dθ =
2

1 + x2
dx

To each selfmapping ψ of P we attach a selfmapping φ of D as follows

(8) φ = γ−1 ◦ ψ ◦ γ

Suppose now that ψ is analytic on P. For each fixed y > 0 the measurable mapping
ψy(x) = ψ(x+ iy), x ∈ R naturally induces a Borel measure on P, mψ−1

y called the
pull-back measure induced by ψy

(9) mψ−1
y (E) = |{x ∈ R : ψ(x+ iy) ∈ E}|

for each Borel subset E ⊆ P. In (9) | | denotes the Lebesgue measure on R. If ψ
induces a bounded composition operator on Hp(P) for some p, 0 < p <∞, we can
write

(10)
∫
R

|f(ψ(x+ iy))|pdx =
∫
R

|(f ◦ ψy)(x)|pdx =
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P

|f |pdmψ−1
y ≤ ||Cψf ||pp ≤ ||Cψ||p||f ||pp, f ∈ Hp(P)

Above we made use of a well-known theorem in measure theory ([4], pp. 163) in
order to change the measure. Observe that (10) implies that the family {mψ−1

y }y>0

is a family of Carleson measures on P with common bound, i.e. there exists c > 0
such that

(11) mψ−1
y ({w ∈ P : t < Rew < t+ h, 0 < Imw < h}) ≤ ch

for any h > 0, t ∈ R, and y > 0, ([3] Theorem II3.9). The converse of this
implication is also true because the theorem in [3] refered above gives necessary
and sufficient conditions for a measure to be a Carleson measure i.e. if (11) holds
then (10) must hold with a constant K instead of ||Cψ||p, the same for all y > 0.
Therefore CψHp(P) ⊆ Hp(P). Summarizing these simple facts based on Carleson’s
theorem we obtain the following theorem which is the main result in [6].

Theorem 2.1 For any p, 0 < p <∞ an analytic map ψ : P→ P induces a bounded
composition operator on Hp(P) if and only if the pull-back measures mψ−1

y , y > 0
are Carleson measures with common bound c i.e. if and only if there is a c > 0
such that (11) holds for any h > 0, t ∈ R, and y > 0.

The main advantage of this characterization of boundedness is that it proves that
an analytic map ψ : P→ P simultaneously induces bounded composition operators
on all Hp(P)-spaces. We shall denote by Qt,h, the open square {w ∈ P : t < Rew <
t + h, 0 < Imw < h} which appears in (11). With this notation we prove the
following

Corollary 2.2 If ψ is a bounded, analytic selfmapping of P then ψ does not induce
a bounded composition operator on any of the spaces Hp(P), 0 < p <∞.

Proof. Choose h > 0 big enough, such that ψ(P) ⊆ Q−h,2h, which is possi-
ble because ψ is bounded. We have that for any y > 0, ψ−1

y (Q−h,2h) = R, so
mψ−1

y (Q−h,2h) =∞, and therefore (11) doesn’t hold.

Example 2.3 The only linear fractional mappings ψ which leave P invariant and
induce bounded composition operators on the Hp(P)-spaces are those of the form
ψ(w) = αw + β with α > 0 and Imβ ≥ 0.

Proof. We consider transforms of the form ψ(w) = (aw + b)/(cw + d). By the
previous corollary, we must have c = 0, so ψ must be of the form ψ(w) = αw + β.
Indeed, if c 6= 0, and the zero of the denominator has negative imaginary part,
then ψ is bounded on P. If the denominator has its zero on the real line, say at
x, observe one can choose t ∈ R such that t < x < t + h. In that case, there is a
neighbourhood of∞ i.e. a set N of the form C\D where D is a closed disk, such that
ψ(N) ⊆ Qt,h. Therefore for some y > 0, big enough we shall have ψ−1

y (Qt,h) = R,
so mψ−1

y (Qt,h) =∞ . We deduce ψ must be of the form ψ(w) = αw+β. α cannot
be 0 because in that case ψ would be bounded. Since ψ must leave P invariant, we
must have α > 0 and Imβ ≥ 0. The fact that each such mapping satisfies condition
(11) is immediate.
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Consider the branch of
√
w which maps P onto the first quadrant.

Example 2.4 ψ(w) =
√
w, does not induce a bounded composition operator on any

of the Hp(P)-spaces.

Proof. Fix any y0 > 0 and set w = s + iy0/2s. So w2 = s2 − y2
0/4s

2 + iy0.
Therefore if h = y0/2t,

√
w2 = w ∈ Qt,h for each s, 0 < t < s < t + h. So

(s2 − y2
0/4s

2) ∈ ψ−1
y0

(Qt,h) if 0 < t < s < t+ h and hence

|{x ∈ R :
√
x+ iy0 ∈ Qt,h}|
h

≥ (t+ h)2 − y2
0/4(t+ h)2 + y2

0/4t
2 − t2

h
=

h+ 2t+
y2

0(h+ 2t)
4t2(t+ h)2

→∞

if t→∞, so (11) cannot hold.

The selfmappings φ of the unit disk D induce bounded composition operators on
all spaces Hp(D) if and only if they are holomorphic on D, their holomorphy being
necessary because f(z) = z, z ∈ D is an Hp(D)-function for each p, 0 < p <∞, and
f ◦φ = φ must be in Hp(D). The Hardy spaces on P have worse properties, so far as
composition operators are concerned. As we saw, there exist analytic selfmappings
of P, even linear fractional transforms which leave P invariant, and do not induce
bounded composition operators on any of the Hp(P)-spaces, 0 < p <∞. It is also
unclear if the fact that ψ induces a bounded composition operator on Hp(P), for
some p, 0 < p <∞ implies that ψ must be analytic on P. In connection with that
we wish to make the following

Remark For any fixed p, 0 < p <∞, if a continuous selfmapping of P, ψ : P→ P

induces a bounded composition operator on Hp(P), then ψ must be holomorphic on
P.

Proof. It will be enough to show that if CψHp(P) ⊆ Hp(P), then ψ is analytic on
P. It is well-known that f(w) = 1/(w + i)

2
p , w ∈ P is an Hp(P)-function, hence

f ◦ψ ∈ Hp(P), so f ◦ψ is analytic on P. It is easy to see that f ′(w) 6= 0, ∀w ∈ P, so
f is locally invertible with holomorphic local iverses, i.e. for each arbitrary w0 ∈ P
we can choose an open neighbourhood N of f(ψ(w0)) where f has a holomorphic
inverse f−1, and an open neighbourhood V of w0, such that (f ◦ ψ)(V ) ⊆ N so,
for each w ∈ V we have f−1 ◦ f ◦ ψ(w) = ψ(w), which shows that ψ must be
holomorphic on V . Since w0 was arbitrarily chosen we deduce that ψ is analytic
on P.

In the sequel we shall always consider holomorphic selfmappings of P. For any
f ∈ Hp(P) f(x) = limy→0+ f(x+iy) is known to exist a.e. on R, and will be refered
to as the boundary function of f . In connection with that we wish to prove

Proposition 2.5 If ψ : P→ P is holomorphic, the boundary function of ψ, ψ(x) =
limy→0+ ψ(x+ iy) exists and is finite for almost every x ∈ R.

Proof. Suppose φ is the function in (8) and φ(eiθ) is its boundary function which
exists a.e. on the unit circle. Since γ−1 transforms the vertical line through x into
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a circle passing through 1 and eiθ = (x− i)/(x+ i), for each x ∈ R, the boundary
function ψ(x) exists for each eiθ = (x− i)/(x+ i) for which φ(eiθ) exists. Therefore,
if E ⊆ R is the set of all x ∈ R where ψ(x) does not exist then the set γ−1(E) ⊆ T
must have measure 0. Hence we can write∫ 2π

0

χγ−1(E)(eiθ)
dθ

2π
=
∫ 2π

0

χE ◦ γ(eiθ)
dθ

2π
= 0

which, by (7) implies 1/π
∫
R
χE(x)/(1 + x2)dx = 0. This means χE = 0 a.e. i.e.

ψ(x) exists a.e. on R. If for some x ∈ R, ψ(x) =∞, then φ(eiθ) = 1. So if E denotes
the set of all x ∈ R for which this happens, then γ−1(E) ⊆ {eiθ ∈ T : φ(eiθ) = 1},
hence γ−1(E) must have measure 0 because φ is not constantly equal to 1, since it
is a selfmapping of D. By the same computation as above we obtain that E must
have measure 0 i.e. ψ(x) is finite for almost all x ∈ R.

For each mapping ϕ : D → C, the multiplication operator induced by ϕ, Mϕ is
the linear mapping

(12) Mϕf = ϕf f ∈ CD

where CD is the linear space of all C-valued mappings on D. For each selfmapping
ψ of P, attach φ to ψ as in (8), and denote by ωp the function

(13) ωp(z) =
(1− φ(z))

2
p

(1− z)
2
p

z ∈ D

We denote by Ap the linear mapping

(14) Apf = MωpCφf f ∈ CD

For each p, 0 < p <∞ we make the notation

(15) ϕp(z) = (1− z)
2
p z ∈ D

a simple computation shows that

(16) MϕpApf = CφMϕpf f ∈ CD.

With this notation we can prove the following theorem which extends a result in
[11].

Theorem 2.6 If ψ is a selfmapping of P and p is fixed, 0 < p < ∞, the following
are equvalent.

(17) CψH
p(P) ⊆ Hp(P)

(18) ApH
p(D) ⊆ Hp(D)
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(19) CφMϕpH
p(D) ⊆MϕpH

p(D)

(20) A2H
2(D) ⊆ H2(D)

Proof. The equivalence (17)⇔(18) is proven in [11] for p = 2. The same proof
works for any p i.e. the linear transforms

(21) V f(w) =
1

π
1
p (w + i)

2
p

f

(
w − i
w + i

)
w ∈ P, f ∈ CD

and

(22) Wg(z) =
e
iπ
p (4π)

1
p g(i 1+z

1−z )

(1− z)
2
p

z ∈ D, g ∈ CP

are inverse to each other. Checking this is a routine computation. One can use
(7) to check that the restrictions of V and W to Hp(D) and Hp(P) respectively,
are isometric, so regarded as mappings between Hp(D) and Hp(P) V and W are
onto isometries, inverse to each other. It is routine to check that WCψV f = Apf ,
for any f ∈ Hp(D) so ψ induces a bounded composition operator on Hp(P) if
and only if Ap restricted to Hp(D) is a bounded operator on Hp(D) which, by the
closed graph principle happens if and only if ApHp(D) ⊆ Hp(D) i.e. (17)⇔(18).
Since an analytic selfmapping of P simultaneously induces bounded composition
operators on all Hp(P)-spaces, we deduce (17)⇔(20). If (18) holds, then by (16)
CφMϕpH

p(D) = MϕpApH
p(D) ⊆ MϕpH

p(D) i.e (18)⇒(19). If (19) holds, this
means that for each f ∈ Hp(D) there is some g ∈ Hp(D) such that Cφ(ϕpf) = ϕpg

i.e. (1 − φ(z))2/p(f ◦ φ)(z) = (1 − z)2/pg(z), z ∈ D i.e. such that Apf = g, which
means that ApHp(D) ⊆ Hp(D) i.e. (19)⇒(17).

Clearly, since a selfmapping of P simultaneously induces bounded composition
operators on all Hp(P)-spaces, the number 2 in (20) can be replaced by any q,
0 < q < ∞. However, since H2(D) is a Hilbert space it is more confortable for us
to work with 2 rater than a different q.

Corollary 2.7 If ψ : P→ P induces a bounded composition operator on Hp(P), for
some p, 0 < p <∞, then ω2 ∈ H2(D). If ω2 is bounded then ψ induces a bounded
composition operator on each Hp(P)-space.

Proof. If Cψ is bounded on Hp(P), observe that the constant function 1 is an
H2(D)-function and A21 = ω2 so ω2 ∈ H2(D). If ω2 is bounded then both Mω2

and Cφ are bounded operators on H2(D), therefore so is A2.

In Example 2.4, ψ(w) =
√
w was shown not to induce a bounded composition

operator. Observe that, in that case ψ′ is not bounded below. This is significant
as we can see from the following

Theorem 2.8 If ψ : P→ P is analytic on P, and the function η(w, z) = |Reψ′(w)+
iImψ′(z)|, z, w ∈ P is bounded below, then ψ induces a bounded composition operator
on the Hp(P)-spaces.
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Proof. Choose ε > 0 such that |η(w, z)| ≥ ε for all z, w ∈ P. For ψ = u + iv,
this means |∂u(w)/∂x + i∂v(z)/∂x| ≥ ε, ∀z, w ∈ P. Take t ∈ R, y > 0, h > 0 and
observe that if ψ(x1 + iy), ψ(x2 + iy) ∈ Qt,h, then |ψ(x1 + iy)−ψ(x2 + iy)| ≤

√
2h.

On the other hand, by the mean value theorem, there exist s1, s2 between x1 and
x2 such that

|ψ(x1 + iy)− ψ(x2 + iy)| = |∂u(s1 + iy)
∂x

+ i
∂v(s2 + iy)

∂x
||x1 − x2|

so |x1 − x2| ≤
√

2h/ε hence

mψ−1
y (Qt,h) ≤ sup{|x1 − x2| : x1, x2 ∈ ψ−1

y (Qt,h)} ≤
√

2h
ε

which by Theorem 2.1 proves that Cψ is bounded.

Example 2.9 For any α > 0 and β ∈ C, Imβ ≥ 0 the function ψ(w) = αw+β+
√
w,

w ∈ P induces a bounded composition operator on the Hp(P)-spaces.

Proof. Since P is an additive semigroup and both αw + β and
√
w, w ∈ P are

selfmappings of P, we deduce ψ(P) ⊆ P. Observe that ψ′(w) = α+1/2
√
w so, since

1/2
√
w, w ∈ P transforms P onto the 4-th quadrant, and addition of α shifts the 4-

th quadrant to the right, we deduce that |Reψ′(w)| ≥ α > 0 for any w ∈ P. Observe
that |η(w, z)| ≥ |Reψ′(w)| ≥ α > 0, ∀w, z ∈ P, which means that ψ satisfies the
hypothesis of Theorem 2.8, hence Cψ is bounded.

The good thing about condition (20) in Theorem 2.6 is that it reduces the prob-
lem of deciding if ψ induces a bounded composition operator on the Hp(P)-spaces
to checking if the weighted composition operator A2 leaves H2(D) invariant. In
connection with the mapping φ which appears in the definition of A2, the authors
of [10] observe that φ has angular derivative at 1 if ω2 is bounded which is a partic-
ular situation when ψ induces a bounded composition operator (by Corollary 2.7).
The following is a generalization of this statement.

Theorem 2.10 If ψ : P→ P induces a bounded composition operator on the Hp(P)-
spaces, then φ has angular derivative at 1, and the angular limit of φ at 1 equals
1.

Proof. According to Theorem 2.6, ψ must induce a bounded composition operator
on H2(P) and in that case, the quantity δ = sup{Imw/Imψ(w) : w ∈ P} must be
finite. Indeed, this is a simple fact, first observed by the authors of [12]. By the
Cauchy formula for H2(P)-functions ([2], Theorem 11.8), the reproducing kernel
of the reproducing kernel Hilbert space H2(P) consists of the functions kα(w) =
i/2π(w − ᾱ), w ∈ P. By the reproducing property, the norm of such a function
is ||kα||22 = kα(α) = 1/

√
4πImα. If we consider now the normalized reproducing

kernel functions gα = kα/||kα||2, use the well known relation C∗ψkα = kψ(α), ([1],
Theorem 1.4) and write ||C∗ψgα||2 ≤ ||C∗ψ||, ∀α ∈ P, we get δ ≤ ||C∗ψ||2 < ∞. This
implies

(23) ψ(P+ iλ) ⊆ P+ iλ/δ ∀λ > 0
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The Julia-Carathéodory theorem ([8], pp 57 or [1], Theorem 2.44) gives necessary
and sufficient conditions for the existence of the angular derivative. Relation (23) is
condition (JC1 1

2 ) in the proof given to this theorem in [8], pp.69, transported in the
upper half-plane instead of the right half-plane, and is equivalent to the existence
of the limit limz→1(1−φ(z))/(1−z) as z tends to 1 inside a nontangential approach
region vith vertex at 1. Indeed, if H is the right, open half-plane and we define
Ψ(s) = īψ(is), s ∈ H, then Ψ = τ−1 ◦ φ ◦ τ , where τ(s) = (s − 1)/(s + 1), s ∈ H,
and (23) is equivalent to

Ψ(H+ λ) ⊆ H+ λ/δ ∀λ > 0

which is condition (JC1 1
2 ). The existence of this angular derivative, obviously

implies that the angular limit of φ at 1 must exist and be equal to 1. This last fact
is also proved separately in [10], by a different method, but in full generality, i.e.
for all ψ which induce bounded composition operators on H2(P)

3. Compactness

In this section we prove there are no compact composition operators on any of
the spaces Hp(P), 1 ≤ p <∞. The proof is by contradiction.

Theorem 3.1 If ψ : P→ P induces a bounded composition operator Cψ on Hp(P),
1 ≤ p <∞ then Cψ is never compact.

Proof. Suppose first that 1 < p <∞. By the Cauchy formula, ([2], Theorem 11.8),
the function in H̄q(P), q = (1 − 1/p)−1, corresponding to the point evaluation
functional

α̂f = f(α) f ∈ Hp(P), α ∈ P

under the usual identification of the dual of Hp(P) with H̄q(P) ([3] Theorem VI
4.2) is kα = i/2π(w − ᾱ), α ∈ P. This means that there is a bounded, invertible
operator T : (Hp(P))∗ → H̄q(P) such that T α̂ = kα, α ∈ P. Let’s observe that

||kα||q =
1

2π

(∫
R

dt

|t− ᾱ|q

) 1
q

=
1

2π(Imα)
q−1
q

(∫
R

dt

(1 + t2)
q
2

) 1
q

=

=
c

(Imα)
1
p

where c =
1

2π

(∫
R

dt

(1 + t2)
q
2

) 1
q

Set now αn = in, n ≥ 1. Observe that if we define gαn = kαn/||kαn ||q, then this
is a norm-bounded sequence which converges to 0 pointwise on P. Indeed, for each
w ∈ P we have gαn(w) = (n

1
p /c)(i/2π(w + in)). Since 1/p < 1 it is obvious that

(gαn) tends to 0 pointwise. For 1 < p <∞, Hp(P) is a reflexive space so, Corollary
1.3 in [1] works in these spaces, and hence gαn → 0 weakly. If Cψ is compact,
then C∗ψ is compact, so TC∗ψT

−1 is compact and, by a well known property of
composition operators ([1], Theorem 1.4) TC∗ψT

−1gαn = kψ(αn)/||kαn ||q. This
sequence must tend to 0 in the norm i.e. Imαn/Imψ(αn) → 0. We wish to show
that this generates a contradiction, and deduce that Cψ cannot be compact. Denote
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rn = (n − 1)/(n + 1). We have αn = i(1 + rn)/(1 − rn), i.e. αn = γ(rn). So
Imαn = ((1 + rn)/(1− rn)) = (1− r2

n)/(1− rn)2, and

Imψ(αn) = Re
1 + φ(rn)
1− φ(rn)

=
1− |φ(rn)|2

|1− φ(rn)|2

We deduce
1− r2

n

(1− rn)2
/

1− |φ(rn)|2

|1− φ(rn)|2
→ 0

that is

lim
n→∞

|1− φ(rn)|2

|1− rn|2
1− r2

n

1− |φ(rn)|2
= 0

Denote by φ′(1) the angular derivative of φ at 1, which must exist (by Theorem
2.10) and be a nonzero number (see [1], the remark following Corollary 2.40 and
Theorem 2.44 or [8], pp. 57). We obtained that

|φ′(1)|2 lim
n→∞

1− r2
n

1− |φ(rn)|2
= 0

i.e. limn→0(1−r2
n)/(1−|φ(rn)|2) = 0. Since (1−r2

n)/(1−|φ(rn)|2) ≥ (1−rn)/2(1−
|φ(rn)|), we deduce

lim
n→∞

1− |φ(rn)|
1− rn

=∞

which is a contradiction because the limit above should be equal to |φ′(1)| ([1]
Theorem 2.44). This proves the result for 1 < p <∞. For p = 1 now, we start by
choosing a sequence (gn)n in the closed unit ball of H2(P) which converges pointwise
to 0 and such that ||Cψgn||2 ≥ ε > 0, ∀n ≥ 1. Such a sequence exists because we
have just proved that Cψ is not a compact operator on H2(P). Set now fn = g2

n,
∀n ≥ 1. We obtain a sequence in the unit ball of H1(P), since ||fn||1 = ||gn||22,
∀n ≥ 1. Suppose now that Cψ is a compact operator on H1(P). In that case,
(Cψfn)n must contain a norm convergent subsequence (Cψfnk)k. Norm convergence
in H1(P) implies pointwise convergence (by (4)), and Cψfnk(w) = g2

nk
(ψ(w))→ 0,

∀w ∈ P. Therefore (Cψfnk)k must tend to 0 in the norm, which is a contradiction
because ||Cψfnk ||1 = ||Cψgnk ||22 ≥ ε2 > 0, ∀k ≥ 1.

We finish this paper by raising the following

Problem Give a nice characterization in terms of the symbol φ of those composition
operators Cφ on H2(D) which leave invariant the operator range (1− z)H2(D).

Some comments are in order here. Observe that for p = 2, the mapping defined in
(15) is ϕ2(z) = 1−z, z ∈ D. The operator range above is the range of I−S where S
is the unilateral forward shift of multiplicity 1 i.e. the multiplication operator with
the coordinate function acting on H2(D). By condition (19) in Theorem 2.6, solving
this problem means characterizing those selfmappings φ of D associated by condition
(8) to the selfmappings ψ of P which induce bounded composition operators on the
spaces Hp(P). By the term ”nice characterization” in the statement of this problem
we mean a necessary and sufficient condition easier to work with than the necessary
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and sufficient conditions contained by Theorem 2.1 and Theorem 2.6. Observe that,
by Theorem 2.10 such a φ must have angular derivative at 1 and the angular limit at
1 should be equal to 1 (i.e. 1 should be a boundary fixed point for φ). By Corollary
2.7 another necessary condition φ needs to satisfy is that ω2(z) = (1−φ(z))/(1−z),
z ∈ D be an H2(D)-function.

References

1. C. C. Cowen and B. D. MacCluer, Composition Operators on Spaces of Analytic Functions,
CRC Press Boca Raton, New York, London, Tokyo, 1995.

2. P. L. Duren, Theory of Hp Spaces, Academic Press, New-York, 1970.

3. J. B. Garnett, Bounded Analytic Functions, Academic Press, New York, 1981.
4. P. R. Halmos, Measure Theory, Van Nostrand, Princeton, NJ, 1950.

5. K. Hoffman, Banach Spaces of Analytic Functions, Englewood Cliffs, NJ, 1962.

6. V. Matache, Composition Operators on Hp of the Upper Half-Plane, An. Univ. Timisoara
Ser. Stiint. Mat. 119 (1989), 63–69.

7. E. A. Nordgren, Composition Operators in Hilbert Spaces, Hilbert Space Operators, Lecture
Notes in Mathematics, vol. 693, Springer-Verlag, New York, Heidelberg, Berlin, 1978, pp. 37–
63.

8. J. H. Shapiro, Composition Operators and Classical Function Theory, Springer-Verlag, New
York, Heidelberg, Berlin, 1993.

9. S. D. Sharma, Compact and Hilbert-Schmidt Composition Operators on Hardy Spaces of the
Upper Half-Plane, Acta Sci. Math. (Széged) 46 (1983), 197–202.
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